1
|
Bertram AM, Conlan XA, van Oorschot RAH, Durdle A. Recovery of DNA from acetaminophen exploring physical state and sampling methods. Forensic Sci Int 2024; 360:112046. [PMID: 38718526 DOI: 10.1016/j.forsciint.2024.112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 06/11/2024]
Abstract
Research into the recovery of DNA from illicit drug samples has shown it is possible to get forensically useful profiles from such substrates. However, it is not yet known if the different physical states that drugs can be found in influences the quantity and quality of DNA that can be recovered or what is the best sampling method to adopt for powdered samples. This research used acetaminophen in four different states - large crystalline, powder, in solution, or residue - to determine the efficacy of current DNA technology in recovery and analysis of the resulting sample. Five replicates of each were prepared. Human blood was deposited on or mixed with the drug and left for 1 hour. The surface of the drug was sampled by wet/dry swabbing (where appropriate), or the entire sample was deposited in a tube, and the DNA then extracted using DNA-IQ™. The amount of DNA recovered (ng), degradation index, number of PCR cycles (Ct) required for the IPC to reach threshold, number of alleles in the DNA profile and average peak height (APH) were assessed. All samples, irrespective of the physical state they were collected from, returned full DNA profiles that corresponded to the DNA profile of the blood donor, with no degradation or inhibition detected. It was also found the wet/dry swabbing method returned higher levels of DNA than inclusion of the entire sample into the tube for powdered acetaminophen and the appropriate method to use will be dependent on casework circumstances. The findings of this research further develops our understanding of the recovery of DNA from drugs, and supports the need for further investigation to understand under what conditions DNA can be recovered from illicit substances.
Collapse
Affiliation(s)
- Alexandria M Bertram
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Xavier A Conlan
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Department, Macleod, VIC 3085, Australia; School of Molecular Sciences, La Trobe University, Bundoora, VIC 3083, Australia
| | - Annalisa Durdle
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Bonsu DNO, Higgins D, Simon C, Henry JM, Austin JJ. Metal-DNA interactions: Exploring the impact of metal ions on key stages of forensic DNA analysis. Electrophoresis 2024; 45:779-793. [PMID: 37638716 DOI: 10.1002/elps.202300070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Forensic DNA analysis continues to be hampered by the complex interactions between metals and DNA. Metal ions may cause direct DNA damage, inhibit DNA extraction and polymerase chain reaction (PCR) amplification or both. This study evaluated the impact of metal ions on DNA extraction, quantitation, and short tandem repeat profiling using cell-free and cellular (saliva) DNA. Of the 11 metals assessed, brass exhibited the strongest PCR inhibitory effects, for both custom and Quantifiler Trio quantitation assays. Metal ion inhibition varied across the two quantitative PCR assays and the amount of DNA template used. The Quantifiler Trio internal PCR control (IPC) only revealed evidence of PCR inhibition at higher metal ion concentrations, limiting the applicability of IPC as an indicator of the presence of metal inhibitor in a sample. Notably, ferrous ions were found to significantly decrease the extraction efficiency of the DNA-IQ DNA extraction system. The amount of DNA degradation and inhibition in saliva samples caused by metal ions increased with a dilution of the sample, suggesting that the saliva matrix provides protection from metal ion effects.
Collapse
Affiliation(s)
- Dan Nana Osei Bonsu
- Chemistry and Forensic Science, School of Environment and Science, Griffith University, Nathan, Queensland, Australia
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Denice Higgins
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
- School of Dentistry, Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Claire Simon
- Forensic Science SA, Attorney-General's Department, Adelaide, South Australia, Australia
| | - Julianne M Henry
- Forensic Science SA, Attorney-General's Department, Adelaide, South Australia, Australia
| | - Jeremy J Austin
- Forensic Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Hughes DA, Szkuta B, van Oorschot RAH, Conlan XA. The impact of substrate characteristics on the collection and persistence of biological materials, and their implications for forensic casework. Forensic Sci Int 2024; 356:111951. [PMID: 38301431 DOI: 10.1016/j.forsciint.2024.111951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
This study assessed the level of nucleic acid persistence on the substrate pre-, and post-swabbing, in order to assess whether biological materials (touch, saliva, semen, and blood) are collected differently depending on the substrate characteristics. A total of 48 samples per deposit and substrate variety (n = 384) were assessed by tracking the persistence of nucleic acid using Diamond™ Nucleic Acid Dye (DD) staining and Polilight photography. The number of DD nucleic acid fluorescent complexes formed post-staining were counted (fluorescent count) and in conjunction with the fluorescence signal intensity (DD nucleic acid complex accumulation) used to estimate the level of nucleic acid persistence on substrates. Touch deposits have shown to be the most persistent deposit with strong adhesion capabilities on both substrate verities. Saliva displayed a higher persistence than semen and/or blood. Semen displayed a high collection efficiency as well as a high fluorescence signal intensity. Blood displayed a low persistence on both substrates with a superior collection efficiency that may also indicate a higher probability to become dislodged from surfaces given a particular activity. Our research has shown that the persistence and recovery of biological deposits is not only measurable but more importantly, may have the potential to be estimated, as such, may build an understanding that can provide valuable guidance for collection efficiency evaluations, and the assessing of the probability of particular profiles, given alternate propositions of means of transfer occurring.
