1
|
Snytnikova O, Telegina D, Savina E, Tsentalovich Y, Kolosova N. Quantitative Metabolomic Analysis of the Rat Hippocampus: Effects of Age and of the Development of Alzheimer's Disease-Like Pathology. J Alzheimers Dis 2024; 99:S327-S344. [PMID: 37980669 DOI: 10.3233/jad-230706] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Background Alzheimer's disease (AD) is the most common type of dementia in the elderly. Incomplete knowledge about the pathogenesis of this disease determines the absence of medications for the treatment of AD today. Animal models can provide the necessary knowledge to understand the mechanisms of biochemical processes occurring in the body in health and disease. Objective To identify the most promising metabolomic predictors and biomarkers reflecting metabolic disorders in the development of AD signs. Methods High resolution 1H NMR spectroscopy was used for quantitative metabolomic profiling of the hippocampus of OXYS rats, an animal model of sporadic AD, which demonstrates key characteristics of this disease. Animals were examined during several key periods: 20 days group corresponds to the "preclinical" period preceding the development of AD signs, during their manifestation (3 months), and active progression (18 months). Wistar rats of the same age were used as control. Results Ranges of variation and mean concentrations were established for 59 brain metabolites. The main metabolic patterns during aging, which are involved in energy metabolism pathways and metabolic shifts of neurotransmitters, have been established. Of particular note is the significant increase of scyllo-inositol and decrease of hypotaurine in the hippocampus of OXYS rats as compared to Wistars for all studied age groups. Conclusions We suggest that the accumulation of scyllo-inositol and the reduction of hypotaurine in the brain, even at an early age, can be considered as predictors and potential biomarkers of the development of AD signs in OXYS rats and, probably, in humans.
Collapse
Affiliation(s)
- Olga Snytnikova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Darya Telegina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina Savina
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yuri Tsentalovich
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nataliya Kolosova
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Foreman B, Kapinos G, Wainwright MS, Ngwenya LB, O'Phelan KH, LaRovere KL, Kirschen MP, Appavu B, Lazaridis C, Alkhachroum A, Maciel CB, Amorim E, Chang JJ, Gilmore EJ, Rosenthal ES, Park S. Practice Standards for the Use of Multimodality Neuromonitoring: A Delphi Consensus Process. Crit Care Med 2023; 51:1740-1753. [PMID: 37607072 PMCID: PMC11036878 DOI: 10.1097/ccm.0000000000006016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
OBJECTIVES To address areas in which there is no consensus for the technologies, effort, and training necessary to integrate and interpret information from multimodality neuromonitoring (MNM). DESIGN A three-round Delphi consensus process. SETTING Electronic surveys and virtual meeting. SUBJECTS Participants with broad MNM expertise from adult and pediatric intensive care backgrounds. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Two rounds of surveys were completed followed by a virtual meeting to resolve areas without consensus and a final survey to conclude the Delphi process. With 35 participants consensus was achieved on 49% statements concerning MNM. Neurologic impairment and the potential for MNM to guide management were important clinical considerations. Experts reached consensus for the use of MNM-both invasive and noninvasive-for patients in coma with traumatic brain injury, aneurysmal subarachnoid hemorrhage, and intracranial hemorrhage. There was consensus that effort to integrate and interpret MNM requires time independent of daily clinical duties, along with specific skills and expertise. Consensus was reached that training and educational platforms are necessary to develop this expertise and to provide clinical correlation. CONCLUSIONS We provide expert consensus in the clinical considerations, minimum necessary technologies, implementation, and training/education to provide practice standards for the use of MNM to individualize clinical care.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
| | - Gregory Kapinos
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mark S Wainwright
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Laura B Ngwenya
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
| | | | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Matthew P Kirschen
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brian Appavu
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Christos Lazaridis
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
| | | | - Carolina B Maciel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
- Department of Neurology, University of Miami, Miami, FL
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
- Departments of Neurology and Neurosurgery, University of Florida, Tampa, FL
- Department of Neurology, University of Utah, Salt Lake City, UT
- Department of Neurology, Yale University, New Haven, CT
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| | - Edilberto Amorim
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Jason J Chang
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
| | | | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| |
Collapse
|
3
|
Lazaridis C, Foreman B. Management Strategies Based on Multi-Modality Neuromonitoring in Severe Traumatic Brain Injury. Neurotherapeutics 2023; 20:1457-1471. [PMID: 37491682 PMCID: PMC10684466 DOI: 10.1007/s13311-023-01411-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
Secondary brain injury after neurotrauma is comprised of a host of distinct, potentially concurrent and interacting mechanisms that may exacerbate primary brain insult. Multimodality neuromonitoring is a method of measuring multiple aspects of the brain in order to understand the signatures of these different pathomechanisms and to detect, treat, or prevent potentially reversible secondary brain injuries. The most studied invasive parameters include intracranial pressure (ICP), cerebral perfusion pressure (CPP), autoregulatory indices, brain tissue partial oxygen tension, and tissue energy and metabolism measures such as the lactate pyruvate ratio. Understanding the local metabolic state of brain tissue in order to infer pathology and develop appropriate management strategies is an area of active investigation. Several clinical trials are underway to define the role of brain tissue oxygenation monitoring and electrocorticography in conjunction with other multimodal neuromonitoring information, including ICP and CPP monitoring. Identifying an optimal CPP to guide individualized management of blood pressure and ICP has been shown to be feasible, but definitive clinical trial evidence is still needed. Future work is still needed to define and clinically correlate patterns that emerge from integrated measurements of metabolism, pressure, flow, oxygenation, and electrophysiology. Pathophysiologic targets and precise critical care management strategies to address their underlying causes promise to mitigate secondary injuries and hold the potential to improve patient outcome. Advancements in clinical trial design are poised to establish new standards for the use of multimodality neuromonitoring to guide individualized clinical care.
