1
|
Holtermann A, Gislon M, Angele M, Subklewe M, von Bergwelt-Baildon M, Lauber K, Kobold S. Prospects of Synergy: Local Interventions and CAR T Cell Therapy in Solid Tumors. BioDrugs 2024; 38:611-637. [PMID: 39080180 PMCID: PMC11358237 DOI: 10.1007/s40259-024-00669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 08/30/2024]
Abstract
Chimeric antigen receptor T cell therapy has been established in the treatment of various B cell malignancies. However, translating this therapeutic effect to treat solid tumors has been challenging because of their inter-tumoral as well as intratumoral heterogeneity and immunosuppressive microenvironment. Local interventions, such as surgery, radiotherapy, local ablation, and locoregional drug delivery, can enhance chimeric antigen receptor T cell therapy in solid tumors by improving tumor infiltration and reducing systemic toxicities. Additionally, ablation and radiotherapy have proven to (re-)activate systemic immune responses via abscopal effects and reprogram the tumor microenvironment on a physical, cellular, and chemical level. This review highlights the potential synergy of the combined approaches to overcome barriers of chimeric antigen receptor T cell therapy and summarizes recent studies that may pave the way for new treatment regimens.
Collapse
Affiliation(s)
- Anne Holtermann
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Mila Gislon
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU) of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig Maximilian University (LMU) of Munich, Lindwurmstrasse 2a, 80336, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and the University Hospital of the LMU, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München-German Research Center for Environmental Health Neuherberg, Munich, Germany.
| |
Collapse
|
2
|
Logghe T, van Zwol E, Immordino B, Van den Cruys K, Peeters M, Giovannetti E, Bogers J. Hyperthermia in Combination with Emerging Targeted and Immunotherapies as a New Approach in Cancer Treatment. Cancers (Basel) 2024; 16:505. [PMID: 38339258 PMCID: PMC10854776 DOI: 10.3390/cancers16030505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in the development of novel therapies, cancer continues to stand as a prominent global cause of death. In many cases, the cornerstone of standard-of-care therapy consists of chemotherapy (CT), radiotherapy (RT), or a combination of both. Notably, hyperthermia (HT), which has been in clinical use in the last four decades, has proven to enhance the effectiveness of CT and RT, owing to its recognized potency as a sensitizer. Furthermore, HT exerts effects on all steps of the cancer-immunity cycle and exerts a significant impact on key oncogenic pathways. Most recently, there has been a noticeable expansion of cancer research related to treatment options involving immunotherapy (IT) and targeted therapy (TT), a trend also visible in the research and development pipelines of pharmaceutical companies. However, the potential results arising from the combination of these innovative therapeutic approaches with HT remain largely unexplored. Therefore, this review aims to explore the oncology pipelines of major pharmaceutical companies, with the primary objective of identifying the principal targets of forthcoming therapies that have the potential to be advantageous for patients by specifically targeting molecular pathways involved in HT. The ultimate goal of this review is to pave the way for future research initiatives and clinical trials that harness the synergy between emerging IT and TT medications when used in conjunction with HT.
Collapse
Affiliation(s)
- Tine Logghe
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Eke van Zwol
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
| | - Benoît Immordino
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
| | | | - Marc Peeters
- Department of Oncology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Elisa Giovannetti
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, 56017 Pisa, Italy
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Johannes Bogers
- Elmedix NV, Dellingstraat 34/1, 2800 Mechelen, Belgium
- Laboratory of Cell Biology and Histology, Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
3
|
Claps F, Pavan N, Ongaro L, Tierno D, Grassi G, Trombetta C, Tulone G, Simonato A, Bartoletti R, Mertens LS, van Rhijn BWG, Mir MC, Scaggiante B. BCG-Unresponsive Non-Muscle-Invasive Bladder Cancer: Current Treatment Landscape and Novel Emerging Molecular Targets. Int J Mol Sci 2023; 24:12596. [PMID: 37628785 PMCID: PMC10454200 DOI: 10.3390/ijms241612596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Urothelial carcinoma (UC), the sixth most common cancer in Western countries, includes upper tract urothelial carcinoma (UTUC) and bladder carcinoma (BC) as the most common cancers among UCs (90-95%). BC is the most common cancer and can be a highly heterogeneous disease, including both non-muscle-invasive (NMIBC) and muscle-invasive (MIBC) forms with different oncologic outcomes. Approximately 80% of new BC diagnoses are classified as NMIBC after the initial transurethral resection of the bladder tumor (TURBt). In this setting, intravesical instillation of Bacillus Calmette-Guerin (BCG) is the current standard treatment for intermediate- and high-risk patients. Unfortunately, recurrence occurs in 30% to 40% of patients despite adequate BCG treatment. Radical cystectomy (RC) is currently considered the standard treatment for NMIBC that does not respond to BCG. However, RC is a complex surgical procedure with a recognized high perioperative morbidity that is dependent on the patient, disease behaviors, and surgical factors and is associated with a significant impact on quality of life. Therefore, there is an unmet clinical need for alternative bladder-preserving treatments for patients who desire a bladder-sparing approach or are too frail for major surgery. In this review, we aim to present the strategies in BCG-unresponsive NMIBC, focusing on novel molecular therapeutic targets.
Collapse
Affiliation(s)
- Francesco Claps
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.C.); (L.O.); (C.T.)
- Department of Surgical Oncology (Urology), Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (L.S.M.); (B.W.G.v.R.)
| | - Nicola Pavan
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.P.); (G.T.); (A.S.)
| | - Luca Ongaro
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.C.); (L.O.); (C.T.)
| | - Domenico Tierno
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Medical, Surgery and Health Sciences, Hospital of Cattinara, University of Trieste, Strada di Fiume 447, 34149 Trieste, Italy;
| | - Carlo Trombetta
- Urological Clinic, Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy; (F.C.); (L.O.); (C.T.)
| | - Gabriele Tulone
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.P.); (G.T.); (A.S.)
| | - Alchiede Simonato
- Department of Surgical, Oncological, and Oral Sciences, University of Palermo, 90127 Palermo, Italy; (N.P.); (G.T.); (A.S.)
| | - Riccardo Bartoletti
- Department of Translational Research and New Technologies, University of Pisa, 56126 Pisa, Italy;
| | - Laura S. Mertens
- Department of Surgical Oncology (Urology), Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (L.S.M.); (B.W.G.v.R.)
| | - Bas W. G. van Rhijn
- Department of Surgical Oncology (Urology), Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, 1066 CX Amsterdam, The Netherlands; (L.S.M.); (B.W.G.v.R.)
| | - Maria Carmen Mir
- Department of Urology, Hospital Universitario La Ribera, 46600 Valencia, Spain;
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
4
|
Poot E, Maguregui A, Brunton VG, Sieger D, Hulme AN. Targeting Glioblastoma through Nano- and Micro-particle-Mediated Immune Modulation. Bioorg Med Chem 2022; 72:116913. [DOI: 10.1016/j.bmc.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
5
|
The Effect of Hyperthermia and Radiotherapy Sequence on Cancer Cell Death and the Immune Phenotype of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14092050. [PMID: 35565180 PMCID: PMC9103710 DOI: 10.3390/cancers14092050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Hyperthermia (HT) is a cancer treatment which locally heats the tumor to supraphysiological temperature, and it is an effective sensitizer for radiotherapy (RT) and chemotherapy. HT is further capable of modulating the immune system. Thus, a better understanding of its effect on the immune phenotype of tumor cells, and particularly when combined with RT, would help to optimize combined anti-cancer treatments. Since in clinics, no standards about the sequence of RT and HT exist, we analyzed whether this differently affects the cell death and immunological phenotype of human breast cancer cells. We revealed that the sequence of HT and RT does not strongly matter from the immunological point of view, however, when HT is combined with RT, it changes the immunophenotype of breast cancer cells and also upregulates immune suppressive immune checkpoint molecules. Thus, the additional application of immune checkpoint inhibitors with RT and HT should be beneficial in clinics. Abstract Hyperthermia (HT) is an accepted treatment for recurrent breast cancer which locally heats the tumor to 39–44 °C, and it is a very potent sensitizer for radiotherapy (RT) and chemotherapy. However, currently little is known about how HT with a distinct temperature, and particularly, how the sequence of HT and RT changes the immune phenotype of breast cancer cells. Therefore, human MDA-MB-231 and MCF-7 breast cancer cells were treated with HT of different temperatures (39, 41 and 44 °C), alone and in combination with RT (2 × 5 Gy) in different sequences, with either RT or HT first, followed by the other. Tumor cell death forms and the expression of immune checkpoint molecules (ICMs) were analyzed by multicolor flow cytometry. Human monocyte-derived dendritic cells (moDCs) were differentiated and co-cultured with the treated cancer cells. In both cell lines, RT was the main stressor for cell death induction, with apoptosis being the prominent cell death form in MCF-7 cells and both apoptosis and necrosis in MDA-MB-231 cells. Here, the sequence of the combined treatments, either RT or HT, did not have a significant impact on the final outcome. The expression of all of the three examined immune suppressive ICMs, namely PD-L1, PD-L2 and HVEM, was significantly increased on MCF-7 cells 120 h after the treatment of RT with HT of any temperature. Of special interest for MDA-MB-231 cells is that only combinations of RT with HT of both 41 and 44 °C induced a significantly increased expression of PD-L2 at all examined time points (24, 48, 72, and 120 h). Generally, high dynamics of ICM expression can be observed after combined RT and HT treatments. There was no significant difference between the different sequences of treatments (either HT + RT or RT + HT) in case of the upregulation of ICMs. Furthermore, the co-culture of moDCs with tumor cells of any treatment had no impact on the expression of activation markers. We conclude that the sequence of HT and RT does not strongly affect the immune phenotype of breast cancer cells. However, when HT is combined with RT, it results in an increased expression of distinct immune suppressive ICMs that should be considered by including immune checkpoint inhibitors in multimodal tumor treatments with RT and HT. Further, combined RT and HT affects the immune system in the effector phase rather than in the priming phase.
