1
|
Rutigliano M, Liberatore MT, Dilucia F, Di Luccia A, la Gatta B. Study on the induced polymeric protein aggregation and immunoreactivity in biscuits enriched with peanut flour. Food Chem 2024; 460:140568. [PMID: 39053275 DOI: 10.1016/j.foodchem.2024.140568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
This work deals with the study on the protein extractability of biscuits incurring different percentages of roasted peanut flour. The presence of two different flours influenced the rate of protein aggregation and protein extractability, according to the percentage of roasted peanut flour added to the formulation and assessing these features by testing the use of two buffers. Results showed that gluten network arrangement of biscuits was influenced by the flours mixture besides the baking, with possible different protein organizations. Protein extractability was affected, underlining a higher content of protein aggregates at high molecular weight especially with the addition of 20% of peanut flour, characterized by hydrophobic and reducible covalent bonds, as suggested by the higher extractability obtained with the buffer with chaotropic and reducing agents. These results suggested a possible induced supramolecular protein organization in these products, which could affect the immunoreactivity of the main allergens occurred in the formulation.
Collapse
Affiliation(s)
- Mariacinzia Rutigliano
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122, Foggia, Italy
| | - Maria Teresa Liberatore
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122, Foggia, Italy
| | - Flavia Dilucia
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122, Foggia, Italy
| | - Aldo Di Luccia
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122, Foggia, Italy
| | - Barbara la Gatta
- Department of Sciences of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25, 71122, Foggia, Italy.
| |
Collapse
|
2
|
Phogat S, Lankireddy SV, Lekkala S, Anche VC, Sripathi VR, Patil GB, Puppala N, Janga MR. Progress in genetic engineering and genome editing of peanuts: revealing the future of crop improvement. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1759-1775. [PMID: 39687700 PMCID: PMC11646254 DOI: 10.1007/s12298-024-01534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Peanut (Arachis hypogaea L.), also known as groundnut, is cultivated globally and is a widely consumed oilseed crop. Its nutritional composition and abundance in lipids, proteins, vitamins, and essential mineral elements position it as a nutritious food in various forms across the globe, ranging from nuts and confections to peanut butter. Cultivating peanuts provides significant challenges due to abiotic and biotic stress factors and health concerns linked to their consumption, including aflatoxins and allergens. These factors pose risks not only to human health but also to the long-term sustainability of peanut production. Conventional methods, such as traditional and mutation breeding, are time-consuming and do not provide desired genetic variations for peanut improvement. Fortunately, recent advancements in next-generation sequencing and genome editing technologies, coupled with the availability of the complete genome sequence of peanuts, offer promising opportunities to discover novel traits and enhance peanut productivity through innovative biotechnological approaches. In addition, these advancements create opportunities for developing peanut varieties with improved traits, such as increased resistance to pests and diseases, enhanced nutritional content, reduced levels of toxins, anti-nutritional factors and allergens, and increased overall productivity. To achieve these goals, it is crucial to focus on optimizing peanut transformation techniques, genome editing methodologies, stress tolerance mechanisms, functional validation of key genes, and exploring potential applications for peanut improvement. This review aims to illuminate the progress in peanut genetic engineering and genome editing. By closely examining these advancements, we can better understand the developments achieved in these areas.
Collapse
Affiliation(s)
- Sachin Phogat
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Sriharsha V. Lankireddy
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Saikrishna Lekkala
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Varsha C. Anche
- Center for Molecular Biology, Alabama A&M University, Normal, AL 35762 USA
| | | | - Gunvant B. Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| | - Naveen Puppala
- New Mexico State University Agricultural Science Center at Clovis, Clovis, 88101 USA
| | - Madhusudhana R. Janga
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Sciences, Texas Tech University, Lubbock, 79403 USA
| |
Collapse
|
3
|
Conner JA, Guimaraes LA, Zhang Z, Marasigan K, Chu Y, Korani W, Ozias‐Akins P. Multiplexed silencing of 2S albumin genes in peanut. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2438-2440. [PMID: 38715243 PMCID: PMC11332220 DOI: 10.1111/pbi.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/29/2024] [Indexed: 08/20/2024]
Affiliation(s)
- Joann A. Conner
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Larissa Arrais Guimaraes
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Zhifen Zhang
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Kathleen Marasigan
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Ye Chu
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| | - Walid Korani
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Peggy Ozias‐Akins
- Department of Horticulture and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaTiftonGeorgiaUSA
| |
Collapse
|
4
|
Gonzalez-Visiedo M, Herzog RW, Munoz-Melero M, Blessinger SA, Cook-Mills JM, Daniell H, Markusic DM. Viral Vector Based Immunotherapy for Peanut Allergy. Viruses 2024; 16:1125. [PMID: 39066287 PMCID: PMC11281582 DOI: 10.3390/v16071125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Food allergy (FA) is estimated to impact up to 10% of the population and is a growing health concern. FA results from a failure in the mucosal immune system to establish or maintain immunological tolerance to innocuous dietary antigens, IgE production, and the release of histamine and other mediators upon exposure to a food allergen. Of the different FAs, peanut allergy has the highest incidence of severe allergic responses, including systemic anaphylaxis. Despite the recent FDA approval of peanut oral immunotherapy and other investigational immunotherapies, a loss of protection following cessation of therapy can occur, suggesting that these therapies do not address the underlying immune response driving FA. Our lab has shown that liver-directed gene therapy with an adeno-associated virus (AAV) vector induces transgene product-specific regulatory T cells (Tregs), eradicates pre-existing pathogenic antibodies, and protects against anaphylaxis in several models, including ovalbumin induced FA. In an epicutaneous peanut allergy mouse model, the hepatic AAV co-expression of four peanut antigens Ara h1, Ara h2, Ara h3, and Ara h6 together or the single expression of Ara h3 prevented the development of a peanut allergy. Since FA patients show a reduction in Treg numbers and/or function, we believe our approach may address this unmet need.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Roland W. Herzog
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Sophia A. Blessinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Joan M. Cook-Mills
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - David M. Markusic
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA (M.M.-M.); (S.A.B.); (J.M.C.-M.)
| |
Collapse
|
5
|
Koppelman SJ, de Jong GAH, Marsh J, Johnson P, Dowell E, Perusko M, Westphal A, van Hage M, Baumert J, Apostolovic D. Novel post-translationally cleaved Ara h 2 proteoforms: Purification, characterization and IgE-binding properties. Int J Biol Macromol 2024; 264:130613. [PMID: 38447836 DOI: 10.1016/j.ijbiomac.2024.130613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The 2S albumins Ara h 2 and Ara h 6 have been shown to be the most important source of allergenicity in peanut. Several isoforms of these allergens have been described. Using extraction and liquid chromatography we isolated proteins with homology to Ara h 2 and characterized hitherto unknown Ara h 2 proteoforms with additional post-translational cleavage. High-resolution mass spectrometry located the cleavage site on the non-structured loop of Ara h 2 while far UV CD spectroscopy showed a comparable structure to Ara h 2. The cleaved forms of Ara h 2 were present in genotypes of peanut commonly consumed. Importantly, we revealed that newly identified Ara h 2 cleaved proteoforms showed comparable IgE-binding using sera from 28 peanut-sensitized individuals, possessed almost the same IgE binding potency and are likely similarly allergenic as intact Ara h 2. This makes these newly identified forms relevant proteoforms of peanut allergen Ara h 2.
Collapse
Affiliation(s)
- Stef J Koppelman
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, NE 68588-6207, USA
| | | | - Justin Marsh
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, NE 68588-6207, USA
| | - Phil Johnson
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, NE 68588-6207, USA
| | - Emily Dowell
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, NE 68588-6207, USA
| | - Marija Perusko
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adrie Westphal
- Wageningen University and Research (WUR), Wageningen, the Netherlands
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joseph Baumert
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, NE 68588-6207, USA
| | - Danijela Apostolovic
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Waritani T, Lomax S, Cutler D, Chang J. Development and evaluation of mouse anti-Ara h 1 and Ara h 3 IgE monoclonal antibodies for advancing peanut allergy research. MethodsX 2023; 11:102470. [PMID: 38034322 PMCID: PMC10681920 DOI: 10.1016/j.mex.2023.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Immediate hypersensitivity reactions to peanuts are a considerable public health concern due to the acute and severe IgE mediated reactions. To conduct research on the pathogenesis and therapeutics of peanut allergies, it is imperative to have mouse anti-crude peanut extract (CPE) IgE monoclonal antibodies (mAbs) for both in-vitro and in-vivo assays. Without these tools, it is difficult to advance research in this field. In this study, four hybridomas producing anti-CPE IgE mAbs were developed and the IgE mAbs were validated using immune-blot analysis, Sandwich ELISA, Indirect ELISA, a cell-based assay using RBL-2H3 cells, and footpad type I hypersensitivity reaction studies in mice. The results indicate that two of the four mAbs can be effectively used for both in-vitro and in-vivo peanut allergy studies, as they induce allergic reactions with sensitization alone in mice. These novel anti-Ara h1 and Ara h 3 IgE mAbs, in combination with the detailed protocols outlined in this article, offer valuable guidance for studying acute allergic reactions involving mast cells across various platforms. With some considerations, the IgE mAbs can significantly advance peanut allergy research.
