1
|
Abdi AI, Achcar F, Sollelis L, Silva-Filho JL, Mwikali K, Muthui M, Mwangi S, Kimingi HW, Orindi B, Andisi Kivisi C, Alkema M, Chandrasekar A, Bull PC, Bejon P, Modrzynska K, Bousema T, Marti M. Plasmodium falciparum adapts its investment into replication versus transmission according to the host environment. eLife 2023; 12:e85140. [PMID: 36916164 PMCID: PMC10059685 DOI: 10.7554/elife.85140] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
The malaria parasite life cycle includes asexual replication in human blood, with a proportion of parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to differentiate into gametocytes, which is marked by activation of the parasite transcription factor ap2-g, is known to be influenced by host factors but a comprehensive model remains uncertain. Here, we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and asymptomatic malaria infection over 18 years of falling malaria transmission. We examine markers of host immunity and metabolism, and markers of parasite growth and transmission investment. We find that inflammatory responses associated with reduced plasma lysophosphatidylcholine levels are associated with markers of increased investment in parasite sexual reproduction (i.e. transmission investment) and reduced growth (i.e. asexual replication). This association becomes stronger with falling transmission and suggests that parasites can rapidly respond to the within-host environment, which in turn is subject to changing transmission.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Fiona Achcar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - Lauriane Sollelis
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | - João Luiz Silva-Filho
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| | | | | | | | | | | | - Cheryl Andisi Kivisi
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
- Pwani University Biosciences Research Centre, Pwani UniversityKilifiKenya
| | - Manon Alkema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Amrita Chandrasekar
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Peter C Bull
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research ProgrammeKilifiKenya
| | - Katarzyna Modrzynska
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
| | - Teun Bousema
- Radboud University Nijmegen Medical CentreNijmegenNetherlands
| | - Matthias Marti
- Wellcome Center for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of ZurichZurichSwitzerland
| |
Collapse
|
2
|
Menousek J, Horn CM, Heim CE, Van Roy Z, Korshoj LE, Kielian T. Transcriptional Profiling of Phagocytic Leukocytes and Microglia Reveals a Critical Role for Reactive Oxygen Species in Biofilm Containment during Staphylococcus aureus Craniotomy Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1973-1986. [PMID: 36426943 PMCID: PMC9643635 DOI: 10.4049/jimmunol.2200503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Craniotomies are performed to treat a variety of intracranial pathology. Surgical site infection remains a complication of craniotomy despite the use of prophylactic antibiotics and universal sterile precautions. Infections occur in 1-3% of procedures, with approximately half caused by Staphylococcus aureus that forms a biofilm on the bone flap and is recalcitrant to systemic antibiotic therapy. We used an S. aureus-dsRed construct to compare the phagocytic capacity of leukocytes and microglia in vitro and in vivo using a mouse model of craniotomy infection. In addition, single-cell RNA sequencing (scRNA-seq) was applied to determine whether a transcriptional signature could be identified for phagocytic versus nonphagocytic cells in vivo. S. aureus was phagocytosed to equivalent extents in microglia, macrophages, neutrophils, and granulocytic myeloid-derived suppressor cells in vitro; however, microglial uptake of S. aureus was limited in vivo, whereas the other leukocyte populations exhibited phagocytic activity. scRNA-seq comparing the transcriptional signatures of phagocytic (S. aureus-dsRed+) versus nonphagocytic (S. aureus-dsRed-) leukocytes identified classical pathways enriched in phagocytic cells (i.e., reactive oxygen species [ROS]/reactive nitrogen species, lysosome, iron uptake, and transport), whereas nonphagocytic populations had increased ribosomal, IFN, and hypoxia signatures. scRNA-seq also revealed a robust ROS profile, which led to the exploration of craniotomy infection in NADPH oxidase 2 knockout mice. S. aureus burden, leukocyte recruitment, and intracellular bacterial load were significantly increased in NADPH oxidase 2 KO compared with wild-type animals. Collectively, these results highlight the importance of ROS generation in phagocytes for S. aureus biofilm containment, but not clearance, during craniotomy infection.
Collapse
Affiliation(s)
- Joseph Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198
| | - Christopher M. Horn
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Cortney E. Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Zachary Van Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Lee E. Korshoj
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
3
|
Maciag K, Raychowdhury R, Smith K, Schneider AM, Coers J, Mumbach MR, Schwartz S, Hacohen N. IRF3 inhibits IFN-γ-mediated restriction of intracellular pathogens in macrophages independently of IFNAR. J Leukoc Biol 2022; 112:257-271. [PMID: 34826345 PMCID: PMC9550582 DOI: 10.1002/jlb.3a0218-069rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 01/14/2023] Open
Abstract
Macrophages use an array of innate immune sensors to detect intracellular pathogens and to tailor effective antimicrobial responses. In addition, extrinsic activation with the cytokine IFN-γ is often required as well to tip the scales of the host-pathogen balance toward pathogen restriction. However, little is known about how host-pathogen sensing impacts the antimicrobial IFN-γ-activated state. It was observed that in the absence of IRF3, a key downstream component of pathogen sensing pathways, IFN-γ-primed macrophages more efficiently restricted the intracellular bacterium Legionella pneumophila and the intracellular protozoan parasite Trypanosoma cruzi. This effect did not require IFNAR, the receptor for Type I IFNs known to be induced by IRF3, nor the sensing adaptors MyD88/TRIF, MAVS, or STING. This effect also did not involve differential activation of STAT1, the major signaling protein downstream of both Type 1 and Type 2 IFN receptors. IRF3-deficient macrophages displayed a significantly altered IFN-γ-induced gene expression program, with up-regulation of microbial restriction factors such as Nos2. Finally, we found that IFN-γ-primed but not unprimed macrophages largely excluded the activated form of IRF3 from the nucleus following bacterial infection. These data are consistent with a relationship of mutual inhibition between IRF3 and IFN-γ-activated programs, possibly as a component of a partially reversible mechanism for modulating the activity of potent innate immune effectors (such as Nos2) in the context of intracellular infection.