Collapse
|
6
|
Dominguez-Nicolas SM, Manjarrez E. Low-field thoracic magnetic stimulation increases peripheral oxygen saturation levels in coronavirus disease (COVID-19) patients: A single-blind, sham-controlled, crossover study. Medicine (Baltimore) 2021; 100:e27444. [PMID: 34622862 PMCID: PMC8500560 DOI: 10.1097/md.0000000000027444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT Severe acute respiratory syndrome coronavirus-2 may cause low oxygen saturation (SpO2) and respiratory failure in patients with coronavirus disease (COVID-19). Hence, increased SpO2 levels in COVID-19 patients could be crucial for their quality of life and recovery. This study aimed to demonstrate that a 30-minute single session of dorsal low-field thoracic magnetic stimulation (LF-ThMS) can be employed to increase SpO2 levels in COVID-19 patients significantly. Furthermore, we hypothesized that the variables associated with LF-ThMS, such as frequency, magnetic flux density, and temperature in the dorsal thorax, might be correlated to SpO2 levels in these patients.Here we employed an LF-ThMS device to noninvasively deliver a pulsed magnetic field from 100 to 118 Hz and 10.5 to 13.1 milliTesla (i.e., 105 to 131 Gauss) to the dorsal thorax. These values are within the intensity range of several pulsed electromagnetic field devices employed in physical therapy worldwide. We designed a single-blind, sham-controlled, crossover study on 5 COVID-19 patients who underwent 2 sessions of the study (real and sham LF-ThMS) and 12 patients who underwent only the real LF-ThMS.We found a statistically significant positive correlation between magnetic flux density, frequency, or temperature, associated with the real LF-ThMS and SpO2 levels in all COVID-19 patients. However, the 5 patients in the sham-controlled study did not exhibit a significant change in their SpO2 levels during sham stimulation. The employed frequencies and magnetic flux densities were safe for the patients. We did not observe adverse events after the LF-ThMS intervention.This study is a proof-of-concept that a single session of LF-ThMS applied for 30 minutes to the dorsal thorax of 17 COVID-19 patients significantly increased their SpO2 levels. However, future research will be needed to understand the physiological mechanisms behind this finding.The study was registered at ClinicalTrials.gov (Identifier: NCT04895267, registered on May 20, 2021) retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT04895267.
Collapse
Affiliation(s)
- Saul M Dominguez-Nicolas
- Centro de Investigación de Micro y Nanotecnología, Universidad Veracruzana, Calzada Ruiz Cortines 455 Boca del Rio, Veracruz, México
- Facultad de Ingeniería Eléctrica y Electrónica, Universidad Veracruzana, Calzada Ruiz Cortines 455, Boca del Rio, Veracruz, México
| | - Elias Manjarrez
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, 14 Sur 6301, Colonia San Manuel, Apartado Postal 406, Puebla, Puebla, México
| |
Collapse
|
7
|
Janko C, Friedrich RP, Cicha I, Unterweger H, Lyer S, Alexiou C. Modulation of immune responses by nanoparticles. Nanomedicine (Lond) 2021; 16:1925-1929. [PMID: 34378419 DOI: 10.2217/nnm-2021-0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Christina Janko
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, Erlangen, 91054, Germany
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, Erlangen, 91054, Germany
| | - Iwona Cicha
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, Erlangen, 91054, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, Erlangen, 91054, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, Erlangen, 91054, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head & Neck Surgery, Section of Experimental Oncology & Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glueckstr. 10a, Erlangen, 91054, Germany
| |
Collapse
|
8
|
Hannon G, Tansi FL, Hilger I, Prina‐Mello A. The Effects of Localized Heat on the Hallmarks of Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
| | - Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology Jena University Hospital—Friedrich Schiller University Jena Am Klinikum 1 07740 Jena Germany
| | - Adriele Prina‐Mello
- Nanomedicine and Molecular Imaging Group Trinity Translational Medicine Institute Dublin 8 Ireland
- Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute Trinity College Dublin Dublin 8 Ireland
- Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN Institute Trinity College Dublin Dublin 2 Ireland
| |
Collapse
|
9
|
Fu L, Zhou X, He C. Polymeric Nanosystems for Immunogenic Cell Death-Based Cancer Immunotherapy. Macromol Biosci 2021; 21:e2100075. [PMID: 33885225 DOI: 10.1002/mabi.202100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Indexed: 12/11/2022]
Abstract
Immunotherapy has pointed out a scientific and promising direction for cancer treatment through the rouse of immunosurveillance and the decrease of possible side effects in recent years. In immunotherapy, immunogenic cancer cell death (ICD) plays a critical role in regulating anti-cancer immune system in vivo via the release of damage-associated molecular patterns. ICD can not only induce in situ cancer cells apoptosis, but also arouse the immune response against metastatic tumors, which is of great clinical significance to eradicate tumors. In cancer immunotherapy, polymer nanoparticles have drawn increasing attention as an important component of ICD-based immunotherapy attributing to their controllable size, excellent biocompatibility, promising ability of protecting cargo from surrounding environment, which delivers the antigens or immune inducers to antigen-presenting cells, and further triggers sinnvoll T cell response. In this review, the recent advances in the development of polymeric material-based nanosystems for ICD-mediated cancer immunotherapy are summarized. The mechanism of ICD and some current restrictions inhibiting the efficiency of immunotherapy and future prospects are also discussed.
Collapse
Affiliation(s)
- Liwen Fu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
10
|
Reyes-Ortega F, Delgado ÁV, Iglesias GR. Modulation of the Magnetic Hyperthermia Response Using Different Superparamagnetic Iron Oxide Nanoparticle Morphologies. NANOMATERIALS 2021; 11:nano11030627. [PMID: 33802441 PMCID: PMC8001085 DOI: 10.3390/nano11030627] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
The use of magnetic nanoparticles in hyperthermia, that is, heating induced by alternating magnetic fields, is gaining interest as a non-invasive, free of side effects technique that can be considered as a co-adjuvant of other cancer treatments. Having sufficient control on the field characteristics, within admissible limits, the focus is presently on the magnetic material. In the present contribution, no attempt has been made of using other composition than superparamagnetic iron oxide nanoparticles (SPION), or of applying surface functionalization, which opens a wider range of choices. We have used a hydrothermal synthesis route that allows preparing SPION nanoparticles in the 40 nm size range, with spherical, cuboidal or rod-like shapes, by minor changes in the synthesis steps. The three kinds of particles (an attempt to produce star-shaped colloids yielded hematite) were demonstrated to have the magnetite (or maghemite) crystallinity. Magnetization cycles showed virtually no hysteresis and demonstrated the superparamagnetic nature of the particles, cuboidal ones displaying saturation magnetization comparable to bulk magnetite, followed by rods and spheres. The three types were used as hyperthermia agents using magnetic fields of 20 kA/m amplitude and frequency in the range 136–205 kHz. All samples demonstrated to be able to raise the solution temperature from room values to 45 °C in a mere 60 s. Not all of them performed the same way, though. Cuboidal magnetic nanoparticles (MNPs) displayed the maximum heating power (SAR or specific absorption rate), ranging in fact among the highest reported with these geometries and raw magnetite composition.