Collapse
Affiliation(s)
- Christos Lazaridis
- Division of Neurocritical Care, Departments of Neurology and Neurosurgery, University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA.
| | - Brandon Foreman
- Division of Neurocritical Care, Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
4
|
Casault C, Couillard P, Kromm J, Rosenthal E, Kramer A, Brindley P. Multimodal brain monitoring following traumatic brain injury: A primer for intensive care practitioners. J Intensive Care Soc 2022; 23:191-202. [PMID: 35615230 PMCID: PMC9125434 DOI: 10.1177/1751143720980273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
Traumatic brain injury (TBI) is common and potentially devastating. Traditional examination-based patient monitoring following TBI may be inadequate for frontline clinicians to reduce secondary brain injury through individualized therapy. Multimodal neurologic monitoring (MMM) offers great potential for detecting early injury and improving outcomes. By assessing cerebral oxygenation, autoregulation and metabolism, clinicians may be able to understand neurophysiology during acute brain injury, and offer therapies better suited to each patient and each stage of injury. Hence, we offer this primer on brain tissue oxygen monitoring, pressure reactivity index monitoring and cerebral microdialysis. This narrative review serves as an introductory guide to the latest clinically-relevant evidence regarding key neuromonitoring techniques.
Collapse
Affiliation(s)
- Colin Casault
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
| | - Philippe Couillard
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Julie Kromm
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Eric Rosenthal
- Department of Critical Care
Medicine, University of Alberta, Edmonton, Canada
| | - Andreas Kramer
- Department of Critical Care
Medicine, University of Calgary, Calgary, Canada
- Department of Clinical
Neurosciences, University of Calgary, Calgary, Canada
| | - Peter Brindley
- Department of Neurology, Harvard
University, Boston, MA, USA
| |
Collapse
|
5
|
Merz T, McCook O, Denoix N, Radermacher P, Waller C, Kapapa T. Biological Connection of Psychological Stress and Polytrauma under Intensive Care: The Role of Oxytocin and Hydrogen Sulfide. Int J Mol Sci 2021; 22:9192. [PMID: 34502097 PMCID: PMC8430789 DOI: 10.3390/ijms22179192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
This paper explored the potential mediating role of hydrogen sulfide (H2S) and the oxytocin (OT) systems in hemorrhagic shock (HS) and/or traumatic brain injury (TBI). Morbidity and mortality after trauma mainly depend on the presence of HS and/or TBI. Rapid "repayment of the O2 debt" and prevention of brain tissue hypoxia are cornerstones of the management of both HS and TBI. Restoring tissue perfusion, however, generates an ischemia/reperfusion (I/R) injury due to the formation of reactive oxygen (ROS) and nitrogen (RNS) species. Moreover, pre-existing-medical-conditions (PEMC's) can aggravate the occurrence and severity of complications after trauma. In addition to the "classic" chronic diseases (of cardiovascular or metabolic origin), there is growing awareness of psychological PEMC's, e.g., early life stress (ELS) increases the predisposition to develop post-traumatic-stress-disorder (PTSD) and trauma patients with TBI show a significantly higher incidence of PTSD than patients without TBI. In fact, ELS is known to contribute to the developmental origins of cardiovascular disease. The neurotransmitter H2S is not only essential for the neuroendocrine stress response, but is also a promising therapeutic target in the prevention of chronic diseases induced by ELS. The neuroendocrine hormone OT has fundamental importance for brain development and social behavior, and, thus, is implicated in resilience or vulnerability to traumatic events. OT and H2S have been shown to interact in physical and psychological trauma and could, thus, be therapeutic targets to mitigate the acute post-traumatic effects of chronic PEMC's. OT and H2S both share anti-inflammatory, anti-oxidant, and vasoactive properties; through the reperfusion injury salvage kinase (RISK) pathway, where their signaling mechanisms converge, they act via the regulation of nitric oxide (NO).