Collapse
Affiliation(s)
- Takaki Waritani
- Chondrex, Inc., 16928 Woodinville-Redmond Rd NE STE B101, Woodinville, WA 98072, USA
| | - Sidney Lomax
- Chondrex, Inc., 16928 Woodinville-Redmond Rd NE STE B101, Woodinville, WA 98072, USA
| | - Dawn Cutler
- Chondrex, Inc., 16928 Woodinville-Redmond Rd NE STE B101, Woodinville, WA 98072, USA
| | - Jessica Chang
- Chondrex, Inc., 16928 Woodinville-Redmond Rd NE STE B101, Woodinville, WA 98072, USA
| |
Collapse
|
7
|
Castenmiller C, Nagy NA, Kroon PZ, Auger L, Desgagnés R, Martel C, Mirande L, Morel B, Roberge J, Stordeur V, Tropper G, Vézina LP, van Ree R, Gomord V, de Jong EC. A novel peanut allergy immunotherapy: Plant-based enveloped Ara h 2 Bioparticles activate dendritic cells and polarize T cell responses to Th1. World Allergy Organ J 2023; 16:100839. [PMID: 38020282 PMCID: PMC10679945 DOI: 10.1016/j.waojou.2023.100839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/19/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction As the only market-authorized allergen immunotherapy (AIT) for peanut allergy is accompanied by a high risk of side effects and mainly induces robust desensitization without sustained efficacy, novel treatment options are required. Peanut-specific plant-derived eBioparticles (eBPs) surface expressing Ara h 2 at high density have been shown to be very hypoallergenic. Here, we assessed the dendritic cell (DC)-activating and T cell polarization capacity of these peanut-specific eBPs. Methods Route and kinetics of eBP uptake were studied by (imaging) flow cytometry using monocyte-derived DCs incubated with fluorescently-labelled Ara h 2 eBPs or natural Ara h 2 (nAra h 2) in the presence or absence of inhibitors that block pathways involved in macropinocytosis, phagocytosis, and/or receptor-mediated uptake. DC activation was monitored by flow cytometry (maturation marker expression) and ELISA (cytokine production). T cell polarization was assessed by co-culturing DCs exposed to Ara h 2 eBPs or nAra h 2 with naïve CD4+ T cells, followed by flow cytometry assessment of intracellular IFNγ+ (Th1) and IL-13+ (Th2), and CD25+CD127-Foxp3+ regulatory T cells (Tregs). The suppressive activity of Tregs was tested using a suppressor assay. Results Ara h 2 eBPs were taken up by DCs through actin-dependent pathways. They activated DCs demonstrated by an induced expression of CD83 and CD86, and production of TNFα, IL-6, and IL-10. eBP-treated DCs polarized naïve CD4+ T cells towards Th1 cells, while reducing Th2 cell development. Furthermore, eBP-treated DCs induced reduced the frequency of Foxp3+ Tregs but did not significantly affect T cell IL-10 production or T cells with suppressive capacity. In contrast, DC activation and Th1 cell polarization were not observed for nAra h 2. Conclusion Ara h 2 eBPs activate DCs that subsequently promote Th1 cell polarization and reduce Th2 cell polarization. These characteristics mark Ara h 2 eBPs as a promising novel candidate for peanut AIT.
Collapse
Affiliation(s)
- Charlotte Castenmiller
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Noémi Anna Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | - Pascal Zion Kroon
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
- Department of Otorhinolaryngology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Esther Christina de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection & Immunity, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Peanut Allergenicity: An Insight into Its Mitigation Using Thermomechanical Processing. Foods 2023; 12:foods12061253. [PMID: 36981179 PMCID: PMC10048206 DOI: 10.3390/foods12061253] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Peanuts are the seeds of a legume crop grown for nuts and oil production. Peanut allergy has gained significant attention as a public health issue due to its increasing prevalence, high rate of sensitization, severity of the corresponding allergic symptoms, cross-reactivity with other food allergens, and lifelong persistence. Given the importance of peanuts in several sectors, and taking into consideration the criticality of their high allergic potential, strategies aiming at mitigating their allergenicity are urgently needed. In this regard, most of the processing methods used to treat peanuts are categorized as either thermal or thermomechanical techniques. The purpose of this review is to provide the reader with an updated outlook of the peanut’s allergens, their mechanisms of action, the processing methods as applied to whole peanuts, as well as a critical insight on their impact on the allergenicity. The methods discussed include boiling, roasting/baking, microwaving, ultrasonication, frying, and high-pressure steaming/autoclaving. Their effectiveness in alleviating the allergenicity, and their capacity in preserving the structural integrity of the treated peanuts, were thoroughly explored. Research data on this matter may open further perspectives for future relevant investigation ultimately aiming at producing hypoallergenic peanuts.
Collapse
|
9
|
Sztuk TKS, Rigby NM, Nørskov-Nielsen L, Koppelman SJ, Sancho AI, Knudsen NPH, Marsh J, Johnson P, Gupta S, Mackie AR, Larsen JM, Bøgh KL. Dose and route of administration determine the efficacy of prophylactic immunotherapy for peanut allergy in a Brown Norway rat model. Front Immunol 2023; 14:1121497. [PMID: 36911669 PMCID: PMC9996042 DOI: 10.3389/fimmu.2023.1121497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Allergen-specific immunotherapy (IT) is emerging as a viable option for treatment of peanut allergy. Yet, prophylactic IT remains unexplored despite early introduction of peanut in infancy was shown to prevent allergy. There is a need to understand how allergens interact with the immune system depending on the route of administration, and how different dosages of allergen may protect from sensitisation and a clinical active allergy. Here we compared peanut allergen delivery via the oral, sublingual (SL), intragastric (IG) and subcutaneous (SC) routes for the prevention of peanut allergy in Brown Norway (BN) rats. Methods BN rats were administered PBS or three different doses of peanut protein extract (PPE) via either oral IT (OIT), SLIT, IGIT or SCIT followed by intraperitoneal (IP) injections of PPE to assess the protection from peanut sensitisation. The development of IgE and IgG1 responses to PPE and the major peanut allergens were evaluated by ELISAs. The clinical response to PPE was assessed by an ear swelling test (EST) and proliferation was assessed by stimulating splenocytes with PPE. Results Low and medium dose OIT (1 and 10 mg) and all doses of SCIT (1, 10, 100 µg) induced sensitisation to PPE, whereas high dose OIT (100 mg), SLIT (10, 100 or 1000 µg) or IGIT (1, 10 and 100 mg) did not. High dose OIT and SLIT as well as high and medium dose IGIT prevented sensitisation from the following IP injections of PPE and suppressed PPE-specific IgE levels in a dose-dependent manner. Hence, administration of peanut protein via different routes confers different risks for sensitisation and protection from peanut allergy development. Overall, the IgE levels toward the individual major peanut allergens followed the PPE-specific IgE levels. Discussion Collectively, this study showed that the preventive effect of allergen-specific IT is determined by the interplay between the specific site of PPE delivery for presentation to the immune system, and the allergen quantity, and that targeting and modulating tolerance mechanisms at specific mucosal sites may be a prophylactic strategy for prevention of peanut allergy.
Collapse
Affiliation(s)
| | - Neil Marcus Rigby
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | - Stef J Koppelman
- Institute of Agriculture and Natural Resources, Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Ana Isabel Sancho
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Justin Marsh
- Institute of Agriculture and Natural Resources, Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Philip Johnson
- Institute of Agriculture and Natural Resources, Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Alan Robert Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | - Jeppe Madura Larsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
10
|
Pea and lentil 7S globulin crystal structures with comparative immunoglobulin epitope mapping. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 5:100146. [PMID: 36573105 PMCID: PMC9789324 DOI: 10.1016/j.fochms.2022.100146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Legumes represent an affordable high protein, nutrient dense food source. However, the vast majority of legume crops contain proteins that are known allergens for susceptible individuals. These include proteins from the 7S globulin family, which comprise a vast majority of seed storage proteins. Here, the crystal structures of 7S globulins from Pisum sativum L. (pea) and Lens culinaris Medicus (lentil) are presented for the first time, including pea vicillin and convicilin, and lentil vicilin. All three structures maintain the expected 7S globulin fold, with trimeric quaternary structure and monomers comprised of β-barrel N- and C-modules. The potential impact of sequence differences on structure and packing in the different crystal space groups is noted, with potential relevance to packing upon seed deposition. Mapping on the obtained crystal structures highlights significant Ig epitope overlap between pea, lentil, peanut and soya bean and significant coverage of the entire seed storage protein, emphasizing the challenge in addressing food allergies. How recently developed biologicals might be refined to be more effective, or how these seed storage proteins might be modified in planta to be less immuno-reactive remain challenges for the future. With legumes representing an affordable, high protein, nutrient dense food source, this work will enable important research in the context of global food security and human health on an ongoing basis.
Collapse
|
11
|
Weng BBC, Liu YC, White BL, Chang JC, Davis JP, Hsiao SH, Chiou RYY. Allergenicity reduction of the bio-elicited peanut sprout powder (BPSP) and toxicological acceptance of BPSP-supplemented diets assessed with ICR mice. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4583-4593. [PMID: 36276516 PMCID: PMC9579254 DOI: 10.1007/s13197-022-05537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 04/20/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
The allergenic and toxicological acceptances of the bio-elicited peanut sprout powder (BPSP) have not been assessed. BPSP was generated from peanut kernels germinated at 26–28 °C for 72 h (designated as 72 h-NGS). The 72 h-NGS were subsequently sliced, incubated, dried, defatted and pulverized to generate bio-elicited peanut sprout powder (BPSP). Protein solubility of BPSP increased 2.6-fold compared to 72 h-NGS. SDS-PAGE analysis revealed BPSP production triggered extensive degradation of the high-molecular weight peanut allergic proteins, mainly Ara h 1 and Ara h 3. Western blotting detected with peanut allergic patients’ IgE indicated decreased in vitro reactivity. Food safety assessment of BPSP was performed with ICR mice fed with basal (control) and three doses of formulated BPSP-supplemented diets containing 0.11 g (normal), 2.5 g (high) and 25 g (super high) BPSP /kg BW. Animals appeared healthy with steady body weight gain in all groups during the entire 35-day dietary intervention. Hematological and serum biochemical analyses revealed no significant difference among groups. Histopathological examination on the tissue sections of primary organs further supported safety with no pathologies. The in vitro allergic reduction and toxicological safety in the BPSP-supplemented dietary intervention in the ICR mice study, support moving forward with BPSP-involved product development.
