1
|
Di Camillo F, Grimaldi DA, Cattarinussi G, Di Giorgio A, Locatelli C, Khuntia A, Enrico P, Brambilla P, Koutsouleris N, Sambataro F. Magnetic resonance imaging-based machine learning classification of schizophrenia spectrum disorders: a meta-analysis. Psychiatry Clin Neurosci 2024; 78:732-743. [PMID: 39290174 PMCID: PMC11612547 DOI: 10.1111/pcn.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Recent advances in multivariate pattern recognition have fostered the search for reliable neuroimaging-based biomarkers in psychiatric conditions, including schizophrenia. These approaches consider the complex pattern of alterations in brain function and structure, overcoming the limitations of traditional univariate methods. To assess the reliability of neuroimaging-based biomarkers and the contribution of study characteristics in distinguishing individuals with schizophrenia spectrum disorder (SSD) from healthy controls (HCs), we conducted a systematic review of the studies that used multivariate pattern recognition for this objective. METHODS We systematically searched PubMed, Scopus, and Web of Science for studies on SSD classification using multivariate pattern analysis on magnetic resonance imaging data. We employed a bivariate random-effects meta-analytic model to explore the classification of sensitivity (SE) and specificity (SP) across studies while also evaluating the moderator effects of clinical and non-clinical variables. RESULTS A total of 119 studies (with 12,723 patients with SSD and 13,196 HCs) were identified. The meta-analysis estimated a SE of 79.1% (95% confidence interval [CI], 77.1%-81.0%) and a SP of 80.0% (95% CI, 77.8%-82.0%). In particular, the Positive and Negative Syndrome Scale and the Global Assessment of Functioning scores, age, age of onset, duration of untreated psychosis, deep learning, algorithm type, features selection, and validation methods had significant effects on classification performance. CONCLUSIONS Multivariate pattern analysis reliably identifies neuroimaging-based biomarkers of SSD, achieving ∼80% SE and SP. Despite clinical heterogeneity, discernible brain modifications effectively differentiate SSD from HCs. Classification performance depends on patient-related and methodological factors crucial for the development, validation, and application of prospective models in clinical settings.
Collapse
Affiliation(s)
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS)University of PadovaPaduaItaly
- Padova Neuroscience CenterUniversity of PadovaPaduaItaly
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | | | - Clara Locatelli
- Department of Mental Health and AddictionsASST Papa Giovanni XXIIIBergamoItaly
| | - Adyasha Khuntia
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian UniversityMunichGermany
- International Max Planck Research School for Translational Psychiatry (IMPRS‐TP)MunichGermany
- Max‐Planck‐Institute of PsychiatryMunichGermany
| | - Paolo Enrico
- Department of Psychiatry and PsychotherapyLudwig‐Maximilian UniversityMunichGermany
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Department of Neurosciences and Mental HealthFondazione IRCSS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Paolo Brambilla
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Department of Neurosciences and Mental HealthFondazione IRCSS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Nikolaos Koutsouleris
- Max‐Planck‐Institute of PsychiatryMunichGermany
- Department of PsychiatryMunich University HospitalMunichGermany
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUnited Kingdom
| | - Fabio Sambataro
- Department of Neuroscience (DNS)University of PadovaPaduaItaly
- Padova Neuroscience CenterUniversity of PadovaPaduaItaly
| |
Collapse
|
2
|
Ding Y, Zhang T, Cao W, Zhang L, Xu X. A multi-frequency approach of the altered functional connectome for autism spectrum disorder identification. Cereb Cortex 2024; 34:bhae341. [PMID: 39152674 DOI: 10.1093/cercor/bhae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024] Open
Abstract
Autism spectrum disorder stands as a multifaceted and heterogeneous neurodevelopmental condition. The utilization of functional magnetic resonance imaging to construct functional brain networks proves instrumental in comprehending the intricate interplay between brain activity and autism spectrum disorder, thereby elucidating the underlying pathogenesis at the cerebral level. Traditional functional brain networks, however, typically confine their examination to connectivity effects within a specific frequency band, disregarding potential connections among brain areas that span different frequency bands. To harness the full potential of interregional connections across diverse frequency bands within the brain, our study endeavors to develop a novel multi-frequency analysis method for constructing a comprehensive functional brain networks that incorporates multiple frequencies. Specifically, our approach involves the initial decomposition of functional magnetic resonance imaging into distinct frequency bands through wavelet transform. Subsequently, Pearson correlation is employed to generate corresponding functional brain networks and kernel for each frequency band. Finally, the classification was performed by a multi-kernel support vector machine, to preserve the connectivity effects within each band and the connectivity patterns shared among the different bands. Our proposed multi-frequency functional brain networks method yielded notable results, achieving an accuracy of 89.1%, a sensitivity of 86.67%, and an area under the curve of 0.942 in a publicly available autism spectrum disorder dataset.
