1
|
Pang B, Zhang Y, Zhou Y, Liu ZF, Liu XJ, Feng XS. Recent Update on Pretreatment and Analysis Methods of Buprenorphine in Different Matrix. Crit Rev Anal Chem 2024; 54:1243-1272. [PMID: 35979823 DOI: 10.1080/10408347.2022.2111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Buprenorphine is one of the most commonly used pain-killing drugs due to its lengthy duration of action and high potency. However, excessive usage of buprenorphine can be harmful to one's health and prolonged use might result in addiction. Additionally, an increasing number of cases have been documented involving the illegal use of buprenorphine. Therefore, a variety of effective and reliable methods for pretreatment and determination of buprenorphine and its main metabolite norbuprenorphine have been established. This review aims to update the current state of pretreatment and detection techniques for buprenorphine and norbuprenorphine from January 2010 to March 2022. Pretreatment methods include several traditional extraction methods, solid-phase extraction, QuECHERS, various micro-extraction techniques, etc. while analytical methods include LC-MS, LC coupled with other detectors, GC-MS, capillary electrophoresis, electrochemical sensors, etc. The pros and cons of various techniques were compared and summarized, and the prospects were provided.HIGHLIGHTSProgress in pretreatment and detection methods for buprenorphine is demonstrated.Pros and cons of different pretreatment and analysis methods are compared.New materials (such as nanomaterials and magnetic materials) used in buprenorphine pretreatment are summarized.Newly emerged environmental-friendly methods are discussed.
Collapse
Affiliation(s)
- Bo Pang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xiao-Jun Liu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Usman M, Baig Y, Nardiello D, Quinto M. How new nanotechnologies are changing the opioid analysis scenery? A comparison with classical analytical methods. Forensic Sci Res 2024; 9:owae001. [PMID: 38560581 PMCID: PMC10981550 DOI: 10.1093/fsr/owae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 04/04/2024] Open
Abstract
Opioids such as heroin, fentanyl, raw opium, and morphine have become a serious threat to the world population in the recent past, due to their increasing use and abuse. The detection of these drugs in biological samples is usually carried out by spectroscopic and/or chromatographic techniques, but the need for quick, sensitive, selective, and low-cost new analytical tools has pushed the development of new methods based on selective nanosensors, able to meet these requirements. Modern sensors, which utilize "next-generation" technologies like nanotechnology, have revolutionized drug detection methods, due to easiness of use, their low cost, and their high sensitivity and reliability, allowing the detection of opioids at trace levels in raw, pharmaceutical, and biological samples (e.g. blood, urine, saliva, and other biological fluids). The peculiar characteristics of these sensors not only have allowed on-site analyses (in the field, at the crime scene, etc.) but also they are nowadays replacing the gold standard analytical methods in the laboratory, even if a proper method validation is still required. This paper reviews advances in the field of nanotechnology and nanosensors for the detection of commonly abused opioids both prescribed (i.e. codeine and morphine) and illegal narcotics (i.e. heroin and fentanyl analogues).
Collapse
Affiliation(s)
- Muhammad Usman
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Yawar Baig
- Narcotic Unit, Punjab Forensic Science Agency, Home Department, Government of The Punjab, Lahore-54000, Pakistan
| | - Donatella Nardiello
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| | - Maurizio Quinto
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, I-71122 Foggia, Italy
| |
Collapse
|
3
|
Scanferla DTP, Sano Lini R, Marchioni C, Mossini SAG. Drugs of abuse: A narrative review of recent trends in biological sample preparation and chromatographic techniques. Forensic Chem 2022. [DOI: 10.1016/j.forc.2022.100442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Simultaneous electrochemical determination of morphine and methadone by using CMK-5 mesoporous carbon and multivariate calibration. Sci Rep 2022; 12:8270. [PMID: 35585173 PMCID: PMC9117690 DOI: 10.1038/s41598-022-12506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/11/2022] [Indexed: 11/22/2022] Open
Abstract
For the first time, a sensitive electrochemical sensor using a glassy carbon electrode modified with CMK-5 Ordered mesoporous carbon was fabricated for simultaneous analysis of morphine and methadone. Modern electrochemical FFT-SWV techniques and partial least-squares as a multivariable analysis were used in this method. CMK-5 nanostructures were characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. Variables such as accumulation time and pH for the proposed sensor were optimized before quantitative analysis. To train the proposed sensor, standard mixtures of morphine (MOR), and methadone (MET) were prepared in the established linear ranges of the analyzes. The results obtained from training samples were used for PLS modeling. The efficiency of the model was determined using test and real matrix samples. The root mean square error of prediction and the squared correlation coefficients (R2p) for MET and MOR were estimated to be 0.00772 and 0.00892 and 0.948 to 0.990, respectively. The recoveries in urine samples were reported to be 97.0 and 105.6% for both MOR and MET, respectively.