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Nicole Denoix
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
- Clinic for Psychosomatic Medicine and Psychotherapy, Medical Center, Ulm University, 89081 Ulm, Germany
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Medical Center, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany; (T.M.); (N.D.); (P.R.)
| | - Christiane Waller
- Department of Psychosomatic Medicine and Psychotherapy, Nuremberg General Hospital, Paracelsus Medical University, 90471 Nuremberg, Germany;
| | - Thomas Kapapa
- Clinic for Neurosurgery, Medical Center, Ulm University, 89081 Ulm, Germany;
| |
Collapse
|
6
|
Takahashi CE, Virmani D, Chung DY, Ong C, Cervantes-Arslanian AM. Blunt and Penetrating Severe Traumatic Brain Injury. Neurol Clin 2021; 39:443-469. [PMID: 33896528 DOI: 10.1016/j.ncl.2021.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Severe traumatic brain injury is a common problem. Current practices focus on the importance of early resuscitation, transfer to high-volume centers, and provider expertise across multiple specialties. In the emergency department, patients should receive urgent intracranial imaging and consideration for tranexamic acid. Close observation in the intensive care unit environment helps identify problems, such as seizure, intracranial pressure crisis, and injury progression. In addition to traditional neurologic examination, patients benefit from use of intracranial monitors. Monitors gather physiologic data on intracranial and cerebral perfusion pressures to help guide therapy. Brain tissue oxygenation monitoring and cerebromicrodialysis show promise in studies.
Collapse
Affiliation(s)
- Courtney E Takahashi
- Department of Neurology, Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA.
| | - Deepti Virmani
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - David Y Chung
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA; Division of Neurocritical Care, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA; Neurovascular Research Unit, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Charlene Ong
- Department of Neurology, Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| | - Anna M Cervantes-Arslanian
- Boston University School of Medicine and Boston Medical Center, 72 East Concord Street, Collamore, C-3, Boston, MA 02118, USA
| |
Collapse
|
7
|
Putzer G, Martini J, Spraider P, Hornung R, Pinggera D, Abram J, Altaner N, Hell T, Glodny B, Helbok R, Mair P. Effects of different adrenaline doses on cerebral oxygenation and cerebral metabolism during cardiopulmonary resuscitation in pigs. Resuscitation 2020; 156:223-229. [PMID: 32652117 DOI: 10.1016/j.resuscitation.2020.06.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The influence of adrenaline during cardiopulmonary resuscitation (CPR) on the neurological outcome of cardiac arrest survivors is unclear. As little is known about the pathophysiological effects of adrenaline on cerebral oxygen delivery and cerebral metabolism we investigated its effects on parameters of cerebral oxygenation and cerebral metabolism in a pig model of CPR. METHODS Fourteen pigs were anesthetized, intubated and instrumented. After 5 min of cardiac arrest CPR was started and continued for 15 min. Animals were randomized to receive bolus injections of either 15 or 30 μg/kg adrenaline every 5 min after commencement of CPR. RESULTS Measurements included mean arterial pressure (MAP), intracranial pressure (ICP), cerebral perfusion pressure (CPP), cerebral regional oxygen saturation (rSO2), brain tissue oxygen tension (PbtO2), arterial and cerebral venous blood gases and cerebral microdialysis parameters, e.g. lactate/pyruvate ratio. Adrenaline induced a significant increase in MAP and CPP in all pigs. However, increases in MAP and CPP were short-lasting and tended to decrease with repetitive bolus administration. There was no statistical difference in any parameter of cerebral oxygenation or metabolism between study groups. CONCLUSIONS Both adrenaline doses resulted in short-lasting CPP peaks which did not translate into improved cerebral tissue oxygen tension and metabolism. Further studies are needed to determine whether other dosing regimens targeting a sustained increase in CPP, may lead to improved brain oxygenation and metabolism, thereby improving neurological outcome of cardiac arrest patients.