Collapse
Affiliation(s)
- Brian B.-C. Weng
- Department of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, 60004 Taiwan, Republic of China
| | - Yu-Chia Liu
- Department of Food Science, National Chiayi University, Chiayi, 60004 Taiwan, Republic of China
| | - Brittany L. White
- Market Quality and Handling Research Unit, USDA ARS, North Carolina State University, Raleigh, NC 27607 USA
| | - Ju-Chun Chang
- Department of Food Science, National Chiayi University, Chiayi, 60004 Taiwan, Republic of China
| | - Jack P. Davis
- Market Quality and Handling Research Unit, USDA ARS, North Carolina State University, Raleigh, NC 27607 USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27607 USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802 USA
| | - Robin Y.-Y. Chiou
- Department of Food Science, National Chiayi University, Chiayi, 60004 Taiwan, Republic of China
| |
Collapse
|
12
|
Food Allergies: Immunosensors and Management. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Food allergies (FA) are commonly depicted as immune responses. The mechanism of allergic reactions involves immunoglobulin E (IgE) and non-immunoglobulin E (non-IgE)-related responses caused by contact with specific foods. FAs can be fatal, have negative effects and have become the subject of fanaticism in recent years. In terms of food safety, allergic compounds have become a problem. The immune response to allergens is different to that from food intolerance, pharmacological reactions, and poisoning. The most important allergenic foods are soybeans, milk, eggs, groundnuts, shellfishes, tree nuts, cereals and fish, which together are known as the “Big Eight”. This review will introduce and discuss FAs in milk, peanuts, nuts, shellfishes, eggs and wheat and their detections and potential treatments will also be provided. We believe that this review may provide important information regarding food-induced allergies for children who have allergic reactions and help them avoid the allergenic food in the future.
Collapse
|
13
|
Kanchan K, Grinek S, Bahnson HT, Ruczinski I, Shankar G, Larson D, Du Toit G, Barnes KC, Sampson HA, Suarez-Farinas M, Lack G, Nepom GT, Cerosaletti K, Mathias RA. HLA alleles and sustained peanut consumption promote IgG4 responses in subjects protected from peanut allergy. J Clin Invest 2022; 132:e152070. [PMID: 34981778 PMCID: PMC8718139 DOI: 10.1172/jci152070] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022] Open
Abstract
We investigated the interplay between genetics and oral peanut protein exposure in the determination of the immunological response to peanut using the targeted intervention in the LEAP clinical trial. We identified an association between peanut-specific IgG4 and HLA-DQA1*01:02 that was only observed in the presence of sustained oral peanut protein exposure. The association between IgG4 and HLA-DQA1*01:02 was driven by IgG4 specific for the Ara h 2 component. Once peanut consumption ceased, the association between IgG4-specific Ara h 2 and HLA-DQA1*01:02 was attenuated. The association was validated by observing expanded IgG4-specific epitopes in people who carried HLA-DQA1*01:02. Notably, we confirmed the previously reported associations with HLA-DQA1*01:02 and peanut allergy risk in the absence of oral peanut protein exposure. Interaction between HLA and presence or absence of exposure to peanut in an allergen- and epitope-specific manner implicates a mechanism of antigen recognition that is fundamental to driving immune responses related to allergy risk or protection.
Collapse
Affiliation(s)
- Kanika Kanchan
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stepan Grinek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Henry T. Bahnson
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- The Immune Tolerance Network, Bethesda, Maryland, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gautam Shankar
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - David Larson
- The Immune Tolerance Network, Bethesda, Maryland, USA
| | - George Du Toit
- The Department of Pediatric Allergy, Division of Asthma, Allergy and Lung Biology, King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Kathleen C. Barnes
- The Department of Medicine, University of Colorado, Anschutz, Colorado, USA
| | | | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gideon Lack
- The Department of Pediatric Allergy, Division of Asthma, Allergy and Lung Biology, King’s College London, and Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- The Immune Tolerance Network, Bethesda, Maryland, USA
| | - Karen Cerosaletti
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Rasika A. Mathias
- Division of Allergy and Clinical Immunology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Üzülmez Ö, Kalic T, Mayr V, Lengger N, Tscheppe A, Radauer C, Hafner C, Hemmer W, Breiteneder H. The Major Peanut Allergen Ara h 2 Produced in Nicotiana benthamiana Contains Hydroxyprolines and Is a Viable Alternative to the E. Coli Product in Allergy Diagnosis. FRONTIERS IN PLANT SCIENCE 2021; 12:723363. [PMID: 34671372 PMCID: PMC8522509 DOI: 10.3389/fpls.2021.723363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/17/2021] [Indexed: 05/12/2023]
Abstract
Peanut allergy is a potentially life-threatening disease that is mediated by allergen-specific immunoglobulin E (IgE) antibodies. The major peanut allergen Ara h 2, a 2S albumin seed storage protein, is one of the most dangerous and potent plant allergens. Ara h 2 is posttranslationally modified to harbor four disulfide bridges and three hydroxyprolines. These hydroxyproline residues are required for optimal IgE-binding to the DPYSPOHS motifs representing an immunodominant IgE epitope. So far, recombinant Ara h 2 has been produced in Escherichia coli, Lactococcus lactis, Trichoplusia ni insect cell, and Chlamydomonas reinhardtii chloroplast expression systems, which were all incapable of proline hydroxylation. However, molecular diagnosis of peanut allergy is performed using either natural or E. coli-produced major peanut allergens. As IgE from the majority of patients is directed to Ara h 2, it is of great importance that the recombinant Ara h 2 harbors all of its eukaryotic posttranslational modifications. We produced hydroxyproline-containing and correctly folded Ara h 2 in the endoplasmic reticulum of leaf cells of Nicotiana benthamiana plants, using the plant virus-based magnICON® transient expression system with a yield of 200 mg/kg fresh biomass. To compare prokaryotic with eukaryotic expression methods, Ara h 2 was expressed in E. coli together with the disulfide-bond isomerase DsbC and thus harbored disulfide bridges but no hydroxyprolines. The recombinant allergens from N. benthamiana and E. coli were characterized and compared to the natural Ara h 2 isolated from roasted peanuts. Natural Ara h 2 outperformed both recombinant proteins in IgE-binding and activation of basophils via IgE cross-linking, the latter indicating the potency of the allergen. Interestingly, significantly more efficient IgE cross-linking by the N. benthamiana-produced allergen was observed in comparison to the one induced by the E. coli product. Ara h 2 from N. benthamiana plants displayed a higher similarity to the natural allergen in terms of basophil activation due to the presence of hydroxyproline residues, supporting so far published data on their contribution to the immunodominant IgE epitope. Our study advocates the use of N. benthamiana plants instead of prokaryotic expression hosts for the production of the major peanut allergen Ara h 2.
Collapse
Affiliation(s)
- Öykü Üzülmez
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| | - Vanessa Mayr
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Nina Lengger
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Angelika Tscheppe
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christian Radauer
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
- Karl Landsteiner Institute for Dermatological Research, St. Pölten, Austria
| | | | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Shelver WL, McGarvey AM, Yeater KM. Performance of allergen testing in a survey of frozen meals and meals ready-to-eat (MREs). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1249-1259. [PMID: 34014811 DOI: 10.1080/19440049.2021.1914870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/28/2021] [Indexed: 01/29/2023]
Abstract
A 7-plex immunoassay capable of detecting cashew, egg, hazelnut, milk, peanut, shrimp, and soy allergens was used to screen meals ready-to-eat (MREs) and frozen meals that contained meat or poultry. The same food matrices were also evaluated using single individual allergen immunoassays. Multiplex and single allergen test results were compared with the allergen declared on the food label, which was considered the standard. For both the frozen meals (n = 113) and MREs (n = 24) each analytical method failed to detect allergens that were declared on product labels, but only in frozen meals were allergens detected that were not declared on the label. Undeclared allergens were detected for egg in 1.8% (2/113) and for soy in 7.1% (8/113) of frozen meals. Labelled allergens were not detected in 0.9% (1/113) of milk, 4.4% (5/113) of egg, and 15% (17/113) of soy allergens in frozen meals. Assay performance for evaluating allergens in MREs was poor.
Collapse
Affiliation(s)
- Weilin L Shelver
- USDA Agricultural Research Service, Biosciences Research Laboratory, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, U.S.A
| | - Amy M McGarvey
- USDA Agricultural Research Service, Biosciences Research Laboratory, Edward T. Schafer Agricultural Research Center, Fargo, North Dakota, U.S.A
| | - Kathleen M Yeater
- Plains Area Administrative Office, USDA Agricultural Research Service, Fort Collins, Colorado, U.S.A
| |
Collapse
|
16
|
Freitas M, Neves MMPS, Nouws HPA, Delerue-Matos C. Electrochemical Immunosensor for the Simultaneous Determination of Two Main Peanut Allergenic Proteins (Ara h 1 and Ara h 6) in Food Matrices. Foods 2021; 10:1718. [PMID: 34441496 PMCID: PMC8391283 DOI: 10.3390/foods10081718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/22/2023] Open
Abstract
Efficiently detecting peanut traces in food products can prevent severe allergic reactions and serious health implications. This work presents the development of an electrochemical dual immunosensor for the simultaneous analysis of two major peanut allergens, Ara h 1 and Ara h 6, in food matrices. A sandwich immunoassay was performed on a dual working screen-printed carbon electrode using monoclonal antibodies. The antibody-antigen interaction was detected by linear sweep voltammetry through the oxidation of enzymatically deposited silver, which was formed by using detection antibodies labeled with alkaline phosphatase and a 3-indoxyl phosphate/silver nitrate mixture as the enzymatic substrate. The assay time was 2 h 20 min, with a hands-on time of 30 min, and precise results and low limits of detection were obtained (Ara h 1: 5.2 ng·mL-1; Ara h 6: 0.017 ng·mL-1). The selectivity of the method was confirmed through the analysis of other food allergens and ingredients (e.g., hazelnut, soybean and lupin). The dual sensor was successfully applied to the analysis of several food products and was able to quantify the presence of peanuts down to 0.05% (w/w). The accuracy of the results was confirmed through recovery studies and by comparison with an enzyme-linked immunosorbent assay. Tracking food allergens is of utmost importance and can be performed using the present biosensor in a suitable and practical way.