Collapse
Affiliation(s)
- Felisa Reyes-Ortega
- Department of Applied Physics, University of Granada, 18071 Granada, Spain;
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, University of Córdoba, 14004 Córdoba, Spain
- Correspondence: or (F.R.-O.); (G.R.I.); Tel.: +34-957-736-483 (F.R.-O.); +34-958-242-734 (G.R.I.)
| | - Ángel V. Delgado
- Department of Applied Physics, University of Granada, 18071 Granada, Spain;
| | - Guillermo R. Iglesias
- Department of Applied Physics, University of Granada, 18071 Granada, Spain;
- Correspondence: or (F.R.-O.); (G.R.I.); Tel.: +34-957-736-483 (F.R.-O.); +34-958-242-734 (G.R.I.)
| |
Collapse
|
11
|
Danewalia S, Singh K. Bioactive glasses and glass-ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Mater Today Bio 2021; 10:100100. [PMID: 33778466 PMCID: PMC7985406 DOI: 10.1016/j.mtbio.2021.100100] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/08/2021] [Accepted: 02/16/2021] [Indexed: 01/04/2023] Open
Abstract
Bioactive glasses and glass-ceramics are well-proven potential biomaterials for bone-tissue engineering applications because of their compositional flexibility. Many research groups have been focused to explore the utility of bioactive glass-ceramics beyond bone engineering to hyperthermia treatment of cancer. Hyperthermia refers to raising the temperature of tumor close to 44°C at which malignant cells perish with negligible harm to normal cells. Hyperthermia can be employed by many means such as by ultrasonic waves, electromagnetic waves, infrared radiations, alternating magnetic fields, etc. Magnetic bioactive glass-ceramics are advantageous over other potential candidates for thermoseeds such as nanofluids, superparamagnetic nanoparticles because they can bond not only to the natural bone but also with soft tissues in few cases, which helps regenerating the affected part due to its bioactive nature. Strict restrictions on clinical settings ( H × f < 5 × 10 9 ) force the research activities to be more focused on material characteristics to raise the implant temperature to required ranges. Lots of efforts have been made in past years to tackle these challenges and design best-suited glass-ceramics for hyperthermia treatment. This review aims to provide essential information on the concept of hyperthermia treatment of cancer and recent developments in the field of bioactive glass-ceramics for cancer treatment. The advantages and disadvantages of magnetic glass-ceramics over other potential thermoseed materials are highlighted. In this field, the major challenges are to develop magnetic glasses, which have fast and bulk crystallization with optimized magnetic phases with lower Curie and Neel temperatures.
Collapse
Affiliation(s)
- S.S. Danewalia
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| | - K. Singh
- School of Physics & Materials Science, Thapar Institute of Engineering and Technology, Patiala, 147004, India
| |
Collapse
|
12
|
Chauhan A, Midha S, Kumar R, Meena R, Singh P, Jha SK, Kuanr BK. Rapid tumor inhibition via magnetic hyperthermia regulated by caspase 3 with time-dependent clearance of iron oxide nanoparticles. Biomater Sci 2021; 9:2972-2990. [PMID: 33635305 DOI: 10.1039/d0bm01705a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Among conventional cancer therapies, radio-frequency magnetic hyperthermia (MHT) has widely been investigated for use with magnetic nanoparticles (MNPs). However, the majority of in vivo biodistribution studies have tested very low MNP dosages (equivalent to magnetic resonance imaging (MRI) applications) to check for clearance rate; which is far below the clinical dose of MHT. Due to this poor validation in preclinical scenarios, quite a few MNPs already in clinical use were later discontinued, on grounds of unexpected clinical outcomes in terms of inflammation, and prolonged clearance in vivo. By exploiting an economical method of synthesis, we have developed chitosan-coated Fe3O4 nanoparticles with high heating efficiency performance. Their anti-tumor response was evaluated in an ectopic tumor model of C6 glioblastoma by MHT. The intratumoral injection of MNPs on days 1 and 7 resulted in rapid tumor inhibition rate of 69.4% within 8 days, with complete inhibition within 32 days, and no recurrence recorded over a 5-month follow-up. Notably, the MNP-mediated MHT therapy achieved the highest degree of therapeutic efficacy required for complete tumor ablation by combining controlled temperature range (<44 °C), reduced MNP dosage; much lower than in most reported studies, and AMF parameters (time of exposure and frequency) within the clinical safety limit. Periodic body weight measurements confirmed negligible adverse side effects in rats. The anti-tumor activity was validated by severe apoptosis (TUNEL, cleaved Caspase-3), reduced proliferation (Ki 67) and disrupted vasculature (CD 31) in the Fe3O4-MHT-treated group. Real-time gene expression of pro-inflammatory cytokines (IL-6, TNF-α, IL-1α, IL-1β) confirmed the intratumoral activation of IL-6, suggesting the role of immunomodulation in triggering the adaptive immune response for faster tumor regression in the treated group. In addition, the biodistribution and clearance rate of MNPs monitored using ICP-OES confirmed their time-dependent biodegradation via excretion (urine, feces), phagocytosis (liver) and circulatory system (blood), with negligible deposition in other major organs (kidney, heart, lungs). Although we could not show complete clearance of our MNPs within the time frame tested, future studies should focus on combining MHT with immunotherapy, and target tumors at a much-reduced iron dose, consequently improving in vivo clearance rate, and hence overcoming the limitations of MHT in clinical therapy.
Collapse
Affiliation(s)
- Anjali Chauhan
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Swati Midha
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India. and UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Ravi Kumar
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ravindra Meena
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Pooja Singh
- National Institute of Plant Genome research, New Delhi-110067, India
| | - Sushil K Jha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Bijoy K Kuanr
- Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
13
|
Fever range whole body hyperthermia for re-irradiation of head and neck squamous cell carcinomas: Final results of a prospective study. Oral Oncol 2021; 116:105240. [PMID: 33626457 DOI: 10.1016/j.oraloncology.2021.105240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Fever-range whole body hyperthermia (FRWBH) has been shown to improve tumor oxygenation in vivo. A prospective pilot study addressed the question if addition of FRWBH to re-irradiation is feasible in recurrent head and neck squamous cell carcinomas (HNSCC) with unfavorable prognostic features. MATERIALS AND METHODS The study completed accrual with the recruitment of ten patients between April 2018 and March 2020. Re-irradiation was administered using volumetric arc hyperfractionated radiotherapy with bi-daily 1.2 Gray (Gy) single fractions and a total dose of 66 Gy to all macroscopic tumor lesions. Concomitant chemotherapy consisted mostly of cisplatin (7 patients). FRWBH was scheduled weekly during re-irradiation. The study was registered in the clinicaltrials.gov database (NCT03547388). RESULTS Only five patients received all cycles of FRWBH. Poor patient compliance, active infections during treatment and study restrictions due to the Covid-19 pandemic were the main reasons for omitting FRWBH. No increase of acute toxicity was observed by FRWBH. Exploratory evaluation of outcome data suggests that FRWBH treatment according to protocol does not seem to have a detrimental effect on tumor control or survival and might even increase treatment efficacy. CONCLUSION FRWBH is difficult to apply concomitant to re-irradiation in HNSCC. No excess toxicity was observed in patients receiving FRWBH and exploratory analyses suggest potential anti-tumor activity and decreased patient-reported depression scores after FRWBH.
Collapse
|
14
|
Cheng H, Tsao H, Chiang C, Chen S. Advances in Magnetic Nanoparticle-Mediated Cancer Immune-Theranostics. Adv Healthc Mater 2021; 10:e2001451. [PMID: 33135398 DOI: 10.1002/adhm.202001451] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is a cutting-edge strategy that eliminates cancer cells by amplifying the host's immune system. However, the low response rate and risks of inducing systemic toxicity have raised uncertainty in the treatment. Magnetic nanoparticles (MNPs) as a versatile theranostic tool can be used to target delivery of multiple immunotherapeutics and monitor cell/tissue responses. These capabilities enable the real-time characterization of the factors that contribute to immunoactivity so that future treatments can be optimized. The magnetic properties of MNPs further allow the implementation of magnetic navigation and magnetic hyperthermia for boosting the efficacy of immunotherapy. The multimodal approach opens an avenue to induce robust immune responses, minimize safety issues, and monitor immune activities simultaneously. Thus, the object of this review is to provide an overview of the burgeoning fields and to highlight novel technologies for next-generation immunotherapy. The review further correlates the properties of MNPs with the latest treatment strategies to explore the crosstalk between magnetic nanomaterials and the immune system. This comprehensive review of MNP-derived immunotherapy covers the obstacles and opportunities for future development and clinical translation.
Collapse
Affiliation(s)
- Hung‐Wei Cheng
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Hsin‐Yi Tsao
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
| | - Chih‐Sheng Chiang
- Cell Therapy Center China Medical University Hospital Taichung 40421 Taiwan
| | - San‐Yuan Chen
- Department of Materials Science and Engineering National Chiao Tung University Hsinchu 30010 Taiwan
- Frontier Research Centre on Fundamental and Applied Sciences of Matters National Tsing Hua University Hsinchu 30013 Taiwan
- School of Dentistry College of Dental Medicine Kaohsiung Medical University Kaohsiung 807378 Taiwan
- Graduate Institute of Biomedical Science China Medical University Taichung 40421 Taiwan
| |
Collapse
|
15
|
Stephen ZR, Zhang M. Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer. Adv Healthc Mater 2021; 10:e2001415. [PMID: 33236511 PMCID: PMC8034553 DOI: 10.1002/adhm.202001415] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has demonstrated great clinical success in certain cancers, driven primarily by immune checkpoint blockade and adoptive cell therapies. Immunotherapy can elicit strong, durable responses in some patients, but others do not respond, and to date immunotherapy has demonstrated success in only a limited number of cancers. To address this limitation, combinatorial approaches with chemo- and radiotherapy have been applied in the clinic. Extensive preclinical evidence suggests that hyperthermia therapy (HT) has considerable potential to augment immunotherapy with minimal toxicity. This progress report will provide a brief overview of immunotherapy and HT approaches and highlight recent progress in the application of nanoparticle (NP)-based HT in combination with immunotherapy. NPs allow for tumor-specific targeting of deep tissue tumors while potentially providing more even heating. NP-based HT increases tumor immunogenicity and tumor permeability, which improves immune cell infiltration and creates an environment more responsive to immunotherapy, particularly in solid tumors.