Collapse
Affiliation(s)
- Yupan Ding
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ting Zhang
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao 266042, China
| | - Wenming Cao
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lei Zhang
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
3
|
Yu T, Pei WZ, Xu CY, Deng CC, Zhang XL. Identification of male schizophrenia patients using brain morphology based on machine learning algorithms. World J Psychiatry 2024; 14:804-811. [PMID: 38984327 PMCID: PMC11230103 DOI: 10.5498/wjp.v14.i6.804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Schizophrenia is a severe psychiatric disease, and its prevalence is higher. However, diagnosis of early-stage schizophrenia is still considered a challenging task. AIM To employ brain morphological features and machine learning method to differentiate male individuals with schizophrenia from healthy controls. METHODS The least absolute shrinkage and selection operator and t tests were applied to select important features from structural magnetic resonance images as input features for classification. Four commonly used machine learning algorithms, the general linear model, random forest (RF), k-nearest neighbors, and support vector machine algorithms, were used to develop the classification models. The performance of the classification models was evaluated according to the area under the receiver operating characteristic curve (AUC). RESULTS A total of 8 important features with significant differences between groups were considered as input features for the establishment of classification models based on the four machine learning algorithms. Compared to other machine learning algorithms, RF yielded better performance in the discrimination of male schizophrenic individuals from healthy controls, with an AUC of 0.886. CONCLUSION Our research suggests that brain morphological features can be used to improve the early diagnosis of schizophrenia in male patients.
Collapse
Affiliation(s)
- Tao Yu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Wen-Zhi Pei
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chun-Yuan Xu
- Department of Clinical Nutrition, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| | - Chen-Chen Deng
- Department of Gynaecology, Anhui Maternal and Child Health Hospital, Hefei 230032, Anhui Province, China
| | - Xu-Lai Zhang
- Department of Psychiatry, Hefei Fourth People’s Hospital, Hefei 230032, Anhui Province, China
| |
Collapse
|
4
|
Song P, Li X, Yuan X, Pang L, Song X, Wang Y. Identifying frequency-dependent imaging genetic associations via hypergraph-structured multi-task sparse canonical correlation analysis. Comput Biol Med 2024; 171:108051. [PMID: 38335819 DOI: 10.1016/j.compbiomed.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Identifying complex associations between genetic variations and imaging phenotypes is a challenging task in the research of brain imaging genetics. The previous study has proved that neuronal oscillations within distinct frequency bands are derived from frequency-dependent genetic modulation. Thus it is meaningful to explore frequency-dependent imaging genetic associations, which may give important insights into the pathogenesis of brain disorders. In this work, the hypergraph-structured multi-task sparse canonical correlation analysis (HS-MTSCCA) was developed to explore the associations between multi-frequency imaging phenotypes and single-nucleotide polymorphisms (SNPs). Specifically, we first created a hypergraph for the imaging phenotypes of each frequency and the SNPs, respectively. Then, a new hypergraph-structured constraint was proposed to learn high-order relationships among features in each hypergraph, which can introduce biologically meaningful information into the model. The frequency-shared and frequency-specific imaging phenotypes and SNPs could be identified using the multi-task learning framework. We also proposed a useful strategy to tackle this algorithm and then demonstrated its convergence. The proposed method was evaluated on four simulation datasets and a real schizophrenia dataset. The experimental results on synthetic data showed that HS-MTSCCA outperforms the other competing methods according to canonical correlation coefficients, canonical weights, and cosine similarity. And the results on real data showed that HS-MTSCCA could obtain superior canonical coefficients and canonical weights. Furthermore, the identified frequency-shared and frequency-specific biomarkers could provide more interesting and meaningful information, demonstrating that HS-MTSCCA is a powerful method for brain imaging genetics.