Collapse
Affiliation(s)
- Maria Freitas
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (M.F.); (M.M.P.S.N.); (C.D.-M.)
| | - Marta M. P. S. Neves
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (M.F.); (M.M.P.S.N.); (C.D.-M.)
- Department of Chemistry, Institute of Advanced Study, University of Warwick, Coventry CV4 7AL, UK
| | - Henri P. A. Nouws
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (M.F.); (M.M.P.S.N.); (C.D.-M.)
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (M.F.); (M.M.P.S.N.); (C.D.-M.)
| |
Collapse
|
17
|
Apostolovic D, Marsh JT, Baumert J, Taylor SL, Westphal A, de Jongh H, Johnson P, de Jong GAH, Koppelman SJ. Purification and Initial Characterization of Ara h 7, a Peanut Allergen from the 2S Albumin Protein Family. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6318-6329. [PMID: 34037388 DOI: 10.1021/acs.jafc.1c00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
2S albumins are important peanut allergens. Within this protein family, Ara h 2 and Ara h 6 have been described in detail, but Ara h 7 has received little attention. We now describe the first purification of Ara h 7 and its characterization. Two Ara h 7 isoforms were purified from peanuts. Mass spectrometry revealed that both the isoforms have a post-translation cleavage, a hydroxyproline modification near the N-terminus, and four disulfide bonds. The secondary structure of both Ara h 7 isoforms is highly comparable to those of Ara h 2 and Ara h 6. Both Ara h 7 isoforms bind IgE, and Ara h 7 is capable of inhibiting the binding between Ara h 2 and IgE, suggesting at least partially cross-reactive IgE epitopes. Ara h 7 was found in all main market types of peanut, at comparable levels. This suggests that Ara h 7 is a relevant allergen from the peanut 2S albumin protein family.
Collapse
Affiliation(s)
- Danijela Apostolovic
- Immunology and Allergy Division, Department of Medicine Solna, Karolinska Institutet, Solnavägen 1, 171 77 Solna, Sweden
| | - Justin T Marsh
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Joe Baumert
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Steve L Taylor
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Adrie Westphal
- Biochemistry Dept., Wageningen University and Research, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Harmen de Jongh
- ProtinConsult, Rozenstraat 19, 3702 VL Zeist, The Netherlands
| | - Phil Johnson
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| | - Govardus A H de Jong
- Wageningen University and Research, Food and Biobased Research. PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Stef J Koppelman
- Food Allergy Research and Resource Program, Department of Food Science & Technology, University of Nebraska, 279 Food Innovation Center, Lincoln, Nebraska 68588-6207, United States
| |
Collapse
|
18
|
Ariaee N, Sankian M, Varasteh A, Moghadam M, Jabbari F. Introducing a Stabilizer Formulation for Allergenic Mold Extracts. Rep Biochem Mol Biol 2020; 9:106-114. [PMID: 32821758 DOI: 10.29252/rbmb.9.1.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Sensitization to common mold allergens is one of the major causes of allergic rhinitis and asthma. Therefore, there is a critical need for standard sensitivity tests including skin prick tests to improve the stability of fungi extracts in traditional allergenic formulations. To address this concern, the present study aimed to develop a formulation to preserve allergenic activity of mold extracts. Methods 48 stabilizer formulations were designed and monitored for allergenic activity during a 40-days incubation period at 37 °C using an ELISA. Specifically, the IgE reactivity of allergenic A. alternata extracts were examined. After establishing the most effective stabilizer formulation, we evaluated whether it could protect the allergenic activity of Alt a1, A. fumigatus, and C. herbarum using an IgE inhibition ELISA after 40 days at 37 °C. Results We demonstrated that the most effective stabilizer formulation was a glycerol-based extract containing Arg and Glu. This formulation had an equal ratio of sucrose, sorbitol and protein and was able to preserve more than 95% of allergenic A. alternata extract activity during a 40-days incubation period at 37 °C. Conclusion The present study reveals a novel formulation that is an efficient stabilizer of allergenic mold extract activity and has practical applications in mold skin prick tests, ELISAs, immunotherapies, and RAST.
Collapse
Affiliation(s)
- Nazila Ariaee
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Varasteh
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Moghadam
- Immunology Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahzad Jabbari
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Bonku R, Yu J. Health aspects of peanuts as an outcome of its chemical composition. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2019.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Di Stasio L, Tranquet O, Picariello G, Ferranti P, Morisset M, Denery-Papini S, Mamone G. Comparative analysis of eliciting capacity of raw and roasted peanuts: the role of gastrointestinal digestion. Food Res Int 2020; 127:108758. [DOI: 10.1016/j.foodres.2019.108758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/06/2023]
|
21
|
Hilu KW, Friend SA, Vallanadu V, Brown AM, Hollingsworth LR, Bevan DR. Molecular evolution of genes encoding allergen proteins in the peanuts genus Arachis: Structural and functional implications. PLoS One 2019; 14:e0222440. [PMID: 31675366 PMCID: PMC6824556 DOI: 10.1371/journal.pone.0222440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/29/2019] [Indexed: 12/14/2022] Open
Abstract
Food allergies are severe immune responses to plant and animal products mediated by immunoglobulin E (IgE). Peanuts (Arachis hypogaea L.) are among the top 15 crops that feed the world. However, peanuts is among the "big eight food allergens", and allergies induced by peanuts are a significant public health problem and a life-threatening concern. Targeted mutation studies in peanuts demonstrate that single residue alterations in these allergen proteins could result in substantial reduction in allergenicity. Knowledge of peanut allergen proteins is confined to the allotetraploid crop and its two progenitors. We explored frequencies and positions of natural mutations in the hyperallergenic homologues Ara h 2 and Ara h 6 in newly generated sequences for 24 Arachis wild species and the crop species, assessed potential mutational impact on allergenicity using immunoblots and structural modeling, and evaluated whether these mutations follow evolutionary trends. We uncovered a wealth of natural mutations, both substitutions and gaps, including the elimination of immunodominant epitopes in some species. These molecular alterations appear to be associated with substantial reductions in allergenicity. The study demonstrated that Ara h 2 and Ara h 6 follow contrasting modes of natural selection and opposing mutational patterns, particularly in epitope regions. Phylogenetic analysis revealed a progressive trend towards immunodominant epitope evolution in Ara h 2. The findings provide valuable insight into the interactions among mutations, protein structure and immune system response, thus presenting a valuable platform for future manipulation of allergens to minimize, treat or eliminate allergenicity. The study strongly encourages exploration of genepools of economically important plants in allergenicity research.
Collapse
Affiliation(s)
- Khidir W. Hilu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Sheena A. Friend
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Viruthika Vallanadu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States of America
| | - Anne M. Brown
- Research and Informatics, Virginia Tech, Blacksburg, VA, United States of America
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| | | | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
22
|
Tscheppe A, Palmberger D, van Rijt L, Kalic T, Mayr V, Palladino C, Kitzmüller C, Hemmer W, Hafner C, Bublin M, van Ree R, Grabherr R, Radauer C, Breiteneder H. Development of a novel Ara h 2 hypoallergen with no IgE binding or anaphylactogenic activity. J Allergy Clin Immunol 2019; 145:229-238. [PMID: 31525384 PMCID: PMC7100897 DOI: 10.1016/j.jaci.2019.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/31/2019] [Accepted: 08/16/2019] [Indexed: 02/03/2023]
Abstract
Background To date, no safe allergen-specific immunotherapy for patients with peanut allergy is available. Previous trials were associated with severe side effects. Objective We sought to determine the relative importance of conformational and linear IgE-binding epitopes of the major peanut allergen Ara h 2 and to produce a hypoallergenic variant with abolished anaphylactogenic activity. Methods Wild-type Ara h 2 and a mutant lacking the loops containing linear IgE epitopes were produced in insect cells. Conformational IgE epitopes were removed by unfolding these proteins through reduction and alkylation. IgE binding was tested by means of ELISA with sera from 48 Ara h 2–sensitized patients with peanut allergy. Basophil activation and T-cell proliferation were tested with blood samples from selected patients. Anaphylactogenic potency was tested by using intraperitoneal challenge of mice sensitized intragastrically to peanut extract. Results Patients’ IgE recognized conformational and linear epitopes in a patient-specific manner. The unfolded mutant lacking both types of epitopes displayed significantly lower IgE binding (median ELISA OD, 0.03; interquartile range, 0.01-0.06) than natural Ara h 2 (median ELISA OD, 0.99; interquartile range, 0.90-1.03; P < .01). Basophil activation by unfolded mutant Ara h 2 was low (median area under the curve, 72 vs 138 for native wild-type Ara h 2; P < .05), but its ability to induce T-cell proliferation was retained. Unfolded mutants without conformational epitopes did not induce anaphylaxis in peanut-sensitized mice. Conclusions By removing conformational and linear IgE epitopes, a hypoallergenic Ara h 2 mutant with abolished IgE binding and anaphylactogenic potency but retained T-cell activation was generated.