Collapse
Affiliation(s)
- Gabriel Putzer
- Department of Anaesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria
| | - Judith Martini
- Department of Anaesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria.
| | - Patrick Spraider
- Department of Anaesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria
| | - Rouven Hornung
- Department of Anaesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University Innsbruck, Austria
| | - Julia Abram
- Department of Anaesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria
| | - Niklas Altaner
- Department of Anaesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria
| | - Tobias Hell
- Department of Mathematics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, Austria
| | - Bernhard Glodny
- Department of Radiology, Medical University Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University Innsbruck, Austria
| | - Peter Mair
- Department of Anaesthesiology and Critical Care Medicine, Medical University Innsbruck, Austria
| |
Collapse
|
8
|
Koskinen LOD, Sundström N, Hägglund L, Eklund A, Olivecrona M. Prostacyclin Affects the Relation Between Brain Interstitial Glycerol and Cerebrovascular Pressure Reactivity in Severe Traumatic Brain Injury. Neurocrit Care 2020; 31:494-500. [PMID: 31123992 PMCID: PMC6872514 DOI: 10.1007/s12028-019-00741-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Cerebral injury may alter the autoregulation of cerebral blood flow. One index for describing cerebrovascular state is the pressure reactivity (PR). Little is known of whether PR is associated with measures of brain metabolism and indicators of ischemia and cell damage. The aim of this investigation was to explore whether increased interstitial levels of glycerol, a marker of cell membrane damage, are associated with PR, and if prostacyclin, a membrane stabilizer and regulator of the microcirculation, may affect this association in a beneficial way. Materials and Methods Patients suffering severe traumatic brain injury (sTBI) were treated according to an intracranial pressure (ICP)-targeted therapy based on the Lund concept and randomized to an add-on treatment with prostacyclin or placebo. Inclusion criteria were verified blunt head trauma, Glasgow Coma Score ≤ 8, age 15–70 years, and a first measured cerebral perfusion pressure of ≥ 10 mmHg. Multimodal monitoring was applied. A brain microdialysis catheter was placed on the worst affected side, close to the penumbra zone. Mean (glycerolmean) and maximal glycerol (glycerolmax) during the 96-h sampling period were calculated. The mean PR was calculated as the ICP/mean arterial pressure (MAP) regression coefficient based on hourly mean ICP and MAP during the first 96 h. Results Of the 48 included patients, 45 had valid glycerol and PR measurements available. PR was higher in the placebo group as compared to the prostacyclin group (p = 0.0164). There was a positive correlation between PR and the glycerolmean (ρ = 0.503, p = 0.01) and glycerolmax (ρ = 0.490, p = 0.015) levels in the placebo group only. Conclusions PR is correlated to the glycerol level in patients suffering from sTBI, a relationship that is not seen in the group treated with prostacyclin. Glycerol has been associated with membrane degradation and may support glycerol as a biomarker for vascular endothelial breakdown. Such a breakdown may impair the regulation of cerebrovascular PR.
Collapse
Affiliation(s)
- Lars-Owe D Koskinen
- Department of Pharmacology and Clinical Neuroscience, Neurosurgery, Umeå University, 901 85, Umeå, Sweden.
| | - Nina Sundström
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Linda Hägglund
- Department of Pharmacology and Clinical Neuroscience, Neurosurgery, Umeå University, 901 85, Umeå, Sweden
| | - Anders Eklund
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Department of Pharmacology and Clinical Neuroscience, Neurosurgery, Umeå University, 901 85, Umeå, Sweden
- Department of Anaesthesia and Intensive Care, Section for Neurosurgery, Faculty of Health and Medicine, Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
9
|
|
10
|
Larsen L, Nielsen TH, Nordström CH, Andersen AB, Schierbeck J, Schulz MK, Poulsen FR. Patterns of cerebral tissue oxygen tension and cytoplasmic redox state in bacterial meningitis. Acta Anaesthesiol Scand 2019; 63:329-336. [PMID: 30328110 DOI: 10.1111/aas.13278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Compromised cerebral energy metabolism is common in patients with bacterial meningitis. In this study, simultaneous measurements of cerebral oxygen tension and lactate/pyruvate ratio were compared to explore whether disturbed energy metabolism was usually caused by insufficient tissue oxygenation or compromised oxidative metabolism of pyruvate indicating mitochondrial dysfunction. SUBJECT AND METHODS Ten consecutive patients with severe streptococcus meningitis were included in this prospective cohort study. Intracranial pressure, brain tissue oxygen tension (PbtO2 ), and energy metabolism (intracerebral microdialysis) were continuously monitored in nine patients. A cerebral lactate/pyruvate (LP) ratio <30 was considered indicating normal oxidative metabolism, LP ratio >30 simultaneously with pyruvate below lower normal level (70 µmol/L) was interpreted as biochemical indication of ischemia, and LP ratio >30 simultaneously with a normal or increased level of pyruvate was interpreted as mitochondrial dysfunction. The biochemical variables were compared with PbtO2 simultaneously monitored within the same cerebral region. RESULTS In two cases, the LP ratio was normal during the whole study period and the simultaneously monitored PbtO2 was 18 ± 6 mm Hg. In six cases, interpreted as mitochondrial dysfunction, the simultaneously monitored PbtO2 was 20 ± 6 mm Hg and without correlation with the LP ratio. In one patient, exhibiting a pattern interpreted as ischemia, PbtO2 decreased below 10 mm Hg and a correlation between LP and PbtO2 was observed. CONCLUSION This study demonstrated that compromised cerebral energy metabolism, evidenced by increased LP ratio, was common in patients with severe bacterial meningitis while not related to insufficient tissue oxygenation.