Collapse
Affiliation(s)
- Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
16
|
Datta NR, Kok HP, Crezee H, Gaipl US, Bodis S. Integrating Loco-Regional Hyperthermia Into the Current Oncology Practice: SWOT and TOWS Analyses. Front Oncol 2020; 10:819. [PMID: 32596144 PMCID: PMC7303270 DOI: 10.3389/fonc.2020.00819] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022] Open
Abstract
Moderate hyperthermia at temperatures between 40 and 44°C is a multifaceted therapeutic modality. It is a potent radiosensitizer, interacts favorably with a host of chemotherapeutic agents, and, in combination with radiotherapy, enforces immunomodulation akin to “in situ tumor vaccination.” By sensitizing hypoxic tumor cells and inhibiting repair of radiotherapy-induced DNA damage, the properties of hyperthermia delivered together with photons might provide a tumor-selective therapeutic advantage analogous to high linear energy transfer (LET) neutrons, but with less normal tissue toxicity. Furthermore, the high LET attributes of hyperthermia thermoradiobiologically are likely to enhance low LET protons; thus, proton thermoradiotherapy would mimic 12C ion therapy. Hyperthermia with radiotherapy and/or chemotherapy substantially improves therapeutic outcomes without enhancing normal tissue morbidities, yielding level I evidence reported in several randomized clinical trials, systematic reviews, and meta-analyses for various tumor sites. Technological advancements in hyperthermia delivery, advancements in hyperthermia treatment planning, online invasive and non-invasive MR-guided thermometry, and adherence to quality assurance guidelines have ensured safe and effective delivery of hyperthermia to the target region. Novel biological modeling permits integration of hyperthermia and radiotherapy treatment plans. Further, hyperthermia along with immune checkpoint inhibitors and DNA damage repair inhibitors could further augment the therapeutic efficacy resulting in synthetic lethality. Additionally, hyperthermia induced by magnetic nanoparticles coupled to selective payloads, namely, tumor-specific radiotheranostics (for both tumor imaging and radionuclide therapy), chemotherapeutic drugs, immunotherapeutic agents, and gene silencing, could provide a comprehensive tumor-specific theranostic modality akin to “magic (nano)bullets.” To get a realistic overview of the strength (S), weakness (W), opportunities (O), and threats (T) of hyperthermia, a SWOT analysis has been undertaken. Additionally, a TOWS analysis categorizes future strategies to facilitate further integration of hyperthermia with the current treatment modalities. These could gainfully accomplish a safe, versatile, and cost-effective enhancement of the existing therapeutic armamentarium to improve outcomes in clinical oncology.
Collapse
Affiliation(s)
- Niloy R Datta
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - H Petra Kok
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
17
|
Oei A, Kok H, Oei S, Horsman M, Stalpers L, Franken N, Crezee J. Molecular and biological rationale of hyperthermia as radio- and chemosensitizer. Adv Drug Deliv Rev 2020; 163-164:84-97. [PMID: 31982475 DOI: 10.1016/j.addr.2020.01.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022]
Abstract
Mild hyperthermia, local heating of the tumour up to temperatures <43 °C, has been clinically applied for almost four decades and has been proven to substantially enhance the effectiveness of both radiotherapy and chemotherapy in treatment of primary and recurrent tumours. Clinical results and mechanisms of action are discussed in this review, including the molecular and biological rationale of hyperthermia as radio- and chemosensitizer as established in in vitro and in vivo experiments. Proven mechanisms include inhibition of different DNA repair processes, (in)direct reduction of the hypoxic tumour cell fraction, enhanced drug uptake, increased perfusion and oxygen levels. All mechanisms show different dose effect relationships and different optimal scheduling with radiotherapy and chemotherapy. Therefore, obtaining the ideal multi-modality treatment still requires elucidation of more detailed data on dose, sequence, duration, and possible synergisms between modalities. A multidisciplinary approach with different modalities including hyperthermia might further increase anti-tumour effects and diminish normal tissue damage.
Collapse
|
18
|
Singh A, Nandwana V, Rink JS, Ryoo SR, Chen TH, Allen SD, Scott EA, Gordon LI, Thaxton CS, Dravid VP. Biomimetic Magnetic Nanostructures: A Theranostic Platform Targeting Lipid Metabolism and Immune Response in Lymphoma. ACS NANO 2019; 13:10301-10311. [PMID: 31487458 DOI: 10.1021/acsnano.9b03727] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
B-cell lymphoma cells depend upon cholesterol to maintain pro-proliferation and pro-survival signaling via the B-cell receptor. Targeted cholesterol depletion of lymphoma cells is an attractive therapeutic strategy. We report here high-density lipoprotein mimicking magnetic nanostructures (HDL-MNSs) that can bind to the high-affinity HDL receptor, scavenger receptor type B1 (SR-B1), and interfere with cholesterol flux mechanisms in SR-B1 receptor positive lymphoma cells, causing cellular cholesterol depletion. In addition, the MNS core can be utilized for its ability to generate heat under an external radio frequency field. The thermal activation of MNS can lead to both innate and adaptive antitumor immune responses by inducing the expression of heat shock proteins that lead to activation of antigen presenting cells and finally lymphocyte trafficking. In the present study, we demonstrate SR-B1 receptor mediated binding and cellular uptake of HDL-MNS and prevention of phagolysosome formation by transmission electron microscopy, fluorescence microscopy, and ICP-MS analysis. The combinational therapeutics of cholesterol depletion and thermal activation significantly improves therapeutic efficacy in SR-B1 expressing lymphoma cells. HDL-MNS reduces the T2 relaxation time under magnetic resonance imaging (MRI) more effectively compared with a commercially available contrast agent, and the specificity of HDL-MNS toward the SR-B1 receptor leads to differential contrast between SR-B1 positive and negative cells suggesting its utility in diagnostic imaging. Overall, we have demonstrated that HDL-MNSs have cell specific targeting efficiency, can modulate cholesterol efflux, can induce thermal activation mediated antitumor immune response, and possess high contrast under MRI, making it a promising theranostic platform in lymphoma.
Collapse
Affiliation(s)
- Abhalaxmi Singh
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Vikas Nandwana
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Jonathan S Rink
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
- Simpson-Querrey Institute for Bionanotechnology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Soo-Ryoon Ryoo
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| | - Tzu Hung Chen
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Sean David Allen
- Interdisciplinary Biological Sciences Program , Northwestern University , Evanston , Illinois 60208 , United States
| | - Evan A Scott
- Simpson-Querrey Institute for Bionanotechnology , Northwestern University , Chicago , Illinois 60611 , United States
- Interdisciplinary Biological Sciences Program , Northwestern University , Evanston , Illinois 60208 , United States
- Department of Biomedical Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Leo I Gordon
- Department of Medicine, Division of Hematology/Oncology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University , Chicago , Illinois 60611 , United States
| | - C Shad Thaxton
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University , Chicago , Illinois 60611 , United States
- Department of Urology, Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States
| | - Vinayak P Dravid
- Department of Materials Science & Engineering , Northwestern University , Evanston , Illinois 60208 , United States
- International Institute of Nanotechnology , Evanston , Illinois 60208 , United States
| |
Collapse
|
19
|
Liao S, Hu X, Liu Z, Lin Y, Liang R, Zhang Y, Li Q, Li Y, Liao X. Synergistic action of microwave-induced mild hyperthermia and paclitaxel in inducing apoptosis in the human breast cancer cell line MCF-7. Oncol Lett 2019; 17:603-615. [PMID: 30655807 PMCID: PMC6313200 DOI: 10.3892/ol.2018.9629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 10/15/2018] [Indexed: 11/05/2022] Open
Abstract
Microwave mild hyperthermia and paclitaxel have been reported to be involved in variety of solid tumors. However, rare related researches have been accomplished via directly killing tumor cells using thermochemotherapy. In order to clarify the potential synergy between microwave-induced hyperthermia at temperatures <41°C and paclitaxel chemotherapy for inhibiting the growth of the human breast cancer cell line MCF-7, an MTT assay was used. The MCF-7 cells cultured in vitro were treated with paclitaxel alone, treated with microwave-induced hyperthermia for 2 h alone (at 40, 40.5 or 41°C), or treated with a combination of paclitaxel and 2 h of hyperthermia (at 40, 40.5 or 41°C). Flow cytometry was used to determine the cell apoptosis rate and it was demonstrated that paclitaxel decreased cell viability in a dose-dependent manner. Alone, hyperthermia for 2 h at 41°C induced apoptosis in MCF-7 cells, to a greater extent compared with hyperthermia for 2 h at 40.0 or 40.5°C (P<0.05). Together, paclitaxel and 2 h of hyperthermia at 40.5°C induced significantly increased apoptosis compared with either treatment alone (P<0.05). Increasing the temperature to 41°C in combination with paclitaxel increased the apoptotic ratio from 12.21±1.02% to 16.36±2.39%. The apoptotic ratio correlated positively with hyperthermia temperature and duration following hyperthermia, as did the synergistic effect obtained by combining hyperthermia and paclitaxel. Notably, the combination of 5 µg/ml paclitaxel and 2 h of hyperthermia at 40°C enhanced MCF-7 cell proliferation. Mild hyperthermia may exert anti-tumor effects by inducing apoptosis, and combining hyperthermia with paclitaxel synergistically induces apoptosis. Paclitaxel dose and hyperthermia temperature require careful optimization, as low-dose paclitaxel combined with hyperthermia at an insufficient temperature may enhance breast cancer proliferation.