Collapse
Affiliation(s)
- Angelika Tscheppe
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dieter Palmberger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Leonie van Rijt
- Department of Experimental Immunology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tanja Kalic
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vanessa Mayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Chiara Palladino
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claudia Kitzmüller
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Christine Hafner
- Department of Dermatology, University Hospital St Pölten, Karl Landsteiner University of Health Sciences, St Pölten, and the Karl Landsteiner Institute for Dermatological Research, St Pölten, Austria
| | - Merima Bublin
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Otorhinolaryngology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Radauer
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Heimo Breiteneder
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Epicutaneous immunotherapy for peanut allergy modifies IgG4 responses to major peanut allergens. J Allergy Clin Immunol 2019; 143:1218-1221.e4. [DOI: 10.1016/j.jaci.2018.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 11/20/2022]
|
24
|
|
25
|
de Jong GAH, Jayasena S, Johnson P, Marsh J, Apostolovic D, van Hage M, Nordlee J, Baumert J, Taylor SL, Roucairol C, de Jongh H, Koppelman SJ. Purification and Characterization of Naturally Occurring Post-Translationally Cleaved Ara h 6, an Allergen That Contributes Substantially to the Allergenic Potency of Peanut. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10855-10863. [PMID: 30284821 DOI: 10.1021/acs.jafc.8b03140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The 2S albumin Ara h 6 is one of the most important peanut allergens. A post-translationally cleaved Ara h 6 (pAra h 6) was purified from Virginia type peanuts, and the cleavage site was mapped using high-resolution mass spectrometry. Compared to intact Ara h 6, pAra h 6 lacks a 5-amino acid stretch, resembling amino acids 43-47 (UniProt accession number Q647G9) in the nonstructured loop. Consequently, pAra h 6 consists of two chains: an N-terminal chain of approximately 5 kDa and a C-terminal chain of approximately 9 kDa, held together by disulfide bonds. Intermediate post-translationally cleaved products, in which this stretch is cleaved yet still attached to one of the subunits, are also present. The secondary structure and immunoglobulin E (IgE) binding of pAra h 6 resembles that of intact Ara h 6, indicating that the loss of the nonstructured loop is not critical for maintaining the protein structure. Commercially available monoclonal and polyclonal immunoglobulin G (IgG) antibodies directed to Ara h 6 react with both intact Ara h 6 and pAra h 6, suggesting that the involved epitopes are not located in the area that is post-translationally cleaved. No differences between intact Ara h 6 and pAra h 6 in terms of IgE binding were found, suggesting that the area that is post-translationally cleaved is not involved in IgE epitopes either. For all main cultivars Runner, Virginia, Valencia, and Spanish, intact Ara h 6 and pAra h 6 occur in peanut at similar levels, indicating that pAra h 6 is a consistent and important contributor to the allergenic potency of peanut.
Collapse
Affiliation(s)
| | - Shyamali Jayasena
- Food Allergy Research and Resource Program, Department of Food Science & Technology , University of Nebraska , 279 Food Innovation Center , Lincoln , Nebraska 68588-6207 , United States
| | - Phil Johnson
- Food Allergy Research and Resource Program, Department of Food Science & Technology , University of Nebraska , 279 Food Innovation Center , Lincoln , Nebraska 68588-6207 , United States
| | - Justin Marsh
- Food Allergy Research and Resource Program, Department of Food Science & Technology , University of Nebraska , 279 Food Innovation Center , Lincoln , Nebraska 68588-6207 , United States
| | - Danijela Apostolovic
- Immunology and Allergy Unit, Department of Medicine Solna , Karolinska Institutet , 171 77 Stockholm , Sweden
| | - Marianne van Hage
- Immunology and Allergy Unit, Department of Medicine Solna , Karolinska Institutet , 171 77 Stockholm , Sweden
| | - Julie Nordlee
- TNO , Utrechtseweg 48 , 3704 HE , Zeist , The Netherlands
| | - Joe Baumert
- TNO , Utrechtseweg 48 , 3704 HE , Zeist , The Netherlands
| | - Steve L Taylor
- TNO , Utrechtseweg 48 , 3704 HE , Zeist , The Netherlands
| | - Camille Roucairol
- DBV Technologies , Development Department , 92120 Montrouge , France
| | | | - Stef J Koppelman
- Food Allergy Research and Resource Program, Department of Food Science & Technology , University of Nebraska , 279 Food Innovation Center , Lincoln , Nebraska 68588-6207 , United States
| |
Collapse
|
26
|
Nordengrün M, Michalik S, Völker U, Bröker BM, Gómez-Gascón L. The quest for bacterial allergens. Int J Med Microbiol 2018; 308:738-750. [DOI: 10.1016/j.ijmm.2018.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
|
27
|
Smeekens JM, Bagley K, Kulis M. Tree nut allergies: Allergen homology, cross-reactivity, and implications for therapy. Clin Exp Allergy 2018; 48:762-772. [PMID: 29700869 DOI: 10.1111/cea.13163] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tree nut allergy is a potentially life-threatening disease that is increasing in prevalence, now affecting 1% of the general population in the United States. While other food allergies often resolve spontaneously, tree nut allergies are outgrown in less than 10% of cases. Due to the likelihood of cross-sensitization to multiple tree nut allergens, the current treatment guideline is strict avoidance of all nuts once one tree nut allergy has been diagnosed. For example, walnut and pecan are highly cross-reactive, along with cashew and pistachio, but the extent of clinical, IgE-mediated cross-reactivity among other tree nuts remains unclear, therefore making avoidance of all tree nuts a safe approach. There have been recent advances in immunotherapy for food allergies. For instance, there are investigational immunotherapies for milk, egg and peanut allergies, specifically oral immunotherapy, sublingual immunotherapy and epicutaneous immunotherapy. However, there are no large randomized controlled clinical trials for tree nut allergies. Even though there has been less research into tree nut allergy immunotherapies, the evidence of T-cell cross-reactivity among tree nuts exists in animal models and in T cells from allergic patients indicates that immunotherapeutic interventions may be possible. Here, we review the literature regarding epidemiology, allergen homology and cross-reactivity among tree nuts, and explore how current findings can be employed for effective therapy.
Collapse
Affiliation(s)
- J M Smeekens
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC, USA.,UNC Food Allergy Initiative, Chapel Hill, NC, USA
| | - K Bagley
- Profectus Biosciences, Baltimore, MD, USA
| | - M Kulis
- Department of Pediatrics, UNC School of Medicine, Chapel Hill, NC, USA.,UNC Food Allergy Initiative, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Aguilera-Insunza R, Venegas LF, Iruretagoyena M, Rojas L, Borzutzky A. Role of dendritic cells in peanut allergy. Expert Rev Clin Immunol 2018; 14:367-378. [PMID: 29681186 DOI: 10.1080/1744666x.2018.1467757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The prevalence of peanut allergy (PA) has increased, affecting approximately 1.1% of children in Western countries. PA causes life-threatening anaphylaxis and frequently persists for life. There are no standardized curative therapies for PA, and avoidance of peanuts remains the main therapeutic option. A better understanding of the pathogenesis of PA is essential to identify new treatment strategies. Intestinal dendritic cells (DCs) are essential in the induction and maintenance of food tolerance because they present dietary allergens to T cells, thereby directing subsequent immune responses. Areas covered: In this review, we discuss the factors related to the acquisition of oral tolerance to peanut proteins. We focus on intestinal DC-related aspects, including the latest advances in the biology of intestinal DC subtypes, effect of tolerance-inducing factors on DCs, effect of dietary components on oral tolerance, and role of DCs in peanut sensitization. Expert commentary: Given the increasing prevalence of PA, difficulty of avoiding peanut products, and the potentially serious accidental reactions, the development of novel therapies for PA is needed. The ability of DCs to trigger tolerance or immunity makes them an interesting target for new treatment strategies against PA.
Collapse
Affiliation(s)
- Raquel Aguilera-Insunza
- a Department of Immunology and Rheumatology, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Luis F Venegas
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Mirentxu Iruretagoyena
- a Department of Immunology and Rheumatology, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leticia Rojas
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Arturo Borzutzky
- b Translational Allergy and Immunology Laboratory, Department of Pediatric Infectious Diseases and Immunology , School of Medicine, Pontificia Universidad Católica de Chile , Santiago , Chile.,c Millennium Institute on Immunology and Immunotherapy, School of Medicine , Pontificia Universidad Católica de Chile , Santiago , Chile
| |
Collapse
|
29
|
Prodic I, Stanic-Vucinic D, Apostolovic D, Mihailovic J, Radibratovic M, Radosavljevic J, Burazer L, Milcic M, Smiljanic K, van Hage M, Cirkovic Velickovic T. Influence of peanut matrix on stability of allergens in gastric-simulated digesta: 2S albumins are main contributors to the IgE reactivity of short digestion-resistant peptides. Clin Exp Allergy 2018; 48:731-740. [PMID: 29412488 DOI: 10.1111/cea.13113] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/22/2017] [Accepted: 01/09/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Most food allergens sensitizing via the gastrointestinal tract are stable proteins that are resistant to pepsin digestion, in particular major peanut allergens, Ara h 2 and Ara h 6. Survival of their large fragments is essential for sensitizing capacity. However, the immunoreactive proteins/peptides to which the immune system of the gastrointestinal tract is exposed during digestion of peanut proteins are unknown. Particularly, the IgE reactivity of short digestion-resistant peptides (SDRPs; <10 kDa) released by gastric digestion under standardized and physiologically relevant in vitro conditions has not been investigated. OBJECTIVE The aim of this study was to investigate and identify digestion products of major peanut allergens and in particular to examine IgE reactivity of SDRPs released by pepsin digestion of whole peanut grains. METHODS Two-dimensional gel-based proteomics and shotgun peptidomics, immunoblotting with allergen-specific antibodies from peanut-sensitized patients, enzyme-linked immunosorbent inhibition assay and ImmunoCAP tests, including far ultraviolet-circular dichroism spectroscopy were used to identify and characterize peanut digesta. RESULTS Ara h 2 and Ara h 6 remained mostly intact, and SDRPs from Ara h 2 were more potent in inhibiting IgE binding than Ara h 1 and Ara 3. Ara h 1 and Ara h 3 exhibited sequential digestion into a series of digestion-resistant peptides with preserved allergenic capacity. A high number of identified SDRPs from Ara h 1, Ara h 2 and Ara h 3 were part of short continuous epitope sequences and possessed substantial allergenic potential. CONCLUSION AND CLINICAL RELEVANCE Peanut grain digestion by oral and gastric phase enzymes generates mixture of products, where the major peanut allergens remain intact and their digested peptides have preserved allergenic capacity highlighting their important roles in allergic reactions to peanut.