Collapse
Affiliation(s)
- Lykke Larsen
- Department of Infectious Diseases; Odense University Hospital; Odense Denmark
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
| | - Troels H. Nielsen
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - Carl-Henrik Nordström
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - Aase B. Andersen
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Infectious Diseases; Copenhagen University Hospital Rigshospitalet; Copenhagen Denmark
| | - Jens Schierbeck
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Anaesthesiology and Intensive Care; Odense University Hospital; Odense Denmark
| | - Mette K. Schulz
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - Frantz R. Poulsen
- Department of Clinical Research; University of Southern Denmark; Odense Denmark
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
- OPEN, Odense Patient data Explorative Network; Odense University Hospital; Odense Denmark
| |
Collapse
|
11
|
Abstract
Neuromonitoring plays an important role in the management of traumatic brain injury. Simultaneous assessment of cerebral hemodynamics, oxygenation, and metabolism allows an individualized approach to patient management in which therapeutic interventions intended to prevent or minimize secondary brain injury are guided by monitored changes in physiologic variables rather than generic thresholds. This narrative review describes various neuromonitoring techniques that can be used to guide the management of patients with traumatic brain injury and examines the latest evidence and expert consensus guidelines for neuromonitoring.
Collapse
|
12
|
Harris T, Azar A, Sapir G, Gamliel A, Nardi-Schreiber A, Sosna J, Gomori JM, Katz-Brull R. Real-time ex-vivo measurement of brain metabolism using hyperpolarized [1- 13C]pyruvate. Sci Rep 2018; 8:9564. [PMID: 29934508 PMCID: PMC6014998 DOI: 10.1038/s41598-018-27747-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 06/11/2018] [Indexed: 12/19/2022] Open
Abstract
The ability to directly monitor in vivo brain metabolism in real time in a matter of seconds using the dissolution dynamic nuclear polarization technology holds promise to aid the understanding of brain physiology in health and disease. However, translating the hyperpolarized signal observed in the brain to cerebral metabolic rates is not straightforward, as the observed in vivo signals reflect also the influx of metabolites produced in the body, the cerebral blood volume, and the rate of transport across the blood brain barrier. We introduce a method to study rapid metabolism of hyperpolarized substrates in the viable rat brain slices preparation, an established ex vivo model of the brain. By retrospective evaluation of tissue motion and settling from analysis of the signal of the hyperpolarized [1-13C]pyruvate precursor, the T1s of the metabolites and their rates of production can be determined. The enzymatic rates determined here are in the range of those determined previously with classical biochemical assays and are in agreement with hyperpolarized metabolite relative signal intensities observed in the rodent brain in vivo.
Collapse
Affiliation(s)
- Talia Harris
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Assad Azar
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah-Hebrew University Medical Center, Jerusalem, 9112001, Israel.
| |
Collapse
|
13
|
Synnot A, Bragge P, Lunny C, Menon D, Clavisi O, Pattuwage L, Volovici V, Mondello S, Cnossen MC, Donoghue E, Gruen RL, Maas A. The currency, completeness and quality of systematic reviews of acute management of moderate to severe traumatic brain injury: A comprehensive evidence map. PLoS One 2018; 13:e0198676. [PMID: 29927963 PMCID: PMC6013193 DOI: 10.1371/journal.pone.0198676] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/23/2018] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To appraise the currency, completeness and quality of evidence from systematic reviews (SRs) of acute management of moderate to severe traumatic brain injury (TBI). METHODS We conducted comprehensive searches to March 2016 for published, English-language SRs and RCTs of acute management of moderate to severe TBI. Systematic reviews and RCTs were grouped under 12 broad intervention categories. For each review, we mapped the included and non-included RCTs, noting the reasons why RCTs were omitted. An SR was judged as 'current' when it included the most recently published RCT we found on their topic, and 'complete' when it included every RCT we found that met its inclusion criteria, taking account of when the review was conducted. Quality was assessed using the AMSTAR checklist (trichotomised into low, moderate and high quality). FINDINGS We included 85 SRs and 213 RCTs examining the effectiveness of treatments for acute management of moderate to severe TBI. The most frequently reviewed interventions were hypothermia (n = 17, 14.2%), hypertonic saline and/or mannitol (n = 9, 7.5%) and surgery (n = 8, 6.7%). Of the 80 single-intervention SRs, approximately half (n = 44, 55%) were judged as current and two-thirds (n = 52, 65.0%) as complete. When considering only the most recently published review on each intervention (n = 25), currency increased to 72.0% (n = 18). Less than half of the 85 SRs were judged as high quality (n = 38, 44.7%), and nearly 20% were low quality (n = 16, 18.8%). Only 16 (20.0%) of the single-intervention reviews (and none of the five multi-intervention reviews) were judged as current, complete and high-quality. These included reviews of red blood cell transfusion, hypothermia, management guided by intracranial pressure, pharmacological agents (various) and prehospital intubation. Over three-quarters (n = 167, 78.4%) of the 213 RCTs were included in one or more SR. Of the remainder, 17 (8.0%) RCTs post-dated or were out of scope of existing SRs, and 29 (13.6%) were on interventions that have not been assessed in SRs. CONCLUSION A substantial number of SRs in acute management of moderate to severe TBI lack currency, completeness and quality. We have identified both potential evidence gaps and also substantial research waste. Novel review methods, such as Living Systematic Reviews, may ameliorate these shortcomings and enhance utility and reliability of the evidence underpinning clinical care.