Collapse
Affiliation(s)
- Karolina Maciag
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | - Karen Smith
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexis M. Schneider
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jörn Coers
- Departments of Molecular Genetics and Microbiology and Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
4
|
Saikh KU, Ranji CM. Cells Stimulated with More Than One Toll-Like Receptor-Ligand in the Presence of a MyD88 Inhibitor Augmented Interferon- β via MyD88-Independent Signaling Pathway. Viral Immunol 2021; 34:646-652. [PMID: 34287077 DOI: 10.1089/vim.2021.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Host exposure to pathogens engage multiple pathogen recognition receptors (PRRs) including toll-like receptors (TLRs); recruit intracellular signaling adaptor proteins primarily myeloid differentiation primary response protein 88 (MyD88) for activating downstream signaling cascades, which culminate in the production of type I interferons (IFNs), proinflammatory cytokines, and chemokines; and impede pathogen replication and dissemination. However, recent studies highlight that absence of MyD88 increased antiviral type I IFN induction, and MyD88-/- mice showed a higher survival rate compared with the low survival rate of the MyD88+/+ mice, implicating MyD88 limits antiviral type I IFN response. As a single infectious agent may harbor multiple PRR agonists, which trigger different sets of TLR-initiated immune signaling, we examined whether MyD88 inhibition during stimulation of cells with more than one TLR-ligand would augment type I IFN. We stimulated human U87- and TLR3-transfected HEK293-TLR7 cells with TLR-ligands, such as lipopolysaccharides (LPS) (TLR4-ligand) plus poly I:C (TLR3-ligand) or imiquimod (R837, TLR7-ligand) plus poly I:C, in the presence of compound 4210, a previously reported MyD88 inhibitor, and measured IFN-β response using an enzyme-linked immunosorbent assay. Our results showed that when U87- or TLR3-transfected HEK293-TLR7 cells were stimulated with TLR-ligands, such as poly I:C plus LPS or poly I:C plus R837, IFN-β production was significantly increased with MyD88 inhibition in a dose-dependent manner. Collectively, these results indicate that during more than one TLR-ligand-induced immune signaling event, impairment of antiviral type I IFN response was restored by inhibition of MyD88 through MyD88-independent pathway of type I IFN signaling, thus, offer a MyD88-targeted approach for type I IFN induction.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Cyra M Ranji
- Department of Bacteriology, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
5
|
Santibañez A, Paine D, Parra M, Muñoz C, Valdes N, Zapata C, Vargas R, Gonzalez A, Tello M. Oral Administration of Lactococcus lactis Producing Interferon Type II, Enhances the Immune Response Against Bacterial Pathogens in Rainbow Trout. Front Immunol 2021; 12:696803. [PMID: 34248997 PMCID: PMC8268009 DOI: 10.3389/fimmu.2021.696803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Lactic acid bacteria are a powerful vehicle for releasing of cytokines and immunostimulant peptides at the gastrointestinal level after oral administration. However, its therapeutic application against pathogens that affect rainbow trout and Atlantic salmon has been little explored. Type II interferon in Atlantic salmon activates the antiviral response, protecting against viral infection, but its role against bacterial infection has not been tested in vivo. In this work, through the design of a recombinant lactic acid bacterium capable of producing Interferon gamma from Atlantic salmon, we explore its role against bacterial infection and the ability to stimulate systemic immune response after oral administration of the recombinant probiotic. Recombinant interferon was active in vitro, mainly stimulating IL-6 expression in SHK-1 cells. In vivo, oral administration of the recombinant probiotic produced an increase in IL-6, IFNγ and IL-12 in the spleen and kidney, in addition to stimulating the activity of lysozyme in serum. The challenge trials indicated that the administration of the IFNγ-producing probiotic doubled the survival in fish infected with F. psychrophilum. In conclusion, our results showed that the oral administration of lactic acid bacteria producing IFNγ managed to stimulate the immune response at a systemic level, conferring protection against pathogens, showing a biotechnological potential for its application in aquaculture.