Collapse
|
5
|
Pang B, Jiang Y. Progress in pretreatment of methadone: an update since 2015. Prep Biochem Biotechnol 2022; 53:109-119. [PMID: 35369846 DOI: 10.1080/10826068.2022.2056900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Methadone, a µ-opioid receptor agonist, is widely used in pain-relieving and treating opioid dependence. If not strictly controlled, as an opioid substitute, it can lead to abuse and cause more severe withdrawal responses than heroin. Also, overdose or abuse of this drug in clinical use may provide severe side effects such as apnea, circulatory collapse, cardiac arrest, and even death. For these reasons, simple, rapid, and efficient methods have been developed for the pretreatment of methadone. This review presents a comprehensive conclusion of the pretreatment methods used for methadone in various sample matrices, focusing on the developments since 2015. Traditionally used pretreatment methods like solid-phase extraction and liquid-liquid extraction are discussed and newly developed methods like solid-phase microextraction and liquid-liquid microextraction along with new materials applied are focused.
Collapse
Affiliation(s)
- Bo Pang
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, Shen Yang, China
| | - Yinru Jiang
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, Shen Yang, China
| |
Collapse
|
6
|
Barreiro JC, Tiritan ME, Cass QB. Challenges and innovations in chiral drugs in an environmental and bioanalysis perspective. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Tu Y, Wang L, Rong Y, Tam V, Yin T, Gao S, Singh R, Hu M. Hepatoenteric recycling is a new disposition mechanism for orally administered phenolic drugs and phytochemicals in rats. eLife 2021; 10:e58820. [PMID: 34196607 PMCID: PMC8248983 DOI: 10.7554/elife.58820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Many orally administered phenolic drugs undergo enterohepatic recycling (EHR), presumably mediated by the hepatic phase II enzymes. However, the disposition of extrahepatically generated phase II metabolites is unclear. This paper aims to determine the new roles of liver and intestine in the disposition of oral phenolics. Sixteen representative phenolics were tested using direct portal vein infusion and/or intestinal perfusion. The results showed that certain glucuronides were efficiently recycled by liver. OATP1B1/1B3/2B1 were the responsible uptake transporters. Hepatic uptake is the rate-limiting step in hepatic recycling. Our findings showed that the disposition of many oral phenolics is mediated by intestinal glucuronidation and hepatic recycling. A new disposition mechanism 'Hepatoenteric Recycling (HER)", where intestine is the metabolic organ and liver is the recycling organ, was revealed. Further investigations focusing on HER should help interpret how intestinal aliments or co-administered drugs that alter gut enzymes (e.g. UGTs) expression/activities will impact the disposition of phenolics.
Collapse
Affiliation(s)
- Yifan Tu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Lu Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Yi Rong
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Vincent Tam
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Song Gao
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas Southern UniversityHoustonUnited States
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of HoustonHoustonUnited States
| |
Collapse
|
8
|
Recent advances in chiral analysis for biosamples in clinical research and forensic toxicology. Bioanalysis 2021; 13:493-511. [PMID: 33719527 DOI: 10.4155/bio-2020-0330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This article covers current methods and applications in chiral analysis from 2010 to 2020 for biosamples in clinical research and forensic toxicology. Sample preparation for aqueous and solid biological samples prior to instrumental analysis were discussed in the article. GC, HPLC, capillary electrophoresis and sub/supercritical fluid chromatography provide the efficient tools for chiral drug analysis coupled to fluorescence, UV and MS detectors. The application of chiral analysis is discussed in the article, which involves differentiation between clinical use and drug abuse, pharmacokinetic studies, pharmacology/toxicology evaluations and chiral inversion. Typical chiral analytes, including amphetamines and their analogs, anesthetics, psychotropic drugs, β-blockers and some other chiral compounds, are also reviewed.