Collapse
Affiliation(s)
- Deborah A Hughes
- Deakin University, School of Life and Environmental Sciences, Geelong, Australia; Office of the Chief Forensic Scientist, Victoria Police Forensic Services Centre, Macleod, Australia
| | - Bianca Szkuta
- Deakin University, School of Life and Environmental Sciences, Geelong, Australia
| | - Roland A H van Oorschot
- Office of the Chief Forensic Scientist, Victoria Police Forensic Services Centre, Macleod, Australia; School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - Xavier A Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, Australia.
| |
Collapse
|
4
|
Bonsu DNO, Higgins D, Austin JJ. From clean spaces to crime scenes: Exploring trace DNA recovery from titania-coated self-cleaning substrates. Sci Justice 2023; 63:588-597. [PMID: 37718006 DOI: 10.1016/j.scijus.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/28/2023] [Accepted: 07/16/2023] [Indexed: 09/19/2023]
Abstract
Titanium dioxide (titania, TiO2) is frequently used as a coating for a variety of self-cleaning products, such as antifogging vehicle mirrors, ceramic tiles, and glass windows because of its distinct physiochemical features. When exposed to light TiO2 causes photocatalytic decomposition of organic contaminants, potentially compromising DNA integrity. The impact of TiO2-coated commercial glasses, Bioclean® and SaniTise™, on trace DNA persistence, recovery, and profiling was investigated. DNA in saliva and touch samples deposited on self-cleaning glass slides exposed to indoor fluorescent light for up to seven days was more degraded than control samples indicating some degree of fluorescent light-induced photocatalytic activity of the self-cleaning surfaces. When exposed to sunlight, DNA yields from saliva and touch samples deposited on the titania-coated substrates decreased rapidly, with a corresponding increase in DNA degradation. After three days no DNA samples applied to self-cleaning glass and exposed to natural sunlight yielded STR profiles. These results suggest that the photocatalytic activation of TiO2 is the likely mechanism of action underlying the extreme DNA degradation on the Bioclean® and SaniTise™ glasses. Consequently, rapid sample collection and use may be warranted in casework scenarios involving TiO2-coated materials.
Collapse
Affiliation(s)
- Dan Nana Osei Bonsu
- Chemistry and Forensic Sciences, Griffith University, Nathan, Queensland, Australia; Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; Forensic Science Queensland, 39 Kessels Rd, Coopers Plains, Queensland, Australia.
| | - Denice Higgins
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia; School of Dentistry, Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| | - Jeremy J Austin
- Forensics Research Group, Australian Centre for Ancient DNA (ACAD), School of Biological Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
5
|
How changes to the substrate's physical characteristics can influence the deposition of touch and salivary deposits. Forensic Sci Int 2023; 343:111546. [PMID: 36621057 DOI: 10.1016/j.forsciint.2022.111546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
An in-depth study into the physical substrate characteristics such as substrate surface roughness, topography, and physicochemical characteristics like wettability and surface free energy (SFE) was conducted to investigate the impact on the deposition and adherence of touch and salivary deposits on aluminium and polypropylene. A robust protocol was established to generate a set of substrates with a controlled linear surface roughness range (0.5-3.5 µm) in order to identify the impact of surface roughness on DNA transfer, persistence, prevalence, and recovery (DNA-TPPR). The polypropylene substrate was shown to produce fibres when artificially roughened, becoming more prominent at a higher surface roughness range, and has shown to have a direct impact on the distribution of salivary and touch deposits. At the low to moderate surface roughness range 0.5-2.0 µm, salivary and touch deposits have generally shown to follow the topographical features of the substrate they were deposited on, before a plateau of the surface roughness measure on the deposit was observed, indicating that a saturation point was reached and the grooves in the substrate were beginning to fill. Touch deposits have shown to maintain a consistent deposition height pre-surface roughness threshold, irrespective of substrate surface roughness while the deposition height of salivary deposits was heavily influenced by substrate surface roughness and topography. The substrate SFE, wettability, hydrophobicity, and the surface tension of the deposit was shown to drive the adhesion properties of the saliva and touch deposits on the respective substrates, and it was observed that this may be of importance for the improvement of the current DNA-TPPR understanding, DNA sampling protocols, and DNA transfer considerations within casework.