Collapse
Affiliation(s)
- Alvaro Santibañez
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Diego Paine
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Mick Parra
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Carlos Muñoz
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Natalia Valdes
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Claudia Zapata
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
| | - Rodrigo Vargas
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Alex Gonzalez
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas, Universidad de los Lagos, Osorno, Chile
| | - Mario Tello
- Departamento de Biología, Laboratorio de Metagenómica Bacteriana, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., Santiago, Chile
- IctioBiotic SpA, Santiago, Chile
| |
Collapse
|
6
|
Speir M, Lawlor KE. RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol 2020; 109:114-124. [PMID: 32771377 DOI: 10.1016/j.semcdb.2020.07.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/05/2023]
Abstract
Autoinflammatory syndromes comprise a spectrum of clinical disorders characterised by recurrent, inflammatory episodes, many of which result from the release of the pro-inflammatory cytokine, interleukin-1β (IL-1β). Inflammation and programmed cell death are tightly linked, and lytic forms of cell death, such as necroptosis and pyroptosis, are considered to be inflammatory due to the release of damage-associated molecular patterns (DAMPs). In contrast, apoptosis is traditionally regarded as immunologically silent. Recent studies, however, have uncovered a high degree of crosstalk between cell death and inflammatory signalling pathways, and effectively consolidated them into one interconnected network that converges on NLRP3 inflammasome-mediated activation of IL-1β. The receptor-interacting protein kinases (RIPK) 1 and 3 are central to this network, as highlighted by the fact that mutations in genes encoding repressors of RIPK1 and/or RIPK3 activity can lead to heightened inflammation, particularly via NLRP3 inflammasome activation. In this review, we give an overview of extrinsic cell death and inflammatory signalling pathways, and then highlight the growing number of autoinflammatory diseases that are associated with aberrant cell death and inflammasome activation.
Collapse
Affiliation(s)
- Mary Speir
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia.
| | - Kate E Lawlor
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Hodge K, Makjaroen J, Robinson J, Khoomrung S, Pisitkun T. Deep Proteomic Deconvolution of Interferons and HBV Transfection Effects on a Hepatoblastoma Cell Line. ACS OMEGA 2020; 5:16796-16810. [PMID: 32685848 PMCID: PMC7364717 DOI: 10.1021/acsomega.0c01865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/15/2020] [Indexed: 05/13/2023]
Abstract
Interferons are commonly utilized in the treatment of chronic hepatitis B virus (HBV) infection but are not effective for all patients. A deep understanding of the limitations of interferon treatment requires delineation of its activity at multiple "omic" levels. While myriad studies have characterized the transcriptomic effects of interferon treatment, surprisingly, few have examined interferon-induced effects at the proteomic level. To remedy this paucity, we stimulated HepG2 cells with both IFN-α and IFN-λ and performed proteomic analysis versus unstimulated cells. Alongside, we examined the effects of HBV transfection in the same cell line, reasoning that parallel IFN and HBV analysis might allow determination of cases where HBV transfection counters the effects of interferons. More than 6000 proteins were identified, with multiple replicates allowing for differential expression analysis at high confidence. Drawing on a compendium of transcriptomic data, as well as proteomic half-life data, we suggest means by which transcriptomic results diverge from our proteomic results. We also invoke a recent multiomic study of HBV-related hepatocarcinoma (HCC), showing that despite HBV's role in initiating HCC, the regulated proteomic landscapes of HBV transfection and HCC do not strongly align. Special focus is applied to the proteasome, with numerous components divergently altered under IFN and HBV-transfection conditions. We also examine alterations of other protein groups relevant to HLA complex peptide display, unveiling intriguing alterations in a number of ubiquitin ligases. Finally, we invoke genome-scale metabolic modeling to predict relevant alterations to the metabolic landscape under experimental conditions. Our data should be useful as a resource for interferon and HBV researchers.
Collapse
Affiliation(s)
- Kenneth Hodge
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| | - Jonathan Robinson
- Department
of Biology and Biological Engineering, National Bioinformatics Infrastructure
Sweden, Science for Life Laboratory, Chalmers
University of Technology, Kemivägen 10, Gothenburg 412 96, Sweden
- Wallenberg
Center for Protein Research, Chalmers University
of Technology, Kemivägen
10, Gothenburg 412 96, Sweden
| | - Sakda Khoomrung
- Metabolomics
and Systems Biology, Department of Biochemistry, and Siriraj Metabolomics
and Phenomics Center Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Center
for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Trairak Pisitkun
- The
Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
- . Phone: +6692-537-0549
| |
Collapse
|
8
|
Choobin H, Bamdad T, Shekarabi M. The pattern of antiviral protein expression induced by interferon λ1 in peripheral blood mononuclear cells of patients with chronic hepatitis C virus infection. Arch Virol 2020; 165:583-592. [PMID: 31927635 DOI: 10.1007/s00705-019-04438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/12/2019] [Indexed: 12/28/2022]
Abstract
Interferon lambda was discovered in recent years to be an antiviral agent, and research on different aspects of this antiviral factor in viral infection and investigations of its effectiveness are also progressing. The immunological effects of interferon lambda on different cell populations is not precisely known, which may be due to its use of a heterodimeric receptor consisting of IL-10R2 and IFN-λR1, which are not broadly expressed in all types of cells. In the present study, signaling by interferon lambda and its effect on the expression of hepatitis C virus (HCV) proteins were measured, and the expression pattern of some antiviral proteins and IL-10 levels were investigated in peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from 50 patients with chronic genotype 1a HCV infection and 10 healthy individuals as controls. The PBMCs were treated with various doses of interferon lambda at different times of cultivation. Real-time PCR was used for relative quantification of Mxa, PKR, OAS, ISG15 and HCV core mRNAs. Expression of the NS5A protein was measured by flow cytometry, and IL-10 production was assessed by ELISA. A significant increase in the expression of mRNA encoding antiviral proteins and a decrease in the expression of mRNAs encoding the HCV core protein were observed when cells were treated with interferon lambda in an intermittent manner. The expression of HCV NS5A protein and interleukin 10 levels were also lower than in the control group. It was shown that the maximum antiviral effect of interferon lambda in PBMCs is dependent on the dose and treatment time.