Collapse
Affiliation(s)
- Sina Liao
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaohua Hu
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhihui Liu
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Lin
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong Liang
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yumei Zhang
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qian Li
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongqiang Li
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoli Liao
- Department of The First Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
20
|
González-Ruíz A, Ferro-Flores G, Jiménez-Mancilla N, Escudero-Castellanos A, Ocampo-García B, Luna-Gutiérrez M, Santos-Cuevas C, Morales-Avila E, Isaac-Olivé K. In vitro and in vivo synergistic effect of radiotherapy and plasmonic photothermal therapy on the viability of cancer cells using 177Lu–Au-NLS-RGD-Aptamer nanoparticles under laser irradiation. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6266-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Chang D, Lim M, Goos JACM, Qiao R, Ng YY, Mansfeld FM, Jackson M, Davis TP, Kavallaris M. Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Front Pharmacol 2018; 9:831. [PMID: 30116191 PMCID: PMC6083434 DOI: 10.3389/fphar.2018.00831] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperthermia, the mild elevation of temperature to 40–43°C, can induce cancer cell death and enhance the effects of radiotherapy and chemotherapy. However, achievement of its full potential as a clinically relevant treatment modality has been restricted by its inability to effectively and preferentially heat malignant cells. The limited spatial resolution may be circumvented by the intravenous administration of cancer-targeting magnetic nanoparticles that accumulate in the tumor, followed by the application of an alternating magnetic field to raise the temperature of the nanoparticles located in the tumor tissue. This targeted approach enables preferential heating of malignant cancer cells whilst sparing the surrounding normal tissue, potentially improving the effectiveness and safety of hyperthermia. Despite promising results in preclinical studies, there are numerous challenges that must be addressed before this technique can progress to the clinic. This review discusses these challenges and highlights the current understanding of targeted magnetic hyperthermia.
Collapse
Affiliation(s)
- David Chang
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,Department of Radiation Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| | - May Lim
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Jeroen A C M Goos
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ruirui Qiao
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Yun Yee Ng
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Friederike M Mansfeld
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Michael Jackson
- Department of Radiation Oncology, Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.,Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
22
|
Burchardt E, Roszak A. Hyperthermia in cervical cancer - current status. Rep Pract Oncol Radiother 2018; 23:595-603. [PMID: 30534024 DOI: 10.1016/j.rpor.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/19/2018] [Accepted: 05/25/2018] [Indexed: 10/28/2022] Open
Abstract
Background This article reviews the salient features of recent results of clinical studies. It puts a special emphasis on technical aspects, mechanisms of action together with radiotherapy and chemotherapy and points out areas for additional investigation. Aim To present the current state of knowledge on hyperthermia (HT) and to highlight its role in the treatment of cervical cancer. Materials and methods The literature on the clinical use of combined hyperthermia for cervical cancer was analyzed. Clinical outcomes together with the technical aspects and the role of HT were also evaluated. Results Clinically randomized trials have demonstrated benefit including survival with the addition of hyperthermia to radiation or chemotherapy in the treatment of cervical cancer without significant acute or late morbidities. The technological advances have led to an effective and safer treatment delivery, thermal treatment planning, thermal dose monitoring and online adaptive temperature modulation. Conclusions Due to rapid development over the last decade of hyperthermia systems and new studies at the basic science and clinical level, the perception of hyperthermia as a part of multimodality treatment in cervical cancer has been changed. However, there is still a need for multicentre randomized clinical trials.
Collapse
Affiliation(s)
- Ewa Burchardt
- Department of Radiotherapy and Oncological Gynecology, Greater Poland Cancer Centre, Poznan, Poland
| | - Andrzej Roszak
- Department of Radiotherapy and Oncological Gynecology, Greater Poland Cancer Centre, Poznan, Poland.,Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
23
|
Pierconti F, Straccia P, Emilio S, Bassi PF, De Pascalis I, Marques RC, Volavsek M, Larocca LM, Lopez-Beltran A. Cytological and histological changes in the urothelium produced by electromotive drug administration (EMDA) and by the combination of intravescical hyperthermia and chemotherapy (thermochemotherapy). Pathol Res Pract 2017; 213:1078-1081. [DOI: 10.1016/j.prp.2017.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/10/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
24
|
Hu Y, Li Z, Mi DH, Cao N, Zu SW, Wen ZZ, Yu XL, Qu Y. Chemoradiation combined with regional hyperthermia for advanced oesophageal cancer: a systematic review and meta-analysis. J Clin Pharm Ther 2017; 42:155-164. [PMID: 28120520 DOI: 10.1111/jcpt.12498] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Hyperthermia is an effective treatment modality that augments the anticancer effects of radiotherapy and chemotherapy. Hyperthermia-chemo-radiotherapy (HCRT) is a combination therapy that can strengthen anticancer effects through a synergistic interaction between heat, chemotherapy and radiation. Here, we carried out a systematic review and meta-analysis to evaluate the clinical efficacy and safety of chemoradiation combined with regional hyperthermia (HCRT) for oesophageal carcinoma. METHODS We conducted computer searches of foreign databases, including Cochrane Library, PubMed, EMBASE, Web of Science and Chinese databases, including CBM, CNKI and WanFang; we also retrieved other sources as supplement. All relevant randomized controlled trials (RCTs) were collected to compare HCRT and other therapies, including chemotherapy combined with radiotherapy (CRT) and radiotherapy alone (RT). After literature screening, data extraction and quality evaluation performed by appropriate criteria, the meta-analyses were conducted using RevMan 5.1 software (The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). RESULTS AND DISCUSSION Nineteen RCTs were included, comprising 1519 patients. Meta-analysis showed that the 1-, 3-, 5- and 7-year survival, complete response and total effective rates of the HCRT group were higher than those of the CRT group; the rates of gastrointestinal reaction, leucocytopenia and radiation oesophagitis in the HCRT group were lower than those of the CRT group, indicating significant differences (P < 0·05). The 1-, 2-, 3- and 5-year survival, complete response and total effective rates of the HCRT group were higher than those of the RT group, the recurrence and distant metastasis rates of the HCRT group were lower than those of the RT group, and there were significant differences in all of the indicators (P < 0·05). WHAT IS NEW AND CONCLUSIONS This is the first systematic review and meta-analysis to evaluate HCRT for oesophageal carcinoma. Compared with CRT or RT, HCRT can improve long-term and short-term curative effects; it is also safe and feasible. Additional high-quality and large sample size RCTs will be necessary to further demonstrate the long-term survival benefits and comprehensive safety profile of HCRT.
Collapse
Affiliation(s)
- Y Hu
- The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Z Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,The Second People's Hospital of Gansu Province, Lanzhou, Gansu Province, China
| | - D-H Mi
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China.,The Second People's Hospital of Gansu Province, Lanzhou, Gansu Province, China
| | - N Cao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu Province, China
| | - S-W Zu
- The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| | - Z-Z Wen
- The Second People's Hospital of Gansu Province, Lanzhou, Gansu Province, China
| | - X-L Yu
- The Second People's Hospital of Gansu Province, Lanzhou, Gansu Province, China
| | - Y Qu
- The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, China
| |
Collapse
|
25
|
Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Aghdam RZ. Hyperthermia: How Can It Be Used? Oman Med J 2016; 31:89-97. [PMID: 27168918 DOI: 10.5001/omj.2016.19] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hyperthermia (HT) is a method used to treat tumors by increasing the temperature of the cells. The treatment can be applied in combination with other verified cancer treatments using several different procedures. We sought to present an overview of the different HT tumor treatment, recent advances in the field, and combinational treatment sequences and outcomes. We used a computer-aided search to identify articles that contained the keywords hyperthermia, cancer treatment, chemotherapy, radiotherapy, nanoparticle, and cisplatin. There are three types of HT treatment, which each need the use of applicators that are in contact with or in the proximity of the patient for the purpose of heating. Heating can be achieved using different types of energy (including microwaves, radio waves, and ultrasound). However, the source of energy will depend on the cancer type and location. The temperature used will also vary. HT is rarely used alone, and can be combined with other cancer treatments. When used in combination with other treatments, improved survival rates have been observed. However, despite in vitro and in vivo studies that support the use of concurrent hypothermia treatments, contradictory results suggest there is a need for more studies to identify other hidden effects of HT.