Collapse
|
9
|
Feliu C, Konecki C, Binet L, Vautier D, Haudecoeur C, Oget O, Fouley A, Marty H, Gozalo C, Cazaubon Y, Djerada Z. Quantification of methadone, buprenorphine, naloxone, opioids, and their derivates in whole blood by liquid chromatography-high-resolution mass spectrometry: Analysis of their involvement in fatal forensic cases. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122226. [PMID: 32540719 DOI: 10.1016/j.jchromb.2020.122226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/25/2022]
Abstract
Opioids represent a broad family of compounds that can be used in several indications: analgesics, antitussives, opioid substitution therapy (e.g. methadone, buprenorphine…). When these products are misused, they are often addictive. Thus, we aimed to develop an analytical method able to rapidly quantify several opiates and opioids (6-monoacetylmorphine, buprenorphine, codeine, dihydrocodeine, 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolidine, ethylmorphine, heroin, methadone, morphine, nalbuphine, naloxone, norbuprenorphine, norcodeine, norpropoxyphene, oxycodone and propoxyphene) in whole blood by ultra-high performance liquid chromatography combined with high resolution mass spectrometry (UHPLC-HRMS). The validated assay requires only 100 µL of the blood sample. The sample is prepared by a rapid liquid-liquid extraction using 5% zinc sulfate (W/V), methanol and acetonitrile. Calibration curves range from 0.98 to 1000 µg/L, except for buprenorphine (0.39-100 µg/L) and norbuprenorphine (0.20-100 µg/L). Inter- and intra-analytical accuracy was less than 15%. Therefore, we describe the development and full validation of an accurate, sensitive and precise assay using UHPLC-HRMS for the analysis of opioids in whole blood. After validation, this new assay is successfully applied on a routine laboratory application basis.
Collapse
Affiliation(s)
- Catherine Feliu
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Celine Konecki
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Laurent Binet
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Damien Vautier
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Cyril Haudecoeur
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Olivier Oget
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Aurelie Fouley
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Hélène Marty
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Claire Gozalo
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Yoann Cazaubon
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France
| | - Zoubir Djerada
- Department of Pharmacology, E.A.3801, SFR CAP-santé, Reims University Hospital, 51, rue Cognacq-Jay, 51095 Reims Cedex, France.
| |
Collapse
|
10
|
Mohammadi F, Shabani AMH, Dadfarnia S, Ansari M, Asgharinezhad AA. Dispersive solid-phase extraction of buprenorphine from biological fluids using metal-organic frameworks and its determination by ultra-performance liquid chromatography. J Sep Sci 2020; 43:3045-3052. [PMID: 32415752 DOI: 10.1002/jssc.202000221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Abstract
In this work, various types of metal-organic frameworks were synthesized, and their affinities toward buprenorphine were evaluated using dispersive solid-phase extraction. The extracted buprenorphine was determined by ultra high performance liquid chromatography-ultraviolet detection system. The highest extraction recovery was observed by employing zeolitic imidazole framework-67. Then, a facile and fast extraction method was designed for the extraction and purification of the target drug. Optimization of the extraction method was carried out by the design of experiment approach. A linearity range of 1-1000 μg/L with the limit of detection of 0.15 μg/L and relative standard deviations (50 μg/L, n = 5) of 3.4% was obtained for standard sample analysis. Under optimized experimental and instrumental conditions, the relative recoveries were in the range of 95 to 111%. Eventually, zeolitic imidazole framework-67 was successfully employed for the extraction and determination of buprenorphine in the biological fluids with satisfactory results.