Collapse
Affiliation(s)
- Hamzeh Choobin
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Shekarabi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Eshleman EM, Bortell N, McDermott DS, Crisler WJ, Lenz LL. Myeloid cell responsiveness to interferon-gamma is sufficient for initial resistance to Listeria monocytogenes. CURRENT RESEARCH IN IMMUNOLOGY 2020; 1:1-9. [PMID: 34337387 PMCID: PMC8323841 DOI: 10.1016/j.crimmu.2020.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The type II interferon (IFNγ) promotes resistance to intracellular pathogens. Most immune and somatic cells also express the IFNγ receptor (IFNGR) and respond to IFNγ. While myeloid cell have been implicated as important targets of IFNγ, it remains unknown if IFNγ signaling to myeloid cell types suffices for resistance to infection. Here, we addressed this question by generating mice in which IFNGR1 is selectively expressed by myeloid cells. These “MSGR1” (myeloid selective IFNGR1) mice express an epitope-tagged Ifngr1 transgene (fGR1) from the myeloid-specific c-fms promoter in a background lacking endogenous Ifngr1. IFNGR staining was selectively observed on myeloid cells in the MSGR1 mice and correlated with responsiveness of these cells to IFNγ. During systemic infection by the bacterium Listeria monocytogenes, activation marker staining was comparable on monocytes from MSGR1 and control B6 mice. Bacterial burdens and survival were also equivalent in MSGR1 and wildtype B6 animals at a timepoint when B6.Ifngr1−/− mice began to succumb. These data confirm that activation of inflammatory monocytes and neutrophils is a key mechanism by which IFNγ promotes innate anti-bacterial immunity and suggest that IFNγ targeting of myeloid cells is largely sufficient to mediate protection against systemic L. monocytogenes. Expression of IFNGR1 is restricted to monocytes and neutrophils in “MSGR1” (myeloid selective IFNGR1) mice. Myeloid cells from MSGR1 mice are responsive to IFNγ and show elevated activation compared to cells from B6.Ifngr1−/− mice. MSGR1 myeloid cells respond to Listeria monocytogenes infection and promote early resistance. IFNγ stimulation of myeloid cells can thus protect against infection independent of effects on other hematopoietic and non-hematopoietic cell populations. Particularly in female mice, IFNγ stimulation of non-myeloid cells may also contribute to improved survival.
Collapse
Affiliation(s)
- Emily M Eshleman
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Nikki Bortell
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Daniel S McDermott
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - William J Crisler
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO 80045 USA
| | - Laurel L Lenz
- Immunology and Microbiology Department, University of Colorado School of Medicine, Aurora, CO 80045 USA
| |
Collapse
|
10
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication. Front Cell Infect Microbiol 2019; 9:42. [PMID: 30886834 PMCID: PMC6409310 DOI: 10.3389/fcimb.2019.00042] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
Viruses and intracellular bacterial pathogens (IBPs) have in common the need of suitable host cells for efficient replication and proliferation during infection. In human infections, the cell types which both groups of pathogens are using as hosts are indeed quite similar and include phagocytic immune cells, especially monocytes/macrophages (MOs/MPs) and dendritic cells (DCs), as well as nonprofessional phagocytes, like epithelial cells, fibroblasts and endothelial cells. These terminally differentiated cells are normally in a metabolically quiescent state when they are encountered by these pathogens during infection. This metabolic state of the host cells does not meet the extensive need for nutrients required for efficient intracellular replication of viruses and especially IBPs which, in contrast to the viral pathogens, have to perform their own specific intracellular metabolism to survive and efficiently replicate in their host cell niches. For this goal, viruses and IBPs have to reprogram the host cell metabolism in a pathogen-specific manner to increase the supply of nutrients, energy, and metabolites which have to be provided to the pathogen to allow its replication. In viral infections, this appears to be often achieved by the interaction of specific viral factors with central metabolic regulators, including oncogenes and tumor suppressors, or by the introduction of virus-specific oncogenes. Less is so far known on the mechanisms leading to metabolic reprogramming of the host cell by IBPs. However, the still scant data suggest that similar mechanisms may also determine the reprogramming of the host cell metabolism in IBP infections. In this review, we summarize and compare the present knowledge on this important, yet still poorly understood aspect of pathogenesis of human viral and especially IBP infections.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Chair of Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
11
|
Yan Y, Zhao Z, Dong G, Han Y, Yang D, Yin H, Piao Y, He C, Tian C, Wan H, Li X, Jin Y, Fang J, Liu H. Using IFN-γ antibodies to identify the pathogens of fungal rhinosinusitis: A novel immunohistochemical approach. Mol Med Rep 2017; 17:3627-3632. [PMID: 29286163 PMCID: PMC5802167 DOI: 10.3892/mmr.2017.8359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Fungal rhinosinusitis (FRS) is commonly caused by various Aspergillus species (spp) and Mucorales fungi, and the treatment and prognosis of cases differ depending on the causative fungus. The present study describes a novel immunohistochemical method that has high sensitivity and specificity for distinguishing between these two types of fungi in patients with FRS. Three groups were included in the study. Group A included formalin-fixed paraffin-embedded blocks of 51 nasal tissue specimens of patients with FRS (27 Aspergillus spp and 24 Mucorales) that were continuously obtained from the Department of Pathology of Tongren Hospital in Beijing as the experimental group and 34 cultures (26 Aspergillus spp and 8 Mucorales) of FRS that were randomly selected from the bacterial laboratory of Tongren Hospital in Beijing to verify the staining results of the paraffin-embedded blocks. Formalin-fixed paraffin-embedded blocks of 10 esophageal cancer specimens were included in Group B as the positive control group. All specimens in Groups A and B were stained with interferon-γ (IFN-γ) antibody. Group C consisted of the same specimens as described in Group A, however, when performing the immunohistochemical assay, IFN-γ antibody was replaced by PBS and this served as the negative control group. The differences in IFN-γ immunohistochemical staining between Aspergillus spp and Mucorales were analyzed. Staining of IFN-γ in paraffin-embedded samples was positive in 92.6% (25/27) of specimens in which Aspergillus spp were the causative pathogen, which was significantly higher compared with specimens in which Mucorales was causative (P<0.001), with only 4.2% (1/24) of specimens staining positive for IFN-γ. Immunohistochemical staining of cell cultures was 100% positive for Aspergillus spp, whereas all Mucorales were negative. Thus, the results of the current study indicated that IFN-γ antibody immunohistochemical staining may be used as a novel diagnostic tool to distinguish between Aspergillus spp and Mucorales when identifying the causative agent in FRS, providing a useful supplementary test to the current immunohistochemical methods in the clinical diagnosis of FRS.