Collapse
Affiliation(s)
- Zhaleh Behrouzkia
- Medical Physics Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Joveini
- Student Research Committee, Urmia University of Medical Science, Urmia, Iran
| | - Behnaz Keshavarzi
- Student Research Committee, Urmia University of Medical Science, Urmia, Iran
| | - Nazila Eyvazzadeh
- Radiation Research Center, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Zohdi Aghdam
- Medical Physics Department, Faculty of ParaMedicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
26
|
Repasky EA, Evans SS, Dewhirst MW. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res 2015; 1:210-6. [PMID: 24490177 DOI: 10.1158/2326-6066.cir-13-0118] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A major goal of cancer immunology is to stimulate the generation of long-lasting, tumor antigen-specific immune responses that recognize and destroy tumor cells. This article discusses advances in thermal medicine with the potential to improve cancer immunotherapy. Accumulating evidence indicates that survival benefits are accorded to individuals who achieve an increase in body temperature (i.e. fever) following infection. Furthermore, accumulating evidence indicates that physiological responses to hyperthermia impact the tumor microenvironment through temperature-sensitive check-points that regulate tumor vascular perfusion, lymphocyte trafficking, inflammatory cytokine expression, tumor metabolism, and innate and adaptive immune function. Nevertheless, the influence of thermal stimuli on the immune system, particularly the antitum or immune response, remains incompletely understood. In fact, temperature is still rarely considered as a critical variable in experimental immunology. We suggest that more attention should be directed to the role of temperature in the regulation of the immune response and that thermal therapy should be tested in conjunction with immunotherapy as a multi-functional adjuvant that modulates the dynamics of the tumor microenvironment.
Collapse
Affiliation(s)
| | - Sharon S Evans
- Department of Immunology, Roswell Park Cancer Institute, Buffalo NY
| | - Mark W Dewhirst
- Department of Radiation Oncology, Duke University Medical Center Durham, NC 27710
| |
Collapse
|
27
|
Wang J, Wang Z, Mo Y, Zeng Z, Wei P, Li T. Effect of hyperthermic CO 2-treated dendritic cell-derived exosomes on the human gastric cancer AGS cell line. Oncol Lett 2015; 10:71-76. [PMID: 26170979 DOI: 10.3892/ol.2015.3155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to determine the antitumor effects of hyperthermic CO2 (HT-CO2)-treated dendritic cell (DC)-derived exosomes (Dex) on human gastric cancer AGS cells. Mouse-derived DCs were incubated in HT-CO2 at 43°C for 4 h. The exosomes in the cell culture supernatant were then isolated. Cell proliferation was analyzed using the cell counting kit-8 (CCK-8) assay. Cell apoptosis was observed using flow cytometry, Hoechst 33258 staining and the analysis of caspase-3 activity. In addition, the proliferation of tumor cells was evaluated in xenotransplant nude mice. HT-CO2 markedly inhibited cell proliferation, as assessed by the CCK-8 assay, and also induced apoptosis in a time-dependent manner, as demonstrated by Annexin V/propidium iodide flow cytometry, caspase-3 activity and morphological analysis using Hoechst fluorescent dye. It was also revealed that HT-CO2-treated Dex decreased the expression of heat shock protein 70 and inhibited tumor growth in nude mice. In conclusion, HT-CO2 exerted an efficacious immune-enhancing effect on DCs. These findings may provide a novel strategy for the elimination of free cancer cells during laparoscopic resection. However, the potential cellular mechanisms underlying this process require further investigation.
Collapse
Affiliation(s)
- Jinlin Wang
- Department of General Surgery, Dongguan People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Zhiyong Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Yanxia Mo
- Department of General Surgery, Dongguan People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Zhaohui Zeng
- Department of General Surgery, Dongguan People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Pei Wei
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| | - Tao Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical College, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
28
|
Srivatsan A, Missert JR, Upadhyay SK, Pandey RK. Porphyrin-based photosensitizers and the corresponding multifunctional nanoplatforms for cancer-imaging and phototherapy. J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615300037] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review article briefly describes: (a) the advantages in developing multifunctional nanoparticles for cancer-imaging and therapy, (b) the advantages and limitations of most of the porphyrin-based compounds in fluorescence imaging and photodynamic therapy (PDT), (c) problems associated with current Food and Drug Administration (FDA) approved photosensitizers, (d) challenges in developing in vivo target-specific PDT agents, (e) development of porphyrin-based nuclear-imaging agents (PET, SPECT) with an option of PDT, (f) the importance of light dosimetry in PDT, (g) the role of whole body or local hyperthermia in enhancing tumor-uptake, tumor-imaging and phototherapy and finally, (h) the advantages of photosensitizer-gold nanocages (Ps- Au NC) in photoacoustic and PDT.
Collapse
Affiliation(s)
- Avinash Srivatsan
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joseph R. Missert
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | - Ravindra K. Pandey
- Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- PDT Center, Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
29
|
Hurwitz M, Stauffer P. Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin Oncol 2014; 41:714-29. [PMID: 25499632 DOI: 10.1053/j.seminoncol.2014.09.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The compelling biologic basis for combining hyperthermia with modern cancer therapies including radiation and chemotherapy was first appreciated nearly half a century ago. Hyperthermia complements radiation as conditions contributing to radio-resistance generally enhance sensitivity to heat and sensitizing effects occur through increased perfusion/tumor oxygenation and alteration of cellular death pathways. Chemosensitization with hyperthermia is dependent on the particular mechanism of effect for each agent with synergistic effects noted for several commonly used agents. Clinically, randomized trials have demonstrated benefit including survival with the addition of hyperthermia to radiation or chemotherapy in treatment of a wide range of malignancies. Improvements in treatment delivery techniques, streamlined logistics, and greater understanding of the relationship of thermal dosimetry to treatment outcomes continue to facilitate wider clinical implementation. Evolving applications include thermal enhancement of immunotherapy, targeted drug delivery and application of principals of thermal biology towards integration of thermal ablation into multimodality oncologic care.
Collapse
Affiliation(s)
- Mark Hurwitz
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA.
| | - Paul Stauffer
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
30
|
Zauner D, Quehenberger F, Hermann J, Dejaco C, Stradner MH, Stojakovic T, Angerer H, Rinner B, Graninger WB. Whole body hyperthermia treatment increases interleukin 10 and toll-like receptor 4 expression in patients with ankylosing spondylitis: A pilot study. Int J Hyperthermia 2014; 30:393-401. [DOI: 10.3109/02656736.2014.956810] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Slater SE, Patel P, Viney R, Foster M, Porfiri E, James ND, Montgomery B, Bryan RT. The effects and effectiveness of electromotive drug administration and chemohyperthermia for treating non-muscle invasive bladder cancer. Ann R Coll Surg Engl 2014; 96:415-9. [PMID: 25198970 PMCID: PMC4474190 DOI: 10.1308/003588414x13946184901001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2013] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Preliminary studies show that device assisted intravesical therapies appear more effective than passive diffusion intravesical therapy for the treatment of non-muscle invasive bladder cancer (NMIBC) in specific settings, and phase III studies are now being conducted. Consequently, we have undertaken a non-systematic review with the objective of describing the scientific basis and mechanisms of action of electromotive drug administration (EMDA) and chemohyperthermia (CHT). METHODS PubMed, ClinicalTrials.gov and the Cochrane Library were searched to source evidence for this non-systematic review. Randomised controlled trials, systematic reviews and meta-analyses were evaluated. Publications regarding the scientific basis and mechanisms of action of EMDA and CHT were identified, as well as clinical studies to date. RESULTS EMDA takes advantage of three phenomena: iontophoresis, electro-osmosis and electroporation. It has been found to reduce recurrence rates in NMIBC patients and has been proposed as an addition or alternative to bacillus Calmette-Guérin (BCG) therapy in the treatment of high risk NMIBC. CHT improves the efficacy of mitomycin C by three mechanisms: tumour cell cytotoxicity, altered tumour blood flow and localised immune responses. Fewer studies have been conducted with CHT than with EMDA but they have demonstrated utility for increasing disease-free survival, especially in patients who have previously failed BCG therapy. CONCLUSIONS It is anticipated that EMDA and CHT will play important roles in the management of NMIBC in the future. Techniques of delivery should be standardised, and there is a need for more randomised controlled trials to evaluate the benefits of the treatments alongside quality of life and cost-effectiveness.
Collapse
Affiliation(s)
| | | | | | - M Foster
- Heart of England NHS Foundation Trust, UK
| | - E Porfiri
- University Hospitals Birmingham NHS Foundation Trust, UK
| | | | | | | |
Collapse
|
32
|
Zhang J, Lou X, Jin L, Zhou R, Liu S, Xu N, Liao DJ. Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions. Oncoscience 2014; 1:407-22. [PMID: 25594039 PMCID: PMC4284620 DOI: 10.18632/oncoscience.61] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022] Open
Abstract
Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development.