Collapse
Affiliation(s)
- I Prodic
- Faculty of Chemistry, Innovation Centre Ltd., Belgrade, Serbia
| | - D Stanic-Vucinic
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Belgrade, Serbia.,University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - D Apostolovic
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - J Mihailovic
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Belgrade, Serbia
| | - M Radibratovic
- Center for Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - J Radosavljevic
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Belgrade, Serbia.,University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia
| | - L Burazer
- Department of Allergy, Institute of Immunology, Virology and Sera Production, Torlak, Belgrade, Serbia
| | - M Milcic
- University of Belgrade - Faculty of Chemistry, Department of Inorganic Chemistry, Belgrade, Serbia.,Ghent University Global Campus, Incheon, Korea
| | - K Smiljanic
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Belgrade, Serbia
| | - M van Hage
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - T Cirkovic Velickovic
- University of Belgrade - Faculty of Chemistry, Center of Excellence for Molecular Food Sciences, Belgrade, Serbia.,University of Belgrade - Faculty of Chemistry, Department of Biochemistry, Belgrade, Serbia.,Ghent University Global Campus, Incheon, Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Uotila R, Kukkonen AK, Blom WM, Remington B, Westerhout J, Pelkonen AS, Mäkelä MJ. Component-resolved diagnostics demonstrates that most peanut-allergic individuals could potentially introduce tree nuts to their diet. Clin Exp Allergy 2018; 48:712-721. [PMID: 29377469 DOI: 10.1111/cea.13101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Nut allergy varies from pollen cross-allergy, to primary severe allergy with life-threatening symptoms. The screening of IgE antibodies to a wide spectrum of allergens, including species-specific and cross-reactive allergens, is made possible via microarray analysis. OBJECTIVE We sought to study the association of variable IgE sensitization profiles to clinical response in peanut-challenged children and adolescents in a birch-endemic region. In addition, we studied the avoidance of tree nuts and species-specific sensitizations. METHODS We studied 102 peanut-sensitized patients who underwent a double-blind placebo-controlled challenge to peanut. We analysed ISAC ImmunoCAP microarray to 112 allergens, singleplex ImmunoCAPs for hazelnut Cor a 14 and cashew Ana o 3, and performed skin prick tests to peanut, tree nuts and sesame seed. We surveyed avoidance diets with a questionnaire. RESULTS Sensitization to PR-10 proteins was frequent (Bet v 1 90%), but equally high in the challenge negatives and positives. IgE to Ara h 2 and Ara h 6 discriminated peanut allergic (n = 69) and tolerant (n = 33) the best. Avoidance of tree nuts was common (52% to 96%), but only 6% to 44% presented species-specific sensitizations to tree nuts, so a great number could potentially introduce these species into their diet. CONCLUSIONS AND CLINICAL RELEVANCE PR-10-sensitizations were frequent and strong regardless of peanut allergy status. Component-resolved diagnostics can be employed to demonstrate to patients that sensitization to seed storage proteins of tree nuts is uncommon. Several tree nuts could potentially be reintroduced to the diet.
Collapse
Affiliation(s)
- R Uotila
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki, Finland
| | - A K Kukkonen
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki, Finland
| | - W M Blom
- The Netherlands Organisation for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - B Remington
- The Netherlands Organisation for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - J Westerhout
- The Netherlands Organisation for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - A S Pelkonen
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki, Finland
| | - M J Mäkelä
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland.,Skin and Allergy Hospital, Helsinki, Finland
| |
Collapse
|
31
|
Koeberl M, Sharp MF, Tian R, Buddhadasa S, Clarke D, Roberts J. Lupine allergen detecting capability and cross-reactivity of related legumes by ELISA. Food Chem 2018; 256:105-112. [PMID: 29606424 DOI: 10.1016/j.foodchem.2018.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/25/2018] [Accepted: 02/08/2018] [Indexed: 01/01/2023]
Abstract
Lupine belongs to the genus Lupinus and includes three species commonly consumed by humans. The Lupinus genus is closely related to other legumes, such as peanuts, soya, chickpeas, peas, lentils and beans. However, the consumption of lupine (and related legumes) can cause severe allergenic reactions. Therefore, reliable analytical detection methods are required for the analysis of food samples. In this study three commercially available ELISA test kits were analyzed for the detection capability of three common lupine species, as well as cross-reactivity to related legumes. All three ELISA test kits could detect the lupine species, though with different sensitivities. Cross-reactivity varied for the ELISA test kits and all showed some cross-reactivity to related legume samples analyzed.
Collapse
Affiliation(s)
- Martina Koeberl
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC, 3207 Melbourne, Australia.
| | - Michael F Sharp
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC, 3207 Melbourne, Australia.
| | - Rongkai Tian
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC, 3207 Melbourne, Australia; Chemical and Biomedical Engineering, University of Melbourne, Grattan Street, Parkville, VIC, 3010 Melbourne, Australia
| | - Saman Buddhadasa
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC, 3207 Melbourne, Australia.
| | - Dean Clarke
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC, 3207 Melbourne, Australia.
| | - James Roberts
- National Measurement Institute, 1/153 Bertie Street, Port Melbourne, VIC, 3207 Melbourne, Australia.
| |
Collapse
|
32
|
Shen M, Joshi AA, Vannam R, Dixit CK, Hamilton RG, Kumar CV, Rusling JF, Peczuh MW. Epitope-Resolved Detection of Peanut-Specific IgE Antibodies by Surface Plasmon Resonance Imaging. Chembiochem 2018; 19:199-202. [PMID: 29232483 PMCID: PMC5965296 DOI: 10.1002/cbic.201700513] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 12/19/2022]
Abstract
Peanut allergy can be life-threatening and is mediated by allergen-specific immunoglobulin E (IgE) antibodies. Investigation of IgE antibody binding to allergenic epitopes can identify specific interactions underlying the allergic response. Here, we report a surface plasmon resonance imaging (SPRi) immunoassay for differentiating IgE antibodies by epitope-resolved detection. IgE antibodies were first captured by magnetic beads bearing IgE ϵ-chain-specific antibodies and then introduced into an SPRi array immobilized with epitopes from the major peanut allergen glycoprotein Arachis hypogaea h2 (Ara h2). Differential epitope responses were achieved by establishing a binding environment that minimized cross-reactivity while maximizing analytical sensitivity. IgE antibody binding to each Ara h2 epitope was distinguished and quantified from patient serum samples (10 μL each) in a 45 min assay. Excellent correlation of Ara h2-specific IgE values was found between ImmunoCAP assays and the new SPRi method.
Collapse
Affiliation(s)
- Min Shen
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Amit A Joshi
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Raghu Vannam
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Chandra K Dixit
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Robert G Hamilton
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Challa V Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, 06032, USA
| | - Mark W Peczuh
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
33
|
Affiliation(s)
- Ondulla T. Toomer
- United States Department of Agriculture-Agricultural Research Service, Market Quality and Handling Research Unit, Raleigh, NC, USA
| |
Collapse
|
34
|
|
35
|
Identification of a common Ara h 3 epitope recognized by both the capture and the detection monoclonal antibodies in an ELISA detection kit. PLoS One 2017; 12:e0182935. [PMID: 28800361 PMCID: PMC5553815 DOI: 10.1371/journal.pone.0182935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 07/21/2017] [Indexed: 11/30/2022] Open
Abstract
Allergy to peanuts has become a common and severe problem, especially in westernized countries. In this study, we evaluated the target and epitope specificity of the capture and detection mouse monoclonal antibodies (mAbs) used in a commercial peanut allergen detection platform. We first identified the target of these antibodies as Ara h 3 and then used an overlapping peptide array of Ara h 3 to determine the antibody-binding epitopes. Further amino acids critical for the binding via alanine substitutions at individual amino acid residues within the epitope were mapped. Finally, inhibition ELISA and inhibition immunoblotting using a recombinant Ara h 3 protein were performed to confirm these results. Surprisingly, the capture and detection mAbs showed identical binding characteristics and were presumed to represent two isolates of the same clone, a notion supported by both isoelectric focusing electrophoresis and Liquid chromatography–mass spectrometry experiments. The simultaneous binding of a pair of identical mAbs to an individual allergen such as Ara h3 is attributed to the multivalency of the analyte and has implications for developing diagnostic assays for additional multimeric allergens.
Collapse
|
36
|
JanssenDuijghuijsen LM, van Norren K, Grefte S, Koppelman SJ, Lenaerts K, Keijer J, Witkamp RF, Wichers HJ. Endurance Exercise Increases Intestinal Uptake of the Peanut Allergen Ara h 6 after Peanut Consumption in Humans. Nutrients 2017; 9:nu9010084. [PMID: 28117717 PMCID: PMC5295128 DOI: 10.3390/nu9010084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 11/16/2022] Open
Abstract
Controlled studies on the effect of exercise on intestinal uptake of protein are scarce and underlying mechanisms largely unclear. We studied the uptake of the major allergen Ara h 6 following peanut consumption in an exercise model and compared this with changes in markers of intestinal permeability and integrity. Ten overnight-fasted healthy non-allergic men (n = 4) and women (n = 6) (23 ± 4 years) ingested 100 g of peanuts together with a lactulose/rhamnose (L/R) solution, followed by rest or by 60 min cycling at 70% of their maximal workload. Significantly higher, though variable, levels of Ara h 6 in serum were found during exercise compared to rest (Peak p = 0.03; area under the curve p = 0.006), with individual fold changes ranging from no increase to an increase of over 150-fold in the uptake of Ara h 6. Similarly, uptake of lactulose (2–18 fold change, p = 0.0009) and L/R ratios (0.4–7.9 fold change, p = 0.04) were significantly increased which indicates an increase in intestinal permeability. Intestinal permeability and uptake of Ara h 6 were strongly correlated (r = 0.77, p < 0.0001 for lactulose and Ara h 6). Endurance exercise after consumption may lead to increased paracellular intestinal uptake of food proteins.