Collapse
Affiliation(s)
- Anneliese Synnot
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- National Trauma Research Institute, The Alfred, Monash University, Melbourne, Victoria, Australia
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Cochrane Consumers and Communication, School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | - Peter Bragge
- BehaviourWorks Australia, Monash Sustainable Development Institute, Monash University, Melbourne, Victoria, Australia
| | - Carole Lunny
- Cochrane Australia, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Menon
- Division of Anaesthesia, University of Cambridge; Neurosciences Critical Care Unit, Addenbrooke’s Hospital; Queens’ College, Cambridge, United Kingdom
| | - Ornella Clavisi
- National Trauma Research Institute, The Alfred, Monash University, Melbourne, Victoria, Australia
- MOVE: Muscle, Bone and Joint Health Ltd, Melbourne, Victoria, Australia
| | - Loyal Pattuwage
- National Trauma Research Institute, The Alfred, Monash University, Melbourne, Victoria, Australia
- Monash Centre for Occupational and Environmental Health (MonCOEH), Monash University, Melbourne, Victoria, Australia
| | - Victor Volovici
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Maryse C. Cnossen
- Center for Medical Decision Making, Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Emma Donoghue
- Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Russell L. Gruen
- Nanyang Technical University, Singapore
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Andrew Maas
- Department of Neurosurgery, Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| |
Collapse
|
14
|
Elsakka AMA, Bary MA, Abdelzaher E, Elnaggar M, Kalamian M, Mukherjee P, Seyfried TN. Management of Glioblastoma Multiforme in a Patient Treated With Ketogenic Metabolic Therapy and Modified Standard of Care: A 24-Month Follow-Up. Front Nutr 2018; 5:20. [PMID: 29651419 PMCID: PMC5884883 DOI: 10.3389/fnut.2018.00020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
Few advances have been made in overall survival for glioblastoma multiforme (GBM) in more than 40 years. Here, we report the case of a 38-year-old man who presented with chronic headache, nausea, and vomiting accompanied by left partial motor seizures and upper left limb weakness. Enhanced brain magnetic resonance imaging revealed a solid cystic lesion in the right partial space suggesting GBM. Serum testing revealed vitamin D deficiency and elevated levels of insulin and triglycerides. Prior to subtotal tumor resection and standard of care (SOC), the patient conducted a 72-h water-only fast. Following the fast, the patient initiated a vitamin/mineral-supplemented ketogenic diet (KD) for 21 days that delivered 900 kcal/day. In addition to radiotherapy, temozolomide chemotherapy, and the KD (increased to 1,500 kcal/day at day 22), the patient received metformin (1,000 mg/day), methylfolate (1,000 mg/day), chloroquine phosphate (150 mg/day), epigallocatechin gallate (400 mg/day), and hyperbaric oxygen therapy (HBOT) (60 min/session, 5 sessions/week at 2.5 ATA). The patient also received levetiracetam (1,500 mg/day). No steroid medication was given at any time. Post-surgical histology confirmed the diagnosis of GBM. Reduced invasion of tumor cells and thick-walled hyalinized blood vessels were also seen suggesting a therapeutic benefit of pre-surgical metabolic therapy. After 9 months treatment with the modified SOC and complimentary ketogenic metabolic therapy (KMT), the patient’s body weight was reduced by about 19%. Seizures and left limb weakness resolved. Biomarkers showed reduced blood glucose and elevated levels of urinary ketones with evidence of reduced metabolic activity (choline/N-acetylaspartate ratio) and normalized levels of insulin, triglycerides, and vitamin D. This is the first report of confirmed GBM treated with a modified SOC together with KMT and HBOT, and other targeted metabolic therapies. As rapid regression of GBM is rare following subtotal resection and SOC alone, it is possible that the response observed in this case resulted in part from the modified SOC and other novel treatments. Additional studies are needed to validate the efficacy of KMT administered with alternative approaches that selectively increase oxidative stress in tumor cells while restricting their access to glucose and glutamine. The patient remains in excellent health (Karnofsky Score, 100%) with continued evidence of significant tumor regression.