Collapse
Affiliation(s)
- Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Longyu Jin
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Rongjia Zhou
- Department of Genetics & Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Academy of Medical Science, Beijing, P.R. China
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|
33
|
Adverse Drug Reactions and Expected Effects to Therapy with Subcutaneous Mistletoe Extracts (Viscum album L.) in Cancer Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:724258. [PMID: 24672577 PMCID: PMC3929984 DOI: 10.1155/2014/724258] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/16/2013] [Indexed: 11/17/2022]
Abstract
Background. In Europe, mistletoe extracts are widely used as a complementary cancer therapy. We assessed the safety of subcutaneous mistletoe as a conjunctive therapy in cancer patients within an anthroposophic medicine setting in Germany. Methods. A multicentre, observational study was performed within the Network Oncology. Suspected mistletoe adverse drug reactions (ADRs) were described by frequency, causality, severity, and seriousness. Potential risk factors, dose relationships and drug-drug interactions were investigated. Results. Of 1923 cancer patients treated with subcutaneous mistletoe extracts, 283 patients (14.7%) reported 427 expected effects (local reactions <5 cm and increased body temperature <38°C). ADRs were documented in 162 (8.4%) patients who reported a total of 264 events. ADRs were mild (50.8%), moderate (45.1%), or severe (4.2%). All were nonserious. Logistic regression analysis revealed that expected effects were more common in females, while immunoreactivity decreased with increasing age and tumour stage. No risk factors were identified for ADRs. ADR frequency increased as mistletoe dose increased, while fewer ADRs occurred during mistletoe therapy received concurrent with conventional therapies. Conclusion. The results of this study indicate that mistletoe therapy is safe. ADRs were mostly mild to moderate in intensity and appear to be dose-related and explained by the immune-stimulating, pharmacological activity of mistletoe.
Collapse
|
34
|
Gilliland SE, Carpenter EE, Shultz MD. Modified Seed Growth of Iron Oxide Nanoparticles in Benzyl Alcohol - Optimization for Heating and Broad Stability in Biomedical Applications. Nanobiomedicine (Rij) 2014; 1:9. [PMID: 30023020 PMCID: PMC6029237 DOI: 10.5772/60035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/26/2014] [Indexed: 12/04/2022] Open
Abstract
Iron oxide nanoparticles have received sustained interest for biomedical applications as synthetic approaches are continually developed for control of nanoparticle properties. However, many approaches focus solely on the material, rather than the complete optimization of synthesis and functionalization together to enhance translation into biological systems. Presented herein is a modified seed growth method designed for obtaining optimal nanoparticle properties and ease of surface functionalization for long term stability. With a one or two addition process, iron oxide nanoparticles were produced in crystallite sizes ranging from 5–15 nm using only benzyl alcohol and an iron precursor. In the functionalization process, concentration variations were required for stabilizing different nanoparticle sizes. Radio frequency induction heating experiments of various crystallite and hydrodynamic sizes verified that the heating efficiency greatly increased while approaching the 15 nm crystallite, and suggested an important role of the overall particle size on heating efficiency. Initial in vitro experiments with the functionalized nanoparticles showed success in providing hyperthermia-induced tumour cell killing without an increase in the temperature of the cell suspension medium. This demonstrates the potential for nanoparticle-based hyperthermia to provide a therapeutic effect while limiting normal tissue damage.
Collapse
Affiliation(s)
- Stanley E Gilliland
- Research and Development, Hunter Holmes McGuire VA Medical Center, Richmond, USA.,Department of Chemistry and Nanomaterials Core Characterization Facility, Virginia Commonwealth University, Richmond, USA
| | - Everett E Carpenter
- Department of Chemistry and Nanomaterials Core Characterization Facility, Virginia Commonwealth University, Richmond, USA
| | - Michael D Shultz
- Research and Development, Hunter Holmes McGuire VA Medical Center, Richmond, USA
| |
Collapse
|
35
|
Inhibitory effects of mild hyperthermia plus docetaxel therapy on ER(+/−) breast cancer cells and action mechanisms. ACTA ACUST UNITED AC 2013; 33:870-876. [DOI: 10.1007/s11596-013-1214-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/30/2013] [Indexed: 10/25/2022]
|
36
|
Przybyla BD, Shafirstein G, Vishal SJ, Dennis RA, Griffin RJ. Molecular changes in bone marrow, tumor and serum after conductive ablation of murine 4T1 breast carcinoma. Int J Oncol 2013; 44:600-8. [PMID: 24270800 PMCID: PMC3898720 DOI: 10.3892/ijo.2013.2185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/23/2013] [Indexed: 11/06/2022] Open
Abstract
Thermal ablation of solid tumors using conductive interstitial thermal therapy (CITT) produces coagulative necrosis in the center of ablation. Local changes in homeostasis for surviving tumor and systemic changes in circulation and distant organs must be understood and monitored in order to prevent tumor re-growth and metastasis. The purpose of this study was to use a mouse carcinoma model to evaluate molecular changes in the bone marrow and surviving tumor after CITT treatment by quantification of transcripts associated with cancer progression and hyperthermia, serum cytokines, stress proteins and the marrow/tumor cross-talk regulator stromal-derived factor 1. Analysis of 27 genes and 22 proteins with quantitative PCR, ELISA, immunoblotting and multiplex antibody assays revealed that the gene and protein expression in tissue and serum was significantly different between ablated and control mice. The transcripts of four genes (Cxcl12, Sele, Fgf2, Lifr) were significantly higher in the bone marrow of treated mice. Tumors surviving ablation showed significantly lower levels of the Lifr and Sele transcripts. Similarly, the majority of transcripts measured in tumors decreased with treatment. Surviving tumors also contained lower levels of SDF-1α and HIF-1α proteins whereas HSP27 and HSP70 were higher. Of 16 serum chemokines, IFNγ and GM-CSF levels were lower with treatment. These results indicate that CITT ablation causes molecular changes which may slow cancer cell proliferation. However, inhibition of HSP27 may be necessary to control aggressiveness of surviving cancer stem cells. The changes in bone marrow are suggestive of possible increased recruitment of circulatory cancer cells. Therefore, the possibility of heightened bone metastasis after thermal ablation needs to be further investigated and inhibition strategies developed, if warranted.
Collapse
Affiliation(s)
- Beata D Przybyla
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Gal Shafirstein
- Department of Cell Stress Biology and Otolaryngology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sagar J Vishal
- College of Medicine, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Richard A Dennis
- Geriatric Research Education and Clinical Center, Central Arkansas Veteran Healthcare System, Little Rock, AR, USA
| | - Robert J Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Science, Little Rock, AR, USA
| |
Collapse
|
37
|
Csoboz B, Balogh GE, Kusz E, Gombos I, Peter M, Crul T, Gungor B, Haracska L, Bogdanovics G, Torok Z, Horvath I, Vigh L. Membrane fluidity matters: Hyperthermia from the aspects of lipids and membranes. Int J Hyperthermia 2013; 29:491-9. [DOI: 10.3109/02656736.2013.808765] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Balogh G, Péter M, Glatz A, Gombos I, Török Z, Horváth I, Harwood JL, Vígh L. Key role of lipids in heat stress management. FEBS Lett 2013; 587:1970-80. [PMID: 23684645 DOI: 10.1016/j.febslet.2013.05.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
Heat stress is a common and, therefore, an important environmental impact on cells and organisms. While much attention has been paid to severe heat stress, moderate temperature elevations are also important. Here we discuss temperature sensing and how responses to heat stress are not necessarily dependent on denatured proteins. Indeed, it is clear that membrane lipids have a pivotal function. Details of membrane lipid changes and the associated production of signalling metabolites are described and suggestions made as to how the interconnected signalling network could be modified for helpful intervention in disease.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6701 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lin Y, Liu Z, Li Y, Liao X, Liao S, Cen S, Yang L, Wei J, Hu X. Short-term hyperthermia promotes the sensitivity of MCF-7 human breast cancer cells to paclitaxel. Biol Pharm Bull 2012; 36:376-83. [PMID: 23229357 DOI: 10.1248/bpb.b12-00774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As a physical adjuvant approach in the treatment of solid tumors, regional hyperthermia plays a synergistic role in enhancing the efficacy of simultaneous chemotherapy. Paclitaxel (PTX) is an anti-mitotic taxane drug that is widely used in chemotherapy for the treatment of various human malignancies such as lung, ovarian, breast, and head and neck cancers. Since the possibility that hyperthermia can enhance the anti-tumor effects of PTX has not yet been investigated, the present study was designed to evaluate the effects of short-term hyperthermia on PTX-induced antitumor activity in the human breast cancer line MCF-7. It was found that short-term hyperthermia promoted PTX-induced suppression of cell proliferation. The IC for PTX was reduced from 18.2±1.0 to 15.0±0.45 nM (p<0.05). The level of PTX-induced cell apoptosis was increased from 8.5±1.2 to 16.4±2.4% (p<0.05) and from 15.2±1.4 to 34.9±2.8% (p<0.05), at the end of the first and second hyperthermia cycles, respectively; both the activity and expression of caspase-7 were enhanced. In addition, PTX-induced cell cycle arrest in the G2/M phase was further promoted by short-term hyperthermia, from 9.3±0.7 to 12.5±0.9% (p<0.05). In contrast, short-term hyperthermia affected neither tumor cell migration nor invasion in the presence or absence of PTX. The presented data thus suggest that short-term hyperthermia may serve as a feasible approach in the promotion of breast cancer cell sensitivity to PTX.