Collapse
Affiliation(s)
- Lonneke M JanssenDuijghuijsen
- Wageningen Food and Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- Nutrition and Pharmacology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- Human and Animal Physiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Klaske van Norren
- Nutrition and Pharmacology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
- Nutricia Research, P.O. Box 80141, 3508 TC Utrecht, The Netherlands.
| | - Sander Grefte
- Human and Animal Physiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Stef J Koppelman
- Food Allergy Research and Resource Program, Food Science and Technology, University of Nebraska-Lincoln, Rm 279 Food Innovation Center, P.O. Box 886207, Lincoln, NE 68588-6207, USA.
| | - Kaatje Lenaerts
- Maastricht University Medical Centre, Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger F Witkamp
- Nutrition and Pharmacology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Harry J Wichers
- Wageningen Food and Biobased Research, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
37
|
Vasilescu A, Nunes G, Hayat A, Latif U, Marty JL. Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens. SENSORS (BASEL, SWITZERLAND) 2016; 16:E1863. [PMID: 27827963 PMCID: PMC5134522 DOI: 10.3390/s16111863] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 10/24/2016] [Accepted: 10/31/2016] [Indexed: 01/04/2023]
Abstract
Food allergens are proteins from nuts and tree nuts, fish, shellfish, wheat, soy, eggs or milk which trigger severe adverse reactions in the human body, involving IgE-type antibodies. Sensitive detection of allergens in a large variety of food matrices has become increasingly important considering the emergence of functional foods and new food manufacturing technologies. For example, proteins such as casein from milk or lysozyme and ovalbumin from eggs are sometimes used as fining agents in the wine industry. Nonetheless, allergen detection in processed foods is a challenging endeavor, as allergen proteins are degraded during food processing steps involving heating or fermentation. Detection of food allergens was primarily achieved via Enzyme-Linked Immuno Assay (ELISA) or by chromatographic methods. With the advent of biosensors, electrochemical affinity-based biosensors such as those incorporating antibodies and aptamers as biorecognition elements were also reported in the literature. In this review paper, we highlight the success achieved in the design of electrochemical affinity biosensors based on disposable screen-printed electrodes towards detection of protein allergens. We will discuss the analytical figures of merit for various disposable screen-printed affinity sensors in relation to methodologies employed for immobilization of bioreceptors on transducer surface.
Collapse
Affiliation(s)
- Alina Vasilescu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, sector 6, 060101 Bucharest, Romania.
| | - Gilvanda Nunes
- Technological Chemistry Department, Federal University of Maranhão, CCET/UFMA, Av. Portugueses, Cidade Universitária do Canga, 65080-040 São Luis, MA, Brazil.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT), 54000 Lahore, Pakistan.
| | - Usman Latif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (CIIT), 54000 Lahore, Pakistan.
| | - Jean-Louis Marty
- BAE Laboratory, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan, France.
| |
Collapse
|
38
|
Conformational stability of digestion-resistant peptides of peanut conglutins reveals the molecular basis of their allergenicity. Sci Rep 2016; 6:29249. [PMID: 27377129 PMCID: PMC4932508 DOI: 10.1038/srep29249] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
Conglutins represent the major peanut allergens and are renowned for their resistance to gastro-intestinal digestion. Our aim was to characterize the digestion-resistant peptides (DRPs) of conglutins by biochemical and biophysical methods followed by a molecular dynamics simulation in order to better understand the molecular basis of food protein allergenicity. We have mapped proteolysis sites at the N- and C-termini and at a limited internal segment, while other potential proteolysis sites remained unaffected. Molecular dynamics simulation showed that proteolysis only occurred in the vibrant regions of the proteins. DRPs appeared to be conformationally stable as intact conglutins. Also, the overall secondary structure and IgE-binding potency of DRPs was comparable to that of intact conglutins. The stability of conglutins toward gastro-intestinal digestion, combined with the conformational stability of the resulting DRPs provide conditions for optimal exposure to the intestinal immune system, providing an explanation for the extraordinary allergenicity of peanut conglutins.
Collapse
|
39
|
Astuti RM, Palupi NS, Zakaria FR. Allergic reactivity of bambara groundnut ( Vigna subterranea) proteins. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2015.1129601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
40
|
Koppelman SJ. Reply to letter to the Editor. Food Chem Toxicol 2016; 92:257. [DOI: 10.1016/j.fct.2016.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Allergenicity attributes of different peanut market types. Food Chem Toxicol 2016; 91:82-90. [DOI: 10.1016/j.fct.2016.02.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/28/2016] [Accepted: 02/19/2016] [Indexed: 11/20/2022]
|
42
|
Kukkonen AK, Pelkonen AS, Mäkinen-Kiljunen S, Voutilainen H, Mäkelä MJ. Ara h 2 and Ara 6 are the best predictors of severe peanut allergy: a double-blind placebo-controlled study. Allergy 2015; 70:1239-45. [PMID: 26095653 DOI: 10.1111/all.12671] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Component-resolved diagnostics offers a modern tool in peanut allergy, but studies applying consistently double-blind placebo-controlled challenges are lacking. We aimed to optimize diagnostics for moderate-to-severe peanut allergy in a birch-endemic region and to create an oral-peanut challenge with its allergen activity characterized. METHODS We performed double-blind placebo-controlled peanut challenges for a referred sample of 6- to 18-year-olds with peanut sensitization or a high suspicion of peanut allergy, including anaphylaxis. We measured specific IgE (sIgE) to Ara h 1, 2, 3, 6, 8, and 9. Testing of allergen activity of the challenge products was by IgE microarray inhibition. RESULTS Of the 102 patients, 69 were challenge positive: 25 (36%) had severe, 36 (52%) moderate, and 8 (12%) mild symptoms; 38 (37%) received adrenalin. SIgE to Ara h 6 AUC 0.98 (95%CI, 0.96-1.00) was the best marker of moderate-to-severe allergy. When sIgE to Ara h 2 and Ara h 6 was measured together, all (100%) severe reactions at low doses were successfully diagnosable. SIgE to Ara h 8 had no diagnostic value, AUC 0.42 (95%CI, 0.30-0.52). Both nonroasted and roasted peanut inhibited 100% of IgE binding to Ara h 1, 2, 3, and 6. Nonroasted peanut inhibited 87% of IgE binding to Ara h 8, roasted inhibited 30%. The products lacked Ara h 9 activity. CONCLUSION Co-sensitization to Ara h 2 and Ara h 6 was associated with severe reactions distinguishing severe allergy from mild symptoms. SIgE to Ara h 8 added no diagnostic value. Component-resolved diagnostics reduce the need for oral challenges in peanut allergy.
Collapse
Affiliation(s)
- A. K. Kukkonen
- The Skin and Allergy Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - A. S. Pelkonen
- The Skin and Allergy Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - S. Mäkinen-Kiljunen
- The Skin and Allergy Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - H. Voutilainen
- The Skin and Allergy Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - M. J. Mäkelä
- The Skin and Allergy Hospital; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
43
|
Wu Z, Zhou N, Xiong F, Li X, Yang A, Tong P, Tang R, Chen H. Allergen composition analysis and allergenicity assessment of Chinese peanut cultivars. Food Chem 2015; 196:459-65. [PMID: 26593515 DOI: 10.1016/j.foodchem.2015.09.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 11/17/2022]
Abstract
Peanut (Arachis hypogaea) is among the eight major food allergens in the world. Several attempts have been made to decrease or eliminate the allergenicity of peanut. Systemic screening of thousands of peanut cultivars may identify peanut with low allergenicity. In this study, the allergen compositions of 53 Chinese peanut cultivars were characterized, and their allergenicity to sera IgE of Chinese patients and in a mouse model was assessed. Contents of total protein and allergens were quantified by SDS-PAGE and densitometry analysis on gel. Although the contents of allergens broadly varied among cultivars, they were related to one another. The IgE binding capacity of cultivars was tested by ELISA, and their allergenicity was further evaluated in a mouse model by oral sensitization. Results showed that the allergenicity of peanut was affected by allergen composition rather than a single allergen. Peanut cultivars with low allergenicity may contain more Ara h 3/4 (24 kDa), Ara h 2 and less Ara h 3/4 (43, 38, and 36 kDa), Ara h 6. Screening based on allergen composition would facilitate the identification of low-allergenic peanut.