Collapse
Affiliation(s)
- Ahmed M A Elsakka
- Neuro-Metabolism, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mohamed Abdel Bary
- Neurosurgery, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Eman Abdelzaher
- Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Mostafa Elnaggar
- Cancer Management and Research Department, Faculty of Medicine, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | | | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Thomas N Seyfried
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
15
|
Lorente L. Biomarkers Associated with the Outcome of Traumatic Brain Injury Patients. Brain Sci 2017; 7:brainsci7110142. [PMID: 29076989 PMCID: PMC5704149 DOI: 10.3390/brainsci7110142] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
This review focuses on biomarkers associated with the outcome of traumatic brain injury (TBI) patients, such as caspase-3; total antioxidant capacity; melatonin; S100B protein; glial fibrillary acidic protein (GFAP); glutamate; lactate; brain-derived neurotrophic factor (BDNF); substance P; neuron-specific enolase (NSE); ubiquitin carboxy-terminal hydrolase L-1 (UCH-L1); tau; decanoic acid; and octanoic acid.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife 38320, Spain.
| |
Collapse
|
16
|
Abstract
Abstract
This comprehensive review summarizes the evidence regarding use of cerebral autoregulation-directed therapy at the bedside and provides an evaluation of its impact on optimizing cerebral perfusion and associated functional outcomes. Multiple studies in adults and several in children have shown the feasibility of individualizing mean arterial blood pressure and cerebral perfusion pressure goals by using cerebral autoregulation monitoring to calculate optimal levels. Nine of these studies examined the association between cerebral perfusion pressure or mean arterial blood pressure being above or below their optimal levels and functional outcomes. Six of these nine studies (66%) showed that patients for whom median cerebral perfusion pressure or mean arterial blood pressure differed significantly from the optimum, defined by cerebral autoregulation monitoring, were more likely to have an unfavorable outcome. The evidence indicates that monitoring of continuous cerebral autoregulation at the bedside is feasible and has the potential to be used to direct blood pressure management in acutely ill patients.
Collapse
|
17
|
Stefani MA, Modkovski R, Hansel G, Zimmer ER, Kopczynski A, Muller AP, Strogulski NR, Rodolphi MS, Carteri RK, Schmidt AP, Oses JP, Smith DH, Portela LV. Elevated glutamate and lactate predict brain death after severe head trauma. Ann Clin Transl Neurol 2017; 4:392-402. [PMID: 28589166 PMCID: PMC5454398 DOI: 10.1002/acn3.416] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 03/31/2017] [Indexed: 12/19/2022] Open
Abstract
Objective Clinical neurological assessment is challenging for severe traumatic brain injury (TBI) patients in the acute setting. Waves of neurochemical abnormalities that follow TBI may serve as fluid biomarkers of neurological status. We assessed the cerebrospinal fluid (CSF) levels of glutamate, lactate, BDNF, and GDNF, to identify potential prognostic biomarkers of neurological outcome. Methods This cross‐sectional study was carried out in a total of 20 consecutive patients (mean [SD] age, 29 [13] years; M/F, 9:1) with severe TBI Glasgow Coma Scale ≤ 8 and abnormal computed tomography scan on admission. Patients were submitted to ventricular drainage and had CSF collected between 2 and 4 h after hospital admission. Patients were then stratified according to two clinical outcomes: deterioration to brain death (nonsurvival, n = 6) or survival (survival, n = 14), within 3 days after hospital admission. CSF levels of brain‐derived substances were compared between nonsurvival and survival groups. Clinical and neurological parameters were also assessed. Results Glutamate and lactate are significantly increased in nonsurvival relative to survival patients. We tested the accuracy of both biomarkers to discriminate patient outcome. Setting a cutoff of >57.75, glutamate provides 80.0% of sensitivity and 84.62% of specificity (AUC: 0.8214, 95% CL: 54.55–98.08%; and a cutoff of >4.65, lactate has 100% of sensitivity and 85.71% of specificity (AUC: 0.8810, 95% CL: 54.55–98.08%). BDNF and GDNF did not discriminate poor outcome. Interpretation This early study suggests that glutamate and lactate concentrations at hospital admission accurately predict death within 3 days after severe TBI.