Collapse
Affiliation(s)
- Yan Lin
- Department of First Chemotherapy, Affiliated Cancer Hospital of Guangxi Medical University, 71 Hedi Road, Nanning 530021, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sulyok I, Fleischmann E, Stift A, Roth G, Lebherz-Eichinger D, Kasper D, Spittler A, Kimberger O. Effect of preoperative fever-range whole-body hyperthermia on immunological markers in patients undergoing colorectal cancer surgery †. Br J Anaesth 2012; 109:754-61. [DOI: 10.1093/bja/aes248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
41
|
Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8+ T cell IFN-γ production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia 2012; 28:9-18. [PMID: 22235780 DOI: 10.3109/02656736.2011.616182] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Clinical trials combining hyperthermia with radiation and/or chemotherapy for cancer treatment have resulted in improved overall survival and control of local recurrences. The contribution of thermally enhanced anti-immune function in these effects is of considerable interest, but not understood; studies on the fundamental effects of elevated temperature on immune effector cells are needed. The goal of this study is to investigate the potential of mild hyperthermia to impact tumour antigen-specific (Ag) effector CD8+ T cell functions. METHOD Pmel-1 Ag-specific CD8+ T cells were exposed to mild hyperthermia and tested for changes in IFN-γ production and cytotoxicity. Additionally, overall plasma membrane organisation and the phosphorylation of signalling proteins were also investigated following heat treatment. RESULTS Exposing effector Pmel-1-specific CD8+ T cells to mild hyperthermia (39.5°C) resulted in significantly enhanced Ag-specific IFN-γ production and tumour target cell killing compared to that seen using lower temperatures (33° and 37°C). Further, inhibition of protein synthesis during hyperthermia did not reduce subsequent Ag-induced IFN-γ production by CD8+ T cells. Correlated with these effects, we observed a distinct clustering of GM1(+) lipid microdomains at the plasma membrane and enhanced phosphorylation of LAT and PKCθ which may be related to an observed enhancement of Ag-specific effector CD8+ T cell IFN-γ gene transcription following mild hyperthermia. However, mitogen-mediated production of IFN-γ, which bypasses T cell receptor activation with antigen, was not enhanced. CONCLUSIONS Antigen-dependent effector T cell activity is enhanced following mild hyperthermia. These effects could potentially occur in patients being treated with thermal therapies. These data also provide support for the use of thermal therapy as an adjuvant for immunotherapies to improve CD8+ effector cell function.
Collapse
Affiliation(s)
- Thomas A Mace
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | | | |
Collapse
|
42
|
Abstract
Increased evidence of cross-talk between NK cells and other immune cells has enhanced the possibilities of exploiting the interplay between the activation and inhibition of NK cells for immunotherapeutic purposes. The battery of receptors possessed by NK cells help them to efficiently detect aberrant and infected cells and embark on the signaling pathways necessary to eliminate them. Endogenous expansion of NK cells and their effector mechanisms are under exploration for enhancing adoptive immunotherapy prospects in combination with immunostimulatory and cell-death-sensitizing treatments against cancer, viral infections and other pathophysiological autoimmune conditions. Various modes of NK cell manipulation are being undertaken to overcome issues such as relapse and graft rejections associated with adoptive immunotherapy. While tracing the remarkable properties of NK cells and the major developments in this field, we highlight the role of immune cooperativity in the betterment of current immunotherapeutic approaches.
Collapse
Affiliation(s)
- Anshu Malhotra
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
| | - Anil Shanker
- Laboratory of Lymphocyte Function, Department of Biochemistry & Cancer Biology, School of Medicine, Meharry Medical College, 2005 Harold D West Basic Sciences Building, 1005 Dr DB Todd Jr Boulevard, Nashville, TN 37208, USA
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN 37232, USA
| |
Collapse
|
43
|
Fisher DT, Chen Q, Skitzki JJ, Muhitch JB, Zhou L, Appenheimer MM, Vardam TD, Weis EL, Passanese J, Wang WC, Gollnick SO, Dewhirst MW, Rose-John S, Repasky EA, Baumann H, Evans SS. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J Clin Invest 2011; 121:3846-59. [PMID: 21926464 DOI: 10.1172/jci44952] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 08/03/2011] [Indexed: 12/26/2022] Open
Abstract
Immune cells are key regulators of neoplastic progression, which is often mediated through their release of cytokines. Inflammatory cytokines such as IL-6 exert tumor-promoting activities by driving growth and survival of neoplastic cells. However, whether these cytokines also have a role in recruiting mediators of adaptive anticancer immunity has not been investigated. Here, we report that homeostatic trafficking of tumor-reactive CD8+ T cells across microvascular checkpoints is limited in tumors despite the presence of inflammatory cytokines. Intravital imaging in tumor-bearing mice revealed that systemic thermal therapy (core temperature elevated to 39.5°C ± 0.5°C for 6 hours) activated an IL-6 trans-signaling program in the tumor blood vessels that modified the vasculature such that it could support enhanced trafficking of CD8+ effector/memory T cells (Tems) into tumors. A concomitant decrease in tumor infiltration by Tregs during systemic thermal therapy resulted in substantial enhancement of Tem/Treg ratios. Mechanistically, IL-6 produced by nonhematopoietic stromal cells acted cooperatively with soluble IL-6 receptor-α and thermally induced gp130 to promote E/P-selectin- and ICAM-1-dependent extravasation of cytotoxic T cells in tumors. Parallel increases in vascular adhesion were induced by IL-6/soluble IL-6 receptor-α fusion protein in mouse tumors and patient tumor explants. Finally, a causal link was established between IL-6-dependent licensing of tumor vessels for Tem trafficking and apoptosis of tumor targets. These findings suggest that the unique IL-6-rich tumor microenvironment can be exploited to create a therapeutic window to boost T cell-mediated antitumor immunity and immunotherapy.
Collapse
Affiliation(s)
- Daniel T Fisher
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Beachy SH, Repasky EA. Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int J Hyperthermia 2011; 27:344-52. [PMID: 21591898 DOI: 10.3109/02656736.2011.562873] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
There is interest in understanding the health impact of thermal effects as a result of exposure of humans to radiofrequency/microwave (RF/MW) fields. Immune cells and responses are affected by modest changes in temperature and it is important to quantify these effects and establish safety thresholds similar to what has been done with other tissue targets. Since previous summaries of thresholds for thermal damage to normal tissues have not focused much attention to cells of the immune system, this summary highlights recent studies which demonstrate positive and some negative effects of temperature shifts on human immune cells. We emphasise literature reporting adverse immunological endpoints (such as cell damage, death and altered function) and provide the temperature at which these effects were noted. Whereas there have been many in vitro studies of adverse temperature effects on immune cells, there has been limited validation of these temperature effects in vivo. However, data from heat stress/stroke patients do provide some information regarding core temperatures (40°C) at which thermal damage to immunological processes can begin to occur. We conclude that there is considerable need for more quantitative time temperature assessments using relevant animal models, more complete kinetic analyses to determine how long immunological effects persist, and for analysis of whether frequency of exposure has impact on immune function. To date, no attempt to categorise effects by using cumulative thermal dose measurements (e.g. cumulative equivalent minutes at a given temperature) has been conducted for cells or tissues of the immune system, representing a major gap in this field.
Collapse
Affiliation(s)
- Sarah H Beachy
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
45
|
Kokolus KM, Hong CC, Repasky EA. Feeling too hot or cold after breast cancer: is it just a nuisance or a potentially important prognostic factor? Int J Hyperthermia 2010; 26:662-80. [PMID: 20849261 DOI: 10.3109/02656736.2010.507235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is widespread recognition among both patients and caregivers that breast cancer patients often experience debilitating deficiencies in their ability to achieve thermal comfort, feeling excessively hot or cold under circumstances when others are comfortable. However, this symptom receives little clinical or scientific attention beyond identification and testing of drugs that minimise menopausal-like symptoms. Could some of these symptoms represent an important prognostic signal? Could thermal discomfort be among other cytokine-driven sickness behaviour symptoms seen in many breast cancer patients? While the literature reveals a strong link between treatment for breast cancer and some menopausal vasomotor symptoms (e.g. hot flashes also known as "hot flushes"), there is little data on quantitative assessment of severity of different types of symptoms and their possible prognostic potential. However, recent, intriguing studies indicating a correlation between the presence of hot flashes and reduced development of breast cancer recurrence strongly suggests that more study on this topic is needed. In comparison to reports on the phenomenon of breast cancer-associated hot flashes, there is essentially no scientific study on the large number of women who report feeling excessively cold after breast cancer treatment. Since similar acquired thermal discomfort symptoms can occur in patients with cancers other than breast cancer, there may be as yet unidentified cancer- or treatment-driven factor related to temperature dysregulation. In general, there is surprisingly little information on the physiological relationship between body temperature regulation, vasomotor symptoms, and cancer growth and progression. The goal of this article is twofold: (1) to review the scientific literature regarding acquired deficits in thermoregulation among breast cancer survivors and (2) to propose some speculative ideas regarding the possible basis for thermal discomfort among some of these women. Specifically, we suggest a potential association with excessive pro-inflammatory cytokine activity, similar to other cytokine-driven symptoms experienced after breast cancer, including fatigue and depression. We highlight the similarity of some breast cancer-associated thermal discomfort symptoms to those which occur during fever, suggesting the possibility that there may be common underlying changes in pro-inflammatory cytokine activity in both conditions. We anticipate that this contribution will stimulate additional scientific interest among researchers in identifying potential mechanisms and prognostic significance of this under-studied aspect of breast cancer biology and survivorship.
Collapse
Affiliation(s)
- Kathleen M Kokolus
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|