Collapse
Affiliation(s)
- Peilun Song
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaping Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Wang C, Wang C, Ren Y, Zhang R, Ai L, Wu Y, Ran X, Wang M, Hu H, Shen J, Zhao Z, Yang Y, Ren W, Yu Y. Multi feature fusion network for schizophrenia classification and abnormal brain network recognition. Brain Res Bull 2024; 206:110848. [PMID: 38104673 DOI: 10.1016/j.brainresbull.2023.110848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Schizophrenia classification and abnormal brain network recognition have an important research significance. Researchers have proposed many classification methods based on machine learning and deep learning. However, fewer studies utilized the advantages of complementary information from multi feature to learn the best representation of schizophrenia. In this study, we proposed a multi-feature fusion network (MFFN) using functional network connectivity (FNC) and time courses (TC) to distinguish schizophrenia patients from healthy controls. DNN backbone was adopted to learn the feature map of functional network connectivity, C-RNNAM backbone was designed to learn the feature map of time courses, and Deep SHAP was applied to obtain the most discriminative brain networks. We proved the effectiveness of this proposed model using the combining two public datasets and evaluated this model quantitatively using the evaluation indexes. The results showed that the functional network connectivity generated by independent component analysis has advantage in schizophrenia classification by comparing static and dynamic functional connections. This method obtained the best classification accuracy (ACC=87.30%, SPE=89.28%, SEN=85.71%, F1 =88.23%, and AUC=0.9081), and it demonstrated the superiority of this proposed model by comparing state-of-the-art methods. Ablation experiment also demonstrated that multi feature fusion and attention module can improve classification accuracy. The most discriminative brain networks showed that default mode network and visual network of schizophrenia patients have aberrant connections in brain networks. In conclusion, this method can identify schizophrenia effectively and visualize the abnormal brain network, and it has important clinical application value.
Collapse
Affiliation(s)
- Chang Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Chen Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Yaning Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Rui Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Lunpu Ai
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yang Wu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Xiangying Ran
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Mengke Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Heshun Hu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Jiefen Shen
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China; Xinxiang Engineering Technology Research Center of Intelligent Medical Imaging Diagnosis, Xinxiang, China
| | - Zongya Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China
| | - Wenjie Ren
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China; Henan Key Laboratory of Biological Psychiatry, Xinxiang, China; School of Medical Engineering, Xinxiang Medical University, Xinxiang, China; Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China.
| |
Collapse
|
6
|
Ding Y, Xu X, Peng L, Zhang L, Li W, Cao W, Gao X. Wavelet transform-based frequency self-adaptive model for functional brain network. Cereb Cortex 2023; 33:11181-11194. [PMID: 37759345 DOI: 10.1093/cercor/bhad357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The accurate estimation of functional brain networks is essential for comprehending the intricate relationships between different brain regions. Conventional methods such as Pearson Correlation and Sparse Representation often fail to uncover concealed information within diverse frequency bands. To address this limitation, we introduce a novel frequency-adaptive model based on wavelet transform, enabling selective capture of highly correlated frequency band sequences. Our approach involves decomposing the original time-domain signal from resting-state functional magnetic resonance imaging into distinct frequency domains, thus constructing an adjacency matrix that offers enhanced separation of features across brain regions. Comparative analysis demonstrates the superior performance of our proposed model over conventional techniques, showcasing improved clarity and distinctiveness. Notably, we achieved the highest accuracy rate of 89.01% using Sparse Representation based on Wavelet Transform, outperforming Pearson Correlation based on Wavelet Transform with an accuracy of 81.32%. Importantly, our method optimizes raw data without significantly altering feature topology, rendering it adaptable to various functional brain network estimation approaches. Overall, this innovation holds the potential to advance the understanding of brain function and furnish more accurate samples for future research and clinical applications.
Collapse
Affiliation(s)
- Yupan Ding
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, Nan'An 400064, China
| | - Xiaowen Xu
- Department of Medical Imaging, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Institute of Medical Imaging Artificial Intelligence, Tongji University School of Medicine, Shanghai 200065, China
| | - Liling Peng
- Department of Pet/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai 200065, China
| | - Lei Zhang
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, Nan'An 400064, China
| | - Weikai Li
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, Nan'An 400064, China
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 276800, China
| | - Wenming Cao
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, Nan'An 400064, China
| | - Xin Gao
- Department of Pet/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai 200065, China
| |
Collapse
|
7
|
Shi Y, Shen Z, Zeng W, Luo S, Zhou L, Wang N. A schizophrenia study based on multi-frequency dynamic functional connectivity analysis of fMRI. Front Hum Neurosci 2023; 17:1164685. [PMID: 37250690 PMCID: PMC10213427 DOI: 10.3389/fnhum.2023.1164685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
At present, fMRI studies mainly focus on the entire low-frequency band (0. 01-0.08 Hz). However, the neuronal activity is dynamic, and different frequency bands may contain different information. Therefore, a novel multi-frequency-based dynamic functional connectivity (dFC) analysis method was proposed in this study, which was then applied to a schizophrenia study. First, three frequency bands (Conventional: 0.01-0.08 Hz, Slow-5: 0.0111-0.0302 Hz, and Slow-4: 0.0302-0.0820 Hz) were obtained using Fast Fourier Transform. Next, the fractional amplitude of low-frequency fluctuations was used to identify abnormal regions of interest (ROIs) of schizophrenia, and dFC among these abnormal ROIs was implemented by the sliding time window method at four window-widths. Finally, recursive feature elimination was employed to select features, and the support vector machine was applied for the classification of patients with schizophrenia and healthy controls. The experimental results showed that the proposed multi-frequency method (Combined: Slow-5 and Slow-4) had a better classification performance compared with the conventional method at shorter sliding window-widths. In conclusion, our results revealed that the dFCs among the abnormal ROIs varied at different frequency bands and the efficiency of combining multiple features from different frequency bands can improve classification performance. Therefore, it would be a promising approach for identifying brain alterations in schizophrenia.