Collapse
Affiliation(s)
- Marco A Stefani
- Laboratory of Neuroanatomy Department of Morphological Sciences Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Rafael Modkovski
- Laboratory of Neuroanatomy Department of Morphological Sciences Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Gisele Hansel
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Eduardo R Zimmer
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil.,Brain Institute of Rio Grande do Sul (BraIns) Pontifical Catholic University of Rio Grande do Sul (PUCRS) Porto Alegre RS Brazil
| | - Afonso Kopczynski
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Alexandre P Muller
- Laboratory of Exercise Biochemistry and Physiology University of Southern Santa Catarina (UNESC) Criciúma Santa Catarina Brazil
| | - Nathan R Strogulski
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Marcelo S Rodolphi
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Randhall K Carteri
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - André P Schmidt
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| | - Jean P Oses
- Graduate Program in Health and Behavior Catholic University of Pelotas Pelotas RS Brazil
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair and Department of Neurosurgery Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania 19104
| | - Luis V Portela
- Laboratory of Neurotrauma Department of Biochemistry Post-graduation Program in Biochemistry Federal University of Rio Grande do Sul (UFRGS) Porto Alegre RS Brazil
| |
Collapse
|
18
|
Lazaridis C, Robertson CS. The Role of Multimodal Invasive Monitoring in Acute Traumatic Brain Injury. Neurosurg Clin N Am 2017; 27:509-17. [PMID: 27637400 DOI: 10.1016/j.nec.2016.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This article reviews the role of modalities that directly monitor brain parenchyma in patients with severe traumatic brain injury. The physiology monitored involves compartmental and perfusion pressures, tissue oxygenation and metabolism, quantitative blood flow, pressure autoregulation, and electrophysiology. There are several proposed roles for this multimodality monitoring, such as to track, prevent, and treat the cascade of secondary brain injury; monitor the neurologically injured patient; integrate various data into a composite, patient-specific, and dynamic picture; apply protocolized, pathophysiology-driven intensive care; use as a prognostic marker; and understand pathophysiologic mechanisms involved in secondary brain injury to develop preventive and abortive therapies, and to inform future clinical trials.
Collapse
Affiliation(s)
- Christos Lazaridis
- Division of Neurocritical Care, Department of Neurology, Baylor College of Medicine Medical Center, Baylor College of Medicine, McNair Campus, 7200 Cambridge Street, 9th Floor, MS: NB302, Houston, TX 77030, USA.
| | - Claudia S Robertson
- Department of Neurosurgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
19
|
Abstract
The monitoring of systemic and central nervous system physiology is central to the management of patients with neurologic disease in the perioperative and critical care settings. There exists a range of invasive and noninvasive and global and regional monitors of cerebral hemodynamics, oxygenation, metabolism, and electrophysiology that can be used to guide treatment decisions after acute brain injury. With mounting evidence that a single neuromonitor cannot comprehensively detect all instances of cerebral compromise, multimodal neuromonitoring allows an individualized approach to patient management based on monitored physiologic variables rather than a generic one-size-fits-all approach targeting predetermined and often empirical thresholds.
Collapse
|
20
|
|
21
|
Badenes R, García-Pérez ML, Bilotta F. Intraoperative monitoring of cerebral oximetry and depth of anaesthesia during neuroanesthesia procedures. Curr Opin Anaesthesiol 2016; 29:576-81. [DOI: 10.1097/aco.0000000000000371] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
|
23
|
Affiliation(s)
- M Smith
- Department of Neurocritical Care, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK UCLH National Institute for Health Research Biomedical Research Centre
| |
Collapse
|
24
|
Edlow BL, Rosenthal ES. Diagnostic, Prognostic, and Advanced Imaging in Severe Traumatic Brain Injury. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-015-0018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
25
|
Schiefecker AJ, Beer R, Broessner G, Kofler M, Schmutzhard E, Helbok R. Can Therapeutic Hypothermia Be Guided by Advanced Neuromonitoring in Neurocritical Care Patients? A Review. Ther Hypothermia Temp Manag 2015; 5:126-34. [PMID: 25875898 DOI: 10.1089/ther.2014.0028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The impact of therapeutic hypothermia (TH) on long-term neurological outcome is still controversial. Data on the effects of TH on brain homeostasis are mostly derived from experimental research. Invasive multimodal neuromonitoring techniques may provide additional insight into pathophysiological changes associated with primary or secondary brain injury in humans. In this study we describe the principles of multimodal neuromonitoring and its potential in the clinical setting of TH. We call for more research using multimodal neuromonitoring techniques in patients undergoing TH to optimize cooling and rewarming strategies.
Collapse
Affiliation(s)
- Alois Josef Schiefecker
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Ronny Beer
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Gregor Broessner
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Mario Kofler
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Erich Schmutzhard
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| | - Raimund Helbok
- Division of Neurocritical Care, Department of Neurology, Medical University of Innsbruck , Innsbruck, Austria
| |
Collapse
|
26
|
Recommendations for the use of multimodal monitoring in the neurointensive care unit. Curr Opin Crit Care 2015; 21:113-9. [DOI: 10.1097/mcc.0000000000000179] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|