Collapse
Affiliation(s)
- Yuyan Yan
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Zuotao Zhao
- Department of Dermatology, First Hospital, Peking University, Beijing 100034, P.R. China
| | - Gehong Dong
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yiding Han
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Dongmei Yang
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongyan Yin
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yingshi Piao
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Chunyan He
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Cheng Tian
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongfei Wan
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Xue Li
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Yulan Jin
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jugao Fang
- Department of ENT, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Honggang Liu
- Department of Pathology, Affiliated Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
12
|
Mozhgani SH, Jaberi N, Rezaee SA, Bustani R, Jazayeri SM, Akbarin MM, Milani S, Tarokhian H, Norouzi M. Evaluation of HTLV-1 HBZ and proviral load, together with host IFN λ3, in pathogenesis of HAM/TSP. J Med Virol 2017; 89:1102-1107. [PMID: 27787900 DOI: 10.1002/jmv.24721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 12/16/2023]
Abstract
Human T-cell lymphotropic virus 1 (HTLV-1) is associated with two progressive diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia/lymphoma (ATLL). Although HTLV-1 proviral load (PVL) has been introduced as a risk factor for these diseases' progression, it is not sufficient on its own to yield an accurate estimation of the outcome of the infection. In the present study, PVL and HTLV-1 basic leucine zipper factor (HBZ) expression level as viral factors, and IFN λ3 as a host factor, were evaluated in HAM/TSP patients and HTLV-1 asymptomatic carriers (ACs). During 2014-2015, 12 HAM/TSP patients and 18 ACs who had been referred to the HTLV-1 Clinic, Ghaem Hospital, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran, were enrolled in this study. Peripheral blood mononuclear cells (PBMCs) were isolated and the DNA and mRNA were extracted for quantification of HBZ, IFN λ3 expression, and PVL using real-time PCR (TaqMan method). Although the PVL was higher in the HAM/TSP group, with a 94% confidence interval, there were no considerable differences in terms of HBZ mRNA and PVL between ACs and HAM patients. IFN λ3 expression in the HAM/TSP group was significantly higher than in the ACs (P = 0.02). To the best of our knowledge, no study has evaluated the expression level of IFN λ3 in HTLV-1 positive patients. The immune response against HTLV-1 viral antigens and virulent factors will therefore further refine our knowledge of interactions between the virus and host in the pathogenesis of HTLV-1-related disorders. The virus PVL and the host IFN λ3 can be used as pathogenic factors of HTLV-1 infected patients at risk of HAM/TSP manifestation. J. Med. Virol. 89:1102-1107, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sayed-Hamidreza Mozhgani
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Jaberi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Disease Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Bustani
- Department of Neurology and HTLV-1 Foundation, Ghaem Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Jazayeri
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Akbarin
- Inflammation and Inflammatory Disease Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Milani
- Department of Biotechnology, School of Medicine, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Tarokhian
- Inflammation and Inflammatory Disease Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehdi Norouzi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Eshleman EM, Delgado C, Kearney SJ, Friedman RS, Lenz LL. Down regulation of macrophage IFNGR1 exacerbates systemic L. monocytogenes infection. PLoS Pathog 2017; 13:e1006388. [PMID: 28542482 PMCID: PMC5457163 DOI: 10.1371/journal.ppat.1006388] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/02/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) target macrophages to regulate inflammation and resistance to microbial infections. The type II IFN (IFNγ) acts on a cell surface receptor (IFNGR) to promote gene expression that enhance macrophage inflammatory and anti-microbial activity. Type I IFNs can dampen macrophage responsiveness to IFNγ and are associated with increased susceptibility to numerous bacterial infections. The precise mechanisms responsible for these effects remain unclear. Type I IFNs silence macrophage ifngr1 transcription and thus reduce cell surface expression of IFNGR1. To test how these events might impact macrophage activation and host resistance during bacterial infection, we developed transgenic mice that express a functional FLAG-tagged IFNGR1 (fGR1) driven by a macrophage-specific promoter. Macrophages from fGR1 mice expressed physiologic levels of cell surface IFNGR1 at steady state and responded equivalently to WT C57Bl/6 macrophages when treated with IFNγ alone. However, fGR1 macrophages retained cell surface IFNGR1 and showed enhanced responsiveness to IFNγ in the presence of type I IFNs. When fGR1 mice were infected with the bacterium Listeria monocytogenes their resistance was significantly increased, despite normal type I and II IFN production. Enhanced resistance was dependent on IFNγ and associated with increased macrophage activation and antimicrobial function. These results argue that down regulation of myeloid cell IFNGR1 is an important mechanism by which type I IFNs suppress inflammatory and anti-bacterial functions of macrophages.