Collapse
Affiliation(s)
| | | | | | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
11
|
Prata M, Ribeiro A, Figueirinha D, Rosado T, Oppolzer D, Restolho J, Araújo AR, Costa S, Barroso M, Gallardo E. Determination of opiates in whole blood using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J Chromatogr A 2019; 1602:1-10. [DOI: 10.1016/j.chroma.2019.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/07/2019] [Accepted: 05/12/2019] [Indexed: 11/25/2022]
|
12
|
Teklezgi BG, Pamreddy A, Baijnath S, Kruger HG, Naicker T, Gopal ND, Govender T. Time-dependent regional brain distribution of methadone and naltrexone in the treatment of opioid addiction. Addict Biol 2019; 24:438-446. [PMID: 29441714 DOI: 10.1111/adb.12609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 12/15/2022]
Abstract
Opioid addiction is a serious public health concern with severe health and social implications; therefore, extensive therapeutic efforts are required to keep users drug free. The two main pharmacological interventions, in the treatment of addiction, involve management with methadone an mu (μ)-opioid agonist and treatment with naltrexone, μ-opioid, kappa (κ)-opioid and delta (δ)-opioid antagonist. MET and NAL are believed to help individuals to derive maximum benefit from treatment and undergo a full recovery. The aim of this study was to determine the localization and distribution of MET and NAL, over a 24-hour period in rodent brain, in order to investigate the differences in their respective regional brain distributions. This would provide a better understanding of the role of each individual drug in the treatment of addiction, especially NAL, whose efficacy is controversial. Tissue distribution was determined by using mass spectrometric imaging (MSI), in combination with quantification via liquid chromatography tandem mass spectrometry. MSI image analysis showed that MET was highly localized in the striatal and hippocampal regions, including the nucleus caudate, putamen and the upper cortex. NAL was distributed with high intensities in the mesocorticolimbic system including areas of the cortex, caudate putamen and ventral pallidum regions. Our results demonstrate that MET and NAL are highly localized in the brain regions with a high density of μ-receptors, the primary sites of heroin binding. These areas are strongly implicated in the development of addiction and are the major pathways that mediate brain stimulation during reward.
Collapse
Affiliation(s)
- Belin G. Teklezgi
- Catalysis and Peptide Research UnitUniversity of KwaZulu‐Natal South Africa
| | - Annapurna Pamreddy
- Catalysis and Peptide Research UnitUniversity of KwaZulu‐Natal South Africa
| | - Sooraj Baijnath
- Catalysis and Peptide Research UnitUniversity of KwaZulu‐Natal South Africa
| | - Hendrik G. Kruger
- Catalysis and Peptide Research UnitUniversity of KwaZulu‐Natal South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research UnitUniversity of KwaZulu‐Natal South Africa
| | - Nirmala D. Gopal
- Department of CriminologyUniversity of KwaZulu‐Natal South Africa
| | | |
Collapse
|
13
|
Magnetic molecularly imprinted polymer nanoparticles for dispersive micro solid-phase extraction and determination of buprenorphine in human urine samples by HPLC-FL. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1355-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
15
|
Ribeiro C, Santos C, Gonçalves V, Ramos A, Afonso C, Tiritan ME. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules 2018; 23:E262. [PMID: 29382109 PMCID: PMC6017579 DOI: 10.3390/molecules23020262] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022] Open
Abstract
Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.
Collapse
Affiliation(s)
- Cláudia Ribeiro
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
| | - Cristiana Santos
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
| | - Valter Gonçalves
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Ana Ramos
- Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal.
| | - Carlos Afonso
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria Elizabeth Tiritan
- Institute of Research and Advanced Training in Health Sciences and Technologies , Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal.
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Guo BB, Zhang YQ, Wang SF, Ding JS, Zhou WH. The Pharmacokinetics of Morphine and Codeine in Human Plasma and Urine after Oral Administration of Qiangli Pipa Syrup. J Forensic Sci 2017; 63:1221-1228. [PMID: 29148050 DOI: 10.1111/1556-4029.13696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 11/29/2022]
Abstract
Papaveris pericarpium, a natural source of morphine and codeine, is the principal active component in many antitussive traditional Chinese medicines. We herein report the first PK study of papaveris pericarpium in human plasma and urine following oral administration of single (15, 30, 60 mL) and multiple dose (15 mL) of Qiangli Pipa Syrup (MOR 0.1 mg/mL, COD 0.028 mg/mL) by monitoring morphine and codeine using a HPLC-MS/MS method. Their Tmax and t1/2 values are independent of dosages, while the AUC0-t linearly increased with higher dosages, indicating linear PK characteristics. AUC0-t increased obviously after multiple doses, indicating possible risk of accumulative toxicity. Urine studies suggested risks of positive opiate drug tests with a cutoff of 300 ng/mL, which lasted 6-14 h at different doses. These results provide important information for clinical safety, efficacy and rational drug use of Qiangli Pipa Syrup and also guide the related judicial expertise of its administration.
