1
|
Zhou C, Sun J, Wu L, Liu C, Cheng Q, Xie S, Zhang J. LTBP2 down-regulated FGF2 to repress vascular smooth muscle cell proliferation and vascular remodeling in a rat model of intracranial aneurysm. Neurosci Lett 2024; 842:137988. [PMID: 39288883 DOI: 10.1016/j.neulet.2024.137988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This work probed into the role of latent transforming growth factor beta binding protein 2 (LTBP2) in intracranial aneurysm (IA). The rats underwent IA modeling and then stereotactic injection of short hairpin RNA against LTBP2 (shLTBP2). Hematoxylin-eosin (HE) staining was employed to assess IA model and vascular remodeling. Rat vascular smooth muscle cells (VSMCs) were transfected with shLTBP2, LTBP2 overexpression plasmid and fibroblast growth factor 2 (FGF2) overexpression plasmid. The mRNA and protein expressions of LTBP2, FGF2 and mitochondrial apoptosis-related factors (Caspase-3, Cyt-c, Mcl-1) were tested through qRT-PCR and Western blot. Cell viability, proliferation and apoptosis were examined by cell counting kit-8, EdU assay and flow cytometry. The up-regulated LTBP2 and down-regulated FGF2 were detected in IA rats. LTBP2 knockdown promoted vascular remodeling and Mcl-1 level, and restrained cell apoptosis and expressions of Caspase-3 and Cyt-c in IA model rats. Moreover, LTBP2 knockdown potentiated cell viability, proliferation and FGF2 level, and repressed apoptosis in rat VSMCs, while overexpressed LTBP2 exerted opposite effects. FGF2 overexpression promoted proliferation and Mcl-1 level, and inhibited apoptosis and expressions of Caspase-3 and Cyt-c in rat VSMCs, which also reversed the effects of overexpressed LTBP2 on these aspects. Collectively, LTBP2 down-regulates FGF2 to repress VSMCs proliferation and vascular remodeling in an IA rat model.
Collapse
Affiliation(s)
- Chunhui Zhou
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Junzhao Sun
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Lin Wu
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Congwei Liu
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Qiao Cheng
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Shengqiang Xie
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Jianning Zhang
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China.
| |
Collapse
|
2
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2024. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology.
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
3
|
Qi L, Xing J, Yuan Y, Lei M. Noncoding RNAs in atherosclerosis: regulation and therapeutic potential. Mol Cell Biochem 2024; 479:1279-1295. [PMID: 37418054 PMCID: PMC11116212 DOI: 10.1007/s11010-023-04794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological processes. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis and to inspire new insights for the prevention and treatment of this disease.
Collapse
MESH Headings
- Humans
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/therapy
- Atherosclerosis/pathology
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Luyao Qi
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Jixiang Xing
- Peripheral Vascular Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 300150, Tianjin, China
| | - Yuesong Yuan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, 250014, Jinan, Shandong, China
| | - Ming Lei
- Critical Care Medicine, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China.
| |
Collapse
|
4
|
Hu RT, Deng HW, Teng WB, Zhou SD, Ye ZM, Dong ZM, Qin C. ADORA3: A Key Player in the Pathogenesis of Intracranial Aneurysms and a Potential Diagnostic Biomarker. Mol Diagn Ther 2024; 28:225-235. [PMID: 38341835 DOI: 10.1007/s40291-024-00694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The effects of genes on the development of intracranial aneurysms (IAs) remain to be elucidated, and reliable blood biomarkers for diagnosing IAs are yet to be established. This study aimed to identify genes associated with IAs pathogenesis and explore their diagnostic value by analyzing IAs datasets, conducting vascular smooth muscle cells (VSMC) experiments, and performing blood detection. METHODS IAs datasets were collected and the differentially expressed genes were analyzed. The selected genes were validated in external datasets. Autophagy was induced in VSMC and the effect of selected genes was determined. The diagnostic value of selected gene on the IAs were explored using area under curve (AUC) analysis using IAs plasma samples. RESULTS Analysis of 61 samples (32 controls and 29 IAs tissues) revealed a significant increase in expression of ADORA3 compared with normal tissues using empirical Bayes methods of "limma" package; this was further validated by two external datasets. Additionally, induction of autophagy in VSMC lead to upregulation of ADORA3. Conversely, silencing ADORA3 suppressed VSMC proliferation and autophagy. Furthermore, analysis of an IAs blood sample dataset and clinical plasma samples demonstrated increased ADORA3 expression in patients with IA compared with normal subjects. The diagnostic value of blood ADORA3 expression in IAs was moderate when analyzing clinical samples (AUC: 0.756). Combining ADORA3 with IL2RB or CCR7 further enhanced the diagnostic ability for IAs, with the AUC value over 0.83. CONCLUSIONS High expression of ADORA3 is associated with IAs pathogenesis, likely through its promotion of VSMC autophagy. Furthermore, blood ADORA3 levels have the potential to serve as an auxiliary diagnostic biomarker for IAs.
Collapse
Affiliation(s)
- Rui-Ting Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Hao-Wei Deng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Wen-Bin Teng
- Department of Neurology, Minzu Hospital of Guangxi Medical University, Nanning, 530001, China
| | - Shao-Dan Zhou
- Department of Neurology, Minzu Hospital of Guangxi Medical University, Nanning, 530001, China
| | - Zi-Ming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Zi-Mei Dong
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
5
|
Winter H, Winski G, Busch A, Chernogubova E, Fasolo F, Wu Z, Bäcklund A, Khomtchouk BB, Van Booven DJ, Sachs N, Eckstein HH, Wittig I, Boon RA, Jin H, Maegdefessel L. Targeting long non-coding RNA NUDT6 enhances smooth muscle cell survival and limits vascular disease progression. Mol Ther 2023; 31:1775-1790. [PMID: 37147804 PMCID: PMC10277891 DOI: 10.1016/j.ymthe.2023.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Greg Winski
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty, Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | | | - Bohdan B Khomtchouk
- Department of BioHealth Informatics, Indiana University, Indianapolis, IN, USA; Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Reinier A Boon
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany; Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany; Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, 1081 Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, 1105 Amsterdam, the Netherlands
| | - Hong Jin
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|