Collapse
Affiliation(s)
- Emily M. Eshleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
| | - Christine Delgado
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
| | - Staci J. Kearney
- Department of Biomedical Sciences, National Jewish Health, Denver, CO United States of America
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
- Department of Biomedical Sciences, National Jewish Health, Denver, CO United States of America
| | - Laurel L. Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO United States of America
- Department of Biomedical Sciences, National Jewish Health, Denver, CO United States of America
| |
Collapse
|
14
|
Mourik BC, Lubberts E, de Steenwinkel JEM, Ottenhoff THM, Leenen PJM. Interactions between Type 1 Interferons and the Th17 Response in Tuberculosis: Lessons Learned from Autoimmune Diseases. Front Immunol 2017; 8:294. [PMID: 28424682 PMCID: PMC5380685 DOI: 10.3389/fimmu.2017.00294] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 01/04/2023] Open
Abstract
The classical paradigm of tuberculosis (TB) immunity, with a central protective role for Th1 responses and IFN-γ-stimulated cellular responses, has been challenged by unsatisfactory results of vaccine strategies aimed at enhancing Th1 immunity. Moreover, preclinical TB models have shown that increasing IFN-γ responses in the lungs is more damaging to the host than to the pathogen. Type 1 interferon signaling and altered Th17 responses have also been associated with active TB, but their functional roles in TB pathogenesis remain to be established. These two host responses have been studied in more detail in autoimmune diseases (AID) and show functional interactions that are of potential interest in TB immunity. In this review, we first identify the role of type 1 interferons and Th17 immunity in TB, followed by an overview of interactions between these responses observed in systemic AID. We discuss (i) the effects of GM-CSF-secreting Th17.1 cells and type 1 interferons on CCR2+ monocytes; (ii) convergence of IL-17 and type 1 interferon signaling on stimulating B-cell activating factor production and the central role of neutrophils in this process; and (iii) synergy between IL-17 and type 1 interferons in the generation and function of tertiary lymphoid structures and the associated follicular helper T-cell responses. Evaluation of these autoimmune-related pathways in TB pathogenesis provides a new perspective on recent developments in TB research.
Collapse
Affiliation(s)
- Bas C Mourik
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jurriaan E M de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Pieter J M Leenen
- Department of Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
15
|
Marshall A, Celentano A, Cirillo N, McCullough M, Porter S. Tissue-specific regulation of CXCL9/10/11 chemokines in keratinocytes: Implications for oral inflammatory disease. PLoS One 2017; 12:e0172821. [PMID: 28253295 PMCID: PMC5333845 DOI: 10.1371/journal.pone.0172821] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/11/2017] [Indexed: 02/01/2023] Open
Abstract
The IFN-γ-inducible chemokines CXCL9, CXCL10, and CXCL11 play a key role in many inflammatory conditions, particularly those mediated by T cells. Therefore, the production of these chemokines in peripheral tissues could be instrumental in the pathophysiology of tissue-specific immunological diseases such as oral lichen planus (OLP). In the present study, we assessed the production of keratinocyte-derived CXCL9/10/11 under basal and inflammatory conditions and investigated whether these chemokines were involved in the pathogenesis of OLP. We used semi-quantitative PCR, ELISA, chemotaxis assays, and fluorescence-activated cell sorting (FACS) to assess the expression and functional role of CXCL9/10/11 in oral keratinocytes (three strains of normal human oral keratinocytes (NHOK), and the H357 oral cancer cell line) in the presence or absence of IFN-γ. CXCL9/10/11 were also assessed in tissues from normal patients and those with oral lichen planus (OLP). The time course study in oral keratinocytes treated with IFN-γ showed that expression of CXCL9/10/11 chemokines was significantly enhanced by IFN-γ in a time-dependent manner. In particular, CXCL10, a prominent chemokine that was overexpressed by IFN-γ-stimulated NHOK, was able to effectively recruit CD4 lymphocytes, mainly CD4+CD45RA- cells. Significantly higher levels of CXCL9/10/11 were found in tissues from patients with OLP compared to normal oral mucosa. Taken together, the results demonstrate that normal oral keratinocytes produce chemotactic molecules that mediate T cell recruitment. This study furthers understanding of chemokine production in oral keratinocytes and their role in the pathophysiology of oral mucosa, with particular relevance to OLP.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Movement/drug effects
- Chemokine CXCL10/genetics
- Chemokine CXCL10/metabolism
- Chemokine CXCL11/genetics
- Chemokine CXCL11/metabolism
- Chemokine CXCL9/genetics
- Chemokine CXCL9/metabolism
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Gene Expression Regulation/drug effects
- Humans
- Interferon-gamma/pharmacology
- Keratinocytes/drug effects
- Keratinocytes/immunology
- Keratinocytes/metabolism
- Lichen Planus, Oral/genetics
- Lichen Planus, Oral/immunology
- Lichen Planus, Oral/metabolism
- Lichen Planus, Oral/pathology
- Mouth Mucosa/pathology
- Organ Specificity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, CXCR3/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
Collapse
Affiliation(s)
- Alison Marshall
- University College London, UCL Eastman Dental Institute, London, United Kingdom
| | - Antonio Celentano
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University Federico II of Naples, Naples, Italy
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Victoria, Australia
| | - Nicola Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Victoria, Australia
| | - Michael McCullough
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Victoria, Australia
| | - Stephen Porter
- University College London, UCL Eastman Dental Institute, London, United Kingdom
| |
Collapse
|
16
|
The Role of Type III Interferons in Hepatitis C Virus Infection and Therapy. J Immunol Res 2017; 2017:7232361. [PMID: 28255563 PMCID: PMC5309426 DOI: 10.1155/2017/7232361] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
The human interferon (IFN) response is a key innate immune mechanism to fight virus infection. IFNs are host-encoded secreted proteins, which induce IFN-stimulated genes (ISGs) with antiviral properties. Among the three classes of IFNs, type III IFNs, also called IFN lambdas (IFNLs), are an essential component of the innate immune response to hepatitis C virus (HCV). In particular, human polymorphisms in IFNL gene loci correlate with hepatitis C disease progression and with treatment response. To date, the underlying mechanisms remain mostly elusive; however it seems clear that viral infection of the liver induces IFNL responses. As IFNL receptors show a more restricted tissue expression than receptors for other classes of IFNs, IFNL treatment has reduced side effects compared to the classical type I IFN treatment. In HCV therapy, however, IFNL will likely not play an important role as highly effective direct acting antivirals (DAA) exist. Here, we will review our current knowledge on IFNL gene expression, protein properties, signaling, ISG induction, and its implications on HCV infection and treatment. Finally, we will discuss the lessons learnt from the HCV and IFNL field for virus infections beyond hepatitis C.
Collapse
|
17
|
Abstract
A major approach for immunologic intervention in tuberculosis involves redirecting the outcome of the host immune response from the induction of disease to pathogen control. Cytokines and lipid mediators known as eicosanoids play key roles in regulating this balance and as such represent important targets for immunologic intervention. While the evidence for cytokine/eicosanoid function derives largely from the investigation of murine and zebrafish experimental infection models, clinical studies have confirmed the existence of many of the same pathways in tuberculosis patients. Here, we summarize new data that reveal important intersections between the cytokine and eicosanoid networks in the host response to mycobacteria and discuss how targeting this crosstalk can promote resistance to lethal Mycobacterium tuberculosis infection. This approach could lead to new host-directed therapies to be used either as an adjunct for improving the efficacy of standard antibiotic treatment or for the management of drug-resistant infections.
Collapse
Affiliation(s)
- Katrin D Mayer-Barber
- Immunobiology Section, Laboratory of Parasitic Disease, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Eshleman EM, Lenz LL. Type I interferons in bacterial infections: taming of myeloid cells and possible implications for autoimmunity. Front Immunol 2014; 5:431. [PMID: 25309533 PMCID: PMC4161047 DOI: 10.3389/fimmu.2014.00431] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/23/2014] [Indexed: 01/13/2023] Open
Abstract
Type I interferons (IFNs) were first described for their ability to protect the host from viral infections and may also have beneficial effects under specific conditions within some bacterial infections. Yet, these pleiotropic cytokines are now known to exacerbate infections by numerous life-threatening bacteria, including the intracellular pathogens Listeria monocytogenes and Mycobacterium tuberculosis. The evidence that such detrimental effects occur during bacterial infections in both animals and humans argues for selective pressure. In this review, we summarize the evidence demonstrating a pro-bacterial role for type I IFNs and discuss possible mechanisms that have been proposed to explain such effects. The theme emerges that type I IFNs act to suppress myeloid cell immune responses. The evolutionary conservation of such anti-inflammatory effects, particularly in the context of infections, suggests they may be important for limiting chronic inflammation. Given the effectiveness of type I IFNs in treatment of certain autoimmune diseases, their production may also act to raise the threshold for activation of immune responses to self-antigens.