Collapse
Affiliation(s)
- Yuhu Shi
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zehao Shen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Sizhe Luo
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lili Zhou
- Surgery Department of Tongji University Affiliated Yangpu Central Hospital, Shanghai, China
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| |
Collapse
|
8
|
Shi J, Li Z, Zhao H. Feature Selection via Maximizing Inter-class Independence and Minimizing Intra-class Redundancy for Hierarchical Classification. Inf Sci (N Y) 2023. [DOI: 10.1016/j.ins.2023.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
9
|
Shi D, Zhang H, Wang G, Yao X, Li Y, Wang S, Ren K. Neuroimaging biomarkers for detecting schizophrenia: A resting-state functional MRI-based radiomics analysis. Heliyon 2022; 8:e12276. [PMID: 36582679 PMCID: PMC9793282 DOI: 10.1016/j.heliyon.2022.e12276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/19/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Schizophrenia (SZ) is a common psychiatric disorder that is difficult to accurately diagnose in clinical practice. Quantifiable biomarkers are urgently required to explore the potential physiological mechanism of SZ and improve its diagnostic accuracy. Thus, this study aimed to identify biomarkers that classify SZ patients and healthy control subjects and investigate the potential neural mechanisms of SZ using degree centrality (DC)- and voxel-mirrored homotopic connectivity (VMHC)-based radiomics. Radiomics features were extracted from DC and VMHC metrics generated via resting-state functional magnetic resonance imaging, and significant features were selected and dimensionality was reduced using t-tests and least absolute shrinkage and selection operator. Subsequently, we built our model using a support vector machine classifier. We observed that our method obtained great classification performance (area under the curve, 0.808; accuracy, 74.02%), and it could be generalized to different brain atlases. The regions that we identified as discriminative features mainly included bilateral dorsal caudate and front-parietal, somatomotor, limbic, and default mode networks. Our findings showed that the radiomics-based machine learning method could facilitate us to understand the potential pathological mechanism of SZ more comprehensively and contribute to the accurate diagnosis of patients with SZ.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361002, China
| |
Collapse
|
10
|
Frequency-Specific Analysis of the Dynamic Reconfiguration of the Brain in Patients with Schizophrenia. Brain Sci 2022; 12:brainsci12060727. [PMID: 35741612 PMCID: PMC9221032 DOI: 10.3390/brainsci12060727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/01/2022] [Accepted: 05/28/2022] [Indexed: 12/10/2022] Open
Abstract
The analysis of resting-state fMRI signals usually focuses on the low-frequency range/band (0.01−0.1 Hz), which does not cover all aspects of brain activity. Studies have shown that distinct frequency bands can capture unique fluctuations in brain activity, with high-frequency signals (>0.1 Hz) providing valuable information for the diagnosis of schizophrenia. We hypothesized that it is meaningful to study the dynamic reconfiguration of schizophrenia through different frequencies. Therefore, this study used resting-state functional magnetic resonance (RS-fMRI) data from 42 schizophrenia and 40 normal controls to investigate dynamic network reconfiguration in multiple frequency bands (0.01−0.25 Hz, 0.01−0.027 Hz, 0.027−0.073 Hz, 0.073−0.198 Hz, 0.198−0.25 Hz). Based on the time-varying dynamic network constructed for each frequency band, we compared the dynamic reconfiguration of schizophrenia and normal controls by calculating the recruitment and integration. The experimental results showed that the differences between schizophrenia and normal controls are observed in the full frequency, which is more significant in slow3. In addition, as visual network, attention network, and default mode network differ a lot from each other, they can show a high degree of connectivity, which indicates that the functional network of schizophrenia is affected by the abnormal brain state in these areas. These shreds of evidence provide a new perspective and promote the current understanding of the characteristics of dynamic brain networks in schizophrenia.