Collapse
Affiliation(s)
- Bin-Bin Guo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yu-Qiao Zhang
- West China Second University Hospital, Chengdu, Sichuan, 610041, China
| | - Sheng-Feng Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China.,Department of Pharmacy, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Jin-Song Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Wen-Hu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
17
|
Namera A, Saito T, Ota S, Miyazaki S, Oikawa H, Murata K, Nagao M. Optimization and application of octadecyl-modified monolithic silica for solid-phase extraction of drugs in whole blood samples. J Chromatogr A 2017; 1517:9-17. [PMID: 28847585 DOI: 10.1016/j.chroma.2017.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/30/2022]
Abstract
Monolithic silica in MonoSpin for solid-phase extraction of drugs from whole blood samples was developed to facilitate high-throughput analysis. Monolithic silica of various pore sizes and octadecyl contents were synthesized, and their effects on recovery rates were evaluated. The silica monolith M18-200 (20μm through-pore size, 10.4nm mesopore size, and 17.3% carbon content) achieved the best recovery of the target analytes in whole blood samples. The extraction proceeded with centrifugal force at 1000rpm for 2min, and the eluate was directly injected into the liquid chromatography-mass spectrometry system without any tedious steps such as evaporation of extraction solvents. Under the optimized condition, low detection limits of 0.5-2.0ngmL-1 and calibration ranges up to 1000ngmL-1 were obtained. The recoveries of the target drugs in the whole blood were 76-108% with relative standard deviation of less than 14.3%. These results indicate that the developed method based on monolithic silica is convenient, highly efficient, and applicable for detecting drugs in whole blood samples.
Collapse
Affiliation(s)
- Akira Namera
- Department of Forensic Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takeshi Saito
- Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | | | | | | | - Kazuhiro Murata
- Department of Forensic Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masataka Nagao
- Department of Forensic Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Applications and challenges in using LC–MS/MS assays for quantitative doping analysis. Bioanalysis 2016; 8:1307-22. [DOI: 10.4155/bio-2016-0030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
LC–MS/MS is useful for qualitative and quantitative analysis of ‘doped’ biological samples from athletes. LC–MS/MS-based assays at low-mass resolution allow fast and sensitive screening and quantification of targeted analytes that are based on preselected diagnostic precursor–product ion pairs. Whereas LC coupled with high-resolution/high-accuracy MS can be used for identification and quantification, both have advantages and challenges for routine analysis. Here, we review the literature regarding various quantification methods for measuring prohibited substances in athletes as they pertain to World Anti-Doping Agency regulations.
Collapse
|
19
|
Christoffersen DJ, Damkier P, Feddersen S, Möller S, Thomsen JL, Brasch-Andersen C, Brøsen K. TheABCB1, rs9282564,AGandTTGenotypes and theCOMT,rs4680,AAGenotype are Less Frequent in Deceased Patients with Opioid Addiction than in Living Patients with Opioid Addiction. Basic Clin Pharmacol Toxicol 2016; 119:381-8. [DOI: 10.1111/bcpt.12602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/05/2016] [Indexed: 01/16/2023]
Affiliation(s)
| | - Per Damkier
- Department of Public Health; Clinical Pharmacology; University of Southern Denmark; Odense Denmark
- Department of Clinical Chemistry & Pharmacology; Odense University Hospital; Odense C Denmark
| | - Søren Feddersen
- Department of Clinical Chemistry & Pharmacology; Odense University Hospital; Odense C Denmark
| | - Sören Möller
- OPEN - Odense Patient data Explorative Network; Odense University Hospital and Department of Clinical Research; University of Southern Denmark; Odense C Denmark
| | - Jørgen L. Thomsen
- Institute of Forensic Medicine; University of Southern Denmark; Odense C Denmark
| | | | - Kim Brøsen
- Department of Public Health; Clinical Pharmacology; University of Southern Denmark; Odense Denmark
| |
Collapse
|