Collapse
|
6
|
Butler JM. Recent advances in forensic biology and forensic DNA typing: INTERPOL review 2019-2022. Forensic Sci Int Synerg 2022; 6:100311. [PMID: 36618991 PMCID: PMC9813539 DOI: 10.1016/j.fsisyn.2022.100311] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review paper covers the forensic-relevant literature in biological sciences from 2019 to 2022 as a part of the 20th INTERPOL International Forensic Science Managers Symposium. Topics reviewed include rapid DNA testing, using law enforcement DNA databases plus investigative genetic genealogy DNA databases along with privacy/ethical issues, forensic biology and body fluid identification, DNA extraction and typing methods, mixture interpretation involving probabilistic genotyping software (PGS), DNA transfer and activity-level evaluations, next-generation sequencing (NGS), DNA phenotyping, lineage markers (Y-chromosome, mitochondrial DNA, X-chromosome), new markers and approaches (microhaplotypes, proteomics, and microbial DNA), kinship analysis and human identification with disaster victim identification (DVI), and non-human DNA testing including wildlife forensics. Available books and review articles are summarized as well as 70 guidance documents to assist in quality control that were published in the past three years by various groups within the United States and around the world.
Collapse
Affiliation(s)
- John M. Butler
- National Institute of Standards and Technology, Special Programs Office, 100 Bureau Drive, Mail Stop 4701, Gaithersburg, MD, USA
| |
Collapse
|
7
|
Tozzo P, Mazzobel E, Marcante B, Delicati A, Caenazzo L. Touch DNA Sampling Methods: Efficacy Evaluation and Systematic Review. Int J Mol Sci 2022; 23:15541. [PMID: 36555182 PMCID: PMC9779423 DOI: 10.3390/ijms232415541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Collection and interpretation of "touch DNA" from crime scenes represent crucial steps during criminal investigations, with clear consequences in courtrooms. Although the main aspects of this type of evidence have been extensively studied, some controversial issues remain. For instance, there is no conclusive evidence indicating which sampling method results in the highest rate of biological material recovery. Thus, this study aimed to describe the actual considerations on touch DNA and to compare three different sampling procedures, which were "single-swab", "double-swab", and "other methods" (i.e., cutting out, adhesive tape, FTA® paper scraping), based on the experimental results published in the recent literature. The data analysis performed shows the higher efficiency of the single-swab method in DNA recovery in a wide variety of experimental settings. On the contrary, the double-swab technique and other methods do not seem to improve recovery rates. Despite the apparent discrepancy with previous research, these results underline certain limitations inherent to the sampling procedures investigated. The application of this information to forensic investigations and laboratories could improve operative standard procedures and enhance this almost fundamental investigative tool's probative value.
Collapse
Affiliation(s)
- Pamela Tozzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Legal Medicine Section, University of Padova, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|
8
|
Evaluation of the Effects of Different Sample Collection Strategies on DNA/RNA Co-Analysis of Forensic Stains. Genes (Basel) 2022; 13:genes13060983. [PMID: 35741745 PMCID: PMC9222428 DOI: 10.3390/genes13060983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to evaluate the impact of different moistening agents (RNase-free water, absolute anhydrous ethanol, RNAlater®) applied to collection swabs on DNA/RNA retrieval and integrity for capillary electrophoresis applications (STR typing, cell type identification by mRNA profiling). Analyses were conducted on whole blood, luminol-treated diluted blood, saliva, semen, and mock skin stains. The effects of swab storage temperature and the time interval between sample collection and DNA/RNA extraction were also investigated. Water provided significantly higher DNA yields than ethanol in whole blood and semen samples, while ethanol and RNAlater® significantly outperformed water in skin samples, with full STR profiles obtained from over 98% of the skin samples collected with either ethanol or RNAlater®, compared to 71% of those collected with water. A significant difference in mRNA profiling success rates was observed in whole blood samples between swabs treated with either ethanol or RNAlater® (100%) and water (37.5%). Longer swab storage times before processing significantly affected mRNA profiling in saliva stains, with the success rate decreasing from 91.7% after 1 day of storage to 25% after 7 days. These results may contribute to the future development of optimal procedures for the collection of different types of biological traces.
Collapse
|