Collapse
|
11
|
MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput Biol Med 2022; 142:105239. [DOI: 10.1016/j.compbiomed.2022.105239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/22/2022]
|
12
|
Li L, Jiang H, Wen G, Cao P, Xu M, Liu X, Yang J, Zaiane O. TE-HI-GCN: An Ensemble of Transfer Hierarchical Graph Convolutional Networks for Disorder Diagnosis. Neuroinformatics 2021; 20:353-375. [PMID: 34761367 DOI: 10.1007/s12021-021-09548-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2021] [Indexed: 11/25/2022]
Abstract
Accurate diagnosis of psychiatric disorders plays a critical role in improving the quality of life for patients and potentially supports the development of new treatments. Graph convolutional networks (GCNs) are shown to be successful in modeling applications with graph structures. However, training an accurate GCNs model for brain networks faces several challenges, including high dimensional and noisy correlation in the brain networks, limited labeled training data, and depth limitation of GCN learning. Generalization and interpretability are important in developing predictive models for clinical diagnosis. To address these challenges, we proposed an ensemble framework involving hierarchical GCN and transfer learning for sparse brain networks, which allows GCN to capture the intrinsic correlation among the subjects and domains, to improve the network embedding learning for disease diagnosis. Extensive experiments on two real medical clinical applications: diagnosis of Autism spectrum disorder (ASD) and diagnosis of Alzheimer's disease (AD) on both the ADNI and ABIDE databases, showing the effectiveness of the proposed framework. We achieved state-of-the-art accuracy and AUC for AD/MCI and ASD/NC (Normal control) classification in comparison with studies that used functional connectivity as features or GCN models. The proposed TE-HI-GCN model achieves the best classification performance, leading to about 27.93% (31.38%) improvement for ASD and 16.86% (44.50%) for AD in terms of accuracy and AUC compared with the traditional GCN model. Moreover, the obtained clustering results show high correspondence with the previous neuroimaging derived evidence of within and between-networks biomarkers for ASD. The discovered subnetworks are used as evidence for the proposed TE-HI-GCN model. Furthermore, this work is the first attempt of transfer learning on the two related disorder domains to uncover the correlation among the two diseases with a transfer learning scheme.
Collapse
Affiliation(s)
- Lanting Li
- Computer Science and Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China
| | - Hao Jiang
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Guangqi Wen
- Computer Science and Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China
| | - Peng Cao
- Computer Science and Engineering, Northeastern University, Shenyang, China.
- Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China.
| | - Mingyi Xu
- Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Xiaoli Liu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Jinzhu Yang
- Computer Science and Engineering, Northeastern University, Shenyang, China
- Key Laboratory of Intelligent Computing in Medical Image of Ministry of Education, Northeastern University, Shenyang, China
| | - Osmar Zaiane
- Amii, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K. Machine Learning of Schizophrenia Detection with Structural and Functional Neuroimaging. DISEASE MARKERS 2021; 2021:9963824. [PMID: 34211615 PMCID: PMC8208855 DOI: 10.1155/2021/9963824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Schizophrenia (SZ) is a severe psychiatric illness, and it affects around 1% of the general population; however, its reliable diagnosis is challenging. Functional MRI (fMRI) and structural MRI (sMRI) are useful techniques for investigating the functional and structural abnormalities of the human brain, and a growing number of studies have reported that multimodal brain data can improve diagnostic accuracy. Machine learning (ML) is widely used in the diagnosis of neuroscience and neuropsychiatry diseases, and it can obtain high accuracy. However, the conventional ML which concatenated the features into a longer feature vector could not be sufficiently effective to combine different features from different modalities. There are considerable controversies over the use of global signal regression (GSR), and few studies have explored the role of GSR in ML in diagnosing neurological diseases. The current study utilized fMRI and sMRI data to implement a new method named multimodal imaging and multilevel characterization with multiclassifier (M3) to classify SZs and healthy controls (HCs) and investigate the influence of GSR in SZ classification. We found that when we used Brainnetome 246 atlas and without performed GSR, our method obtained a classification accuracy of 83.49%, with a sensitivity of 68.69%, a specificity of 93.75%, and an AUC of 0.8491, respectively. We also got great classification performances with different processing methods (with/without GSR and different brain parcellation schemes). We found that the accuracy and specificity of the models without GSR were higher than that of the models with GSR. Our findings indicate that the M3 method is an effective tool to distinguish SZs from HCs, and it can identify discriminative regions to detect SZ to explore the neural mechanisms underlying SZ. The global signal may contain important neuronal information; it can improve the accuracy and specificity of SZ detection.
Collapse
Affiliation(s)
- Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen 361002, China
| |
Collapse
|