Collapse
Affiliation(s)
- Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ningling Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China; Department of Food Science, Nanchang University, Nanchang 330047, China
| | - Faqian Xiong
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Department of Food Science, Nanchang University, Nanchang 330047, China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ronghua Tang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
44
|
Otsu K, Guo R, Dreskin SC. Epitope analysis of Ara h 2 and Ara h 6: characteristic patterns of IgE-binding fingerprints among individuals with similar clinical histories. Clin Exp Allergy 2015; 45:471-84. [PMID: 25213872 DOI: 10.1111/cea.12407] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/15/2014] [Accepted: 08/14/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Ara h 2 and Ara h 6 are moderately homologous and highly potent peanut allergens. OBJECTIVE To identify IgE-binding linear epitopes of Ara h 6, compare them to those of Ara h 2, and to stratify binding based on clinical histories. METHODS Thirty highly peanut-allergic subjects were stratified by clinical history. Sera were diluted to contain the same amount of anti-peanut IgE. IgE binding to overlapping 20-mer peptides of Ara h 2 and Ara h 6 was assessed using microarrays. RESULTS Each subject had a unique IgE-binding fingerprint to peptides; these data were coalesced into epitope binding. IgE from subjects with a history of more severe reactions (n = 19) had a smaller frequency of binding events (BEs) for both Ara h 2 (52 BEs of 152 (19X8epitopes) possible BEs and Ara h 6 (13 BEs of 133 (19X7 epitopes) possible BEs) compared to IgE from those with milder histories (n = 11) (Ara h 2: 47 BEs of 88 (11X8 epitopes) possible BEs, P < 0.01; Ara h 6: 25 BEs of 77 (11X7 epitopes) possible BEs, P < 0.001). Using an unsupervised hierarchal cluster analysis, subjects with similar histories tended to cluster. We have tentatively identified a high-risk pattern of binding to peptides of Ara h 2 and Ara h 6, predominantly in subjects with a history of more severe reactions (OR = 12.6; 95% CI: 2.0-79.5; P < 0.01). CONCLUSIONS AND CLINICAL RELEVANCE IgE from patients with more severe clinical histories recognize fewer linear epitopes of Ara h 2 and Ara h 6 than do subjects with milder reactions and bind these epitopes in characteristic patterns. Close examination of IgE binding to epitopes of Ara h 2 and Ara h 6 may have prognostic value.
Collapse
Affiliation(s)
- K Otsu
- Division of Allergy and Clinical Immunology and Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | | | | |
Collapse
|
45
|
Smit JJ, Pennings MT, Willemsen K, van Roest M, van Hoffen E, Pieters RH. Heterogeneous responses and cross reactivity between the major peanut allergens Ara h 1, 2,3 and 6 in a mouse model for peanut allergy. Clin Transl Allergy 2015; 5:13. [PMID: 25802736 PMCID: PMC4369825 DOI: 10.1186/s13601-015-0056-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The relative contribution and the relation between individual peanut allergens in peanut allergic responses is still matter of debate. We determined the individual contribution of peanut proteins to B, T cell and allergic effector responses in a mouse model for peanut allergy. METHODS Mice were immunized and challenged by oral gavage with peanut protein extract or isolated allergens Ara h 1, 2, 3 and 6 followed by assessment of food allergic manifestations. In addition, T cell responses to the individual proteins were measured by an in vitro dendritic cell-T cell assay. RESULTS Sensitization with the individual peanut proteins elicited IgE responses with specificity to the allergen used as expected. However, cross reactivity among Ara h 1, 2, 3 and 6 was observed. T cell re-stimulations with peanut extract and individual peanut proteins also showed cross reactivity between Ara h 1, 2, 3 and 6. Despite the cross reactivity at the IgE level, only Ara h 2 and 6 were able to elicit mast cell degranulation after an oral challenge. However, after systemic challenge, Ara h 1, 2 and 6 and to lesser extent Ara h 3 were able to elicit anaphylactic responses. CONCLUSIONS Ara h 1, 2, 3 and 6 sensitize via the intra-gastric route, but differ in their capacity to cause allergic effector responses. Interestingly, extensive cross reactivity at T cell and antibody level is observed among Ara h 1, 2, 3 and 6, which may have important implications for the diagnosis and therapy of peanut allergy. Awareness about the relative contribution of individual peanut allergens and cross reactivity between these allergens is of importance for current research in diagnostics and therapeutics for and the mechanism of peanut allergy.
Collapse
Affiliation(s)
- Joost J Smit
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands ; Utrecht Centre for Food Allergy, Utrecht, The Netherlands
| | - Maarten T Pennings
- Utrecht Centre for Food Allergy, Utrecht, The Netherlands ; Utrecht University Medical Center, Utrecht, The Netherlands ; Current affiliation: HU University of Applied Sciences, Utrecht, The Netherlands
| | - Karina Willemsen
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Manon van Roest
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Els van Hoffen
- Utrecht University Medical Center, Utrecht, The Netherlands ; Current affiliation: NIZO food research BV, Ede, The Netherlands
| | - Raymond H Pieters
- Immunotoxicology group, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
46
|
Khuda SE, Jackson LS, Fu TJ, Williams KM. Effects of processing on the recovery of food allergens from a model dark chocolate matrix. Food Chem 2015; 168:580-7. [DOI: 10.1016/j.foodchem.2014.07.084] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/11/2014] [Accepted: 07/15/2014] [Indexed: 10/25/2022]
|
47
|
Bernard H, Guillon B, Drumare MF, Paty E, Dreskin SC, Wal JM, Adel-Patient K, Hazebrouck S. Allergenicity of peanut component Ara h 2: Contribution of conformational versus linear hydroxyproline-containing epitopes. J Allergy Clin Immunol 2014; 135:1267-74.e1-8. [PMID: 25483599 DOI: 10.1016/j.jaci.2014.10.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The 2S-albumin Ara h 2 is the most potent peanut allergen and a good predictor of clinical reactivity in allergic children. Posttranslational hydroxylation of proline residues occurs in DPYSP(OH)S motifs, which are repeated 2 or 3 times in different isoforms. OBJECTIVES We investigated the effect of proline hydroxylation on IgE binding and the relative contributions of linear and conformational epitopes to Ara h 2 allergenicity. METHODS Peptides containing DPYSP(OH)S motifs were synthesized. A recombinant variant of Ara h 2 without DPYSP(OH)S motifs was generated by means of deletion mutagenesis. IgE reactivity of 18 French and 5 American patients with peanut allergy toward synthetic peptides and recombinant allergens was assessed by using IgE-binding inhibition assays and degranulation tests of humanized rat basophilic leukemia cells. RESULTS Hydroxyproline-containing peptides exhibited an IgE-binding activity equivalent to that of the unfolded Ara h 2. In contrast, corresponding peptides without hydroxyprolines displayed a very weak IgE-binding capacity. Despite removal of the DPYSP(OH)S motifs, the deletion variant still displayed Ara h 2 conformational epitopes. The IgE-binding capacity of Ara h 2 was then recapitulated with an equimolar mixture of a hydroxylated peptide and the deletion variant. Hydroxylated peptides of 15 and 27 amino acid residues were also able to trigger cell degranulation. CONCLUSIONS Sensitization toward linear and conformational epitopes of Ara h 2 is variable among patients with peanut allergy. Optimal IgE binding to linear epitopes of Ara h 2 requires posttranslational hydroxylation of proline residues. The absence of hydroxyprolines could then affect the accuracy of component-resolved diagnostics by using rAra h 2.
Collapse
Affiliation(s)
- Hervé Bernard
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Blanche Guillon
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Marie-Françoise Drumare
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Evelyne Paty
- Université Paris Descartes-Assistance Publique des Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Colorado Denver, Aurora, Colo
| | - Jean-Michel Wal
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Karine Adel-Patient
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France
| | - Stéphane Hazebrouck
- INRA, UR 496, Unité d'Immuno-Allergie Alimentaire, Jouy-en-Josas, France; CEA, iBiTecS/Service de Pharmacologie et d'Immunoanalyse, Gif-sur-Yvette, France.
| |
Collapse
|
48
|
Handlogten MW, Deak PE, Bilgicer B. Two-allergen model reveals complex relationship between IgE crosslinking and degranulation. ACTA ACUST UNITED AC 2014; 21:1445-51. [PMID: 25308278 DOI: 10.1016/j.chembiol.2014.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 11/16/2022]
Abstract
Allergy is an immune response to complex mixtures of multiple allergens, yet current models use a single synthetic allergen. Multiple allergens were modeled using two well-defined tetravalent allergens, each specific for a distinct IgE, thus enabling a systematic approach to evaluate the effect of each allergen and percentage of allergen-specific IgE on mast cell degranulation. We found the overall degranulation response caused by two allergens is additive for low allergen concentrations or low percent specific IgE, does not change for moderate allergen concentrations with moderate to high percent specific IgE, and is reduced for high allergen concentrations with moderate to high percent specific IgE. These results provide further evidence that supraoptimal IgE crosslinking decreases the degranulation response and establishes the two-allergen model as a relevant experimental system to elucidate mast cell degranulation mechanisms.
Collapse
Affiliation(s)
- Michael W Handlogten
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Peter E Deak
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Basar Bilgicer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Advanced Diagnostics and Therapeutics, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
49
|
Mattison CP, Desormeaux WA, Wasserman RL, Yoshioka-Tarver M, Condon B, Grimm CC. Decreased immunoglobulin E (IgE) binding to cashew allergens following sodium sulfite treatment and heating. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6746-6755. [PMID: 24926808 DOI: 10.1021/jf501117p] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cashew nut and other nut allergies can result in serious and sometimes life-threatening reactions. Linear and conformational epitopes within food allergens are important for immunoglobulin E (IgE) binding. Methods that disrupt allergen structure can lower IgE binding and lessen the likelihood of food allergy reactions. Previous structural and biochemical data have indicated that 2S albumins from tree nuts and peanuts are potent allergens, and that their structures are sensitive to strong reducing agents such as dithiothreitol. This study demonstrates that the generally regarded as safe (GRAS) compound sodium sulfite effectively disrupted the structure of the cashew 2S albumin, Ana o 3, in a temperature-dependent manner. This study also showed that sulfite is effective at disrupting the disulfide bond within the cashew legumin, Ana o 2. Immunoblotting and ELISA demonstrated that the binding of cashew proteins by rabbit IgG or IgE from cashew-allergic patients was markedly lowered following treatment with sodium sulfite and heating. The results indicate that incorporation of sodium sulfite, or other food grade reagents with similar redox potential, may be useful processing methods to lower or eliminate IgE binding to food allergens.
Collapse
Affiliation(s)
- Christopher P Mattison
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana 70124, United States
| | | | | | | | | | | |
Collapse
|
50
|
Derbyshire EJ. A review of the nutritional composition, organoleptic characteristics and biological effects of the high oleic peanut. Int J Food Sci Nutr 2014; 65:781-90. [DOI: 10.3109/09637486.2014.937799] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|