Collapse
Affiliation(s)
- Emily M Eshleman
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA ; Department of Biomedical Research, National Jewish Health , Denver, CO , USA
| |
Collapse
|
19
|
Egli A, Santer DM, O'Shea D, Tyrrell DL, Houghton M. The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect 2014; 3:e51. [PMID: 26038748 PMCID: PMC4126180 DOI: 10.1038/emi.2014.51] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Type-III interferons (IFN-λ, IFNL) are the most recently described family of IFNs. This family of innate cytokines are increasingly being ascribed pivotal roles in host-pathogen interactions. Herein, we will review the accumulating evidence detailing the immune biology of IFNL during viral infection, and the implications of this novel information on means to advance the development of therapies and vaccines against existing and emerging pathogens. IFNLs exert antiviral effects via induction of IFN-stimulated genes. Common single nucleotide polymorphisms (SNPs) in the IFNL3, IFNL4 and the IFNL receptor α-subunit genes have been strongly associated with IFN-α-based treatment of chronic hepatitis C virus infection. The clinical impact of these SNPs may be dependent on the status of viral infection (acute or chronic) and the potential to develop viral resistance. Another important function of IFNLs is macrophage and dendritic cell polarization, which prime helper T-cell activation and proliferation. It has been demonstrated that IFNL increase Th1- and reduce Th2-cytokines. Therefore, can such SNPs affect the IFNL signaling and thereby modulate the Th1/Th2 balance during infection? In turn, this may influence the subsequent priming of cytotoxic T cells versus antibody-secreting B cells, with implications for the breadth and durability of the host response.
Collapse
Affiliation(s)
- Adrian Egli
- Infection Biology, Department of Biomedicine, University Hospital of Basel , 4031 Basel, Switzerland ; Clinical Microbiology, University Hospital of Basel , 4031 Basel, Switzerland
| | - Deanna M Santer
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Daire O'Shea
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada ; Division of Infectious Diseases, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Michael Houghton
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
20
|
Beneficial innate signaling interference for antibacterial responses by a Toll-like receptor-mediated enhancement of the MKP-IRF3 axis. Proc Natl Acad Sci U S A 2013; 110:19884-9. [PMID: 24248350 DOI: 10.1073/pnas.1320145110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major function of innate immune receptors is to recognize pathogen-associated molecular patterns and then evoke immune responses appropriate to the nature of the invading pathogen(s). Because innate immune cells express various types of these receptors, distinct combinations of signaling pathways are activated in response to a given pathogen. Although the conventional wisdom is that these signaling pathways cooperate with one another to ensure an effective host response, a more nuanced view recognizes antagonism between the individual pathways, where the attenuation of a signaling pathway(s) by others may shape the immune response. In this study, we show that, on Listeria monocytogenes infection, Toll-like receptor-triggered MyD88 signaling pathways suppress type I IFN gene induction, which is detrimental to macrophage bactericidal activity. These pathways target and suppress the IFN regulatory factor 3 (IRF3) transcription factor that is activated by the stimulator of IFN genes-TANK-binding kinase-1 kinase pathway. We also provide evidence for the involvement of the MAPK phosphatase family members, which renders IRF3 hypophosphorylated on Toll-like receptor signaling by enhancing the formation of an MAPK phosphatase-IRF3-TANK-binding kinase-1 ternary complex. This study, therefore, reveals a hitherto unrecognized and important contribution of a beneficial innate signaling interference against bacterial infections.
Collapse
|
21
|
Kearney SJ, Delgado C, Eshleman EM, Hill KK, O'Connor BP, Lenz LL. Type I IFNs downregulate myeloid cell IFN-γ receptor by inducing recruitment of an early growth response 3/NGFI-A binding protein 1 complex that silences ifngr1 transcription. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:3384-92. [PMID: 23935197 PMCID: PMC3777655 DOI: 10.4049/jimmunol.1203510] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of type I IFNs to increase susceptibility to certain bacterial infections correlates with downregulation of myeloid cell surface IFNGR, the receptor for the type II IFN (IFN-γ), and reduced myeloid cell responsiveness to IFN-γ. In this study, we show that the rapid reductions in mouse and human myeloid cell surface IFNGR1 expression that occur in response to type I IFN treatment reflect a rapid silencing of new ifngr1 transcription by repressive transcriptional regulators. Treatment of macrophages with IFN-β reduced cellular abundance of ifngr1 transcripts as rapidly and effectively as actinomycin D treatment. IFN-β treatment also significantly reduced the amounts of activated RNA polymerase II (pol II) and acetylated histones H3 and H4 at the ifngr1 promoter and the activity of an IFNGR1-luc reporter construct in macrophages. The suppression of IFNGR1-luc activity required an intact early growth response factor (Egr) binding site in the proximal ifngr1 promoter. Three Egr proteins and two Egr/NGFI-A binding (Nab) proteins were found to be expressed in bone macrophages, but only Egr3 and Nab1 were recruited to the ifngr1 promoter upon IFN-β stimulation. Knockdown of Nab1 in a macrophage cell line prevented downregulation of IFNGR1 and prevented the loss of acetylated histones from the ifngr1 promoter. These data suggest that type I IFN stimulation induces a rapid recruitment of a repressive Egr3/Nab1 complex that silences transcription from the ifngr1 promoter. This mechanism of gene silencing may contribute to the anti-inflammatory effects of type I IFNs.
Collapse
Affiliation(s)
- Staci J. Kearney
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| | - Christine Delgado
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| | - Emily M. Eshleman
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| | - Krista K. Hill
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
| | - Brian P. O'Connor
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
- Integrated Center for Genes, Environment and Health, National Jewish Health, Denver, CO, 80206
| | - Laurel L. Lenz
- Integrated Department of Immunology, National Jewish Health, Denver, CO, 80206
- Integrated Department of Immunology, University of Colorado, Denver, Denver, CO, 80045
| |
Collapse
|