1
|
Saha P, Guha S, Biswas SC. P38K and JNK pathways are induced by amyloid-β in astrocyte: Implication of MAPK pathways in astrogliosis in Alzheimer's disease. Mol Cell Neurosci 2020; 108:103551. [PMID: 32896578 DOI: 10.1016/j.mcn.2020.103551] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocyte activation is one of the crucial hallmarks of Alzheimer's disease (AD) along with amyloid-β (Aβ) plaques, neurofibrillary tangles and neuron death. Glial scar and factors secreted from activated astrocytes have important contribution on neuronal health in AD. In this study, we investigated the mechanisms of astrocyte activation both in in vitro and in vivo models of AD. In this regard, mitogen activated protein kinase (MAPK) signalling cascades that control several fundamental and stress related cellular events, has been implicated in astrocyte activation in various neurological diseases. We checked activation of different MAPKs by western blot and immunocytochemistry and found that both JNK and p38K, but not ERK pathways are activated in Aβ-treated astrocytes in culture and in Aβ-infused rat brain cortex. Next, to investigate the downstream consequences of these two MAPKs (JNK and p38K) in Aβ-induced astrocyte activation, we individually blocked these pathways by specific inhibitors in presence and absence of Aβ and checked Aβ-induced cellular proliferation, morphological changes and glial fibrillary acidic protein (GFAP) upregulation. We found that activation of both JNK and p38K signalling cascades are involved in astrocyte proliferation evoked by Aβ, whereas only p38K pathway is implicated in morphological changes and GFAP upregulation in astrocytes exposed to Aβ. To further validate the implication of p38K pathway in Aβ-induced astrocyte activation, we also observed that transcription factor ATF2, a downstream phosphorylation substrate of p38, is phosphorylated upon Aβ treatment. Taken together, our study indicates that p38K and JNK pathways mediate astrocyte activation and both the pathways are involved in cellular proliferation but only p38K pathway contributes in morphological changes triggered by Aβ.
Collapse
Affiliation(s)
- Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhalakshmi Guha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
2
|
Manisha C, Selvaraj A, Jubie S, Moola Joghee Nanjan C, Moola Joghee N, Clement JP, Justin A. Positive allosteric activation of glial EAAT-2 transporter protein: A novel strategy for Alzheimer’s disease. Med Hypotheses 2020; 142:109794. [DOI: 10.1016/j.mehy.2020.109794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/28/2020] [Indexed: 12/16/2022]
|
3
|
Tau-Centric Targets and Drugs in Clinical Development for the Treatment of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3245935. [PMID: 27429978 PMCID: PMC4939203 DOI: 10.1155/2016/3245935] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/19/2016] [Indexed: 11/17/2022]
Abstract
The failure of several Phase II/III clinical trials in Alzheimer's disease (AD) with drugs targeting β-amyloid accumulation in the brain fuelled an increasing interest in alternative treatments against tau pathology, including approaches targeting tau phosphatases/kinases, active and passive immunization, and anti-tau aggregation. The most advanced tau aggregation inhibitor (TAI) is methylthioninium (MT), a drug existing in equilibrium between a reduced (leuco-methylthioninium) and oxidized form (MT+). MT chloride (methylene blue) was investigated in a 24-week Phase II clinical trial in 321 patients with mild to moderate AD that failed to show significant positive effects in mild AD patients, although long-term observations (50 weeks) and biomarker studies suggested possible benefit. The dose of 138 mg/day showed potential benefits on cognitive performance of moderately affected AD patients and cerebral blood flow in mildly affected patients. Further clinical evidence will come from the large ongoing Phase III trials for the treatment of AD and the behavioral variant of frontotemporal dementia on a new form of this TAI, more bioavailable and less toxic at higher doses, called TRx0237. More recently, inhibitors of tau acetylation are being actively pursued based on impressive results in animal studies obtained by salsalate, a clinically used derivative of salicylic acid.
Collapse
|
4
|
Huang C, Ng OTW, Ho YS, Irwin MG, Chang RCC, Wong GTC. Effect of Continuous Propofol Infusion in Rat on Tau Phosphorylation with or without Temperature Control. J Alzheimers Dis 2016; 51:213-26. [PMID: 26836157 DOI: 10.3233/jad-150645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several studies suggest a relationship between anesthesia-induced tau hyperphosphorylation and the development of postoperative cognitive dysfunction. This study further characterized the effects of continuous propofol infusion on tau protein phosphorylation in rats, with or without temperature control. Propofol was administered intravenously to 8-10-week-old male Sprague-Dawley rats and infused to the loss of the righting reflex for 2 h continuously. Proteins from cortex and hippocampus were examined by western blot and immunohistochemistry. Rectal temperature was significantly decreased during propofol infusion. Propofol with hypothermia significantly increased phosphorylation of tau at AT8, AT180, Thr205, and Ser199 in cortex and hippocampus except Ser396. With temperature maintenance, propofol still induced significant elevation of AT8, Thr205, and Ser199 in cortex and hippocampus; however, increase of AT180 and Ser396 was only found in hippocampus and cortex, respectively. Differential effects of propofol with or without hypothermia on multiple tau related kinases, such as Akt/GSK3β, MAPK pathways, or phosphatase (PP2A), were demonstrated in region-specific manner. These findings indicated that propofol increased tau phosphorylation under both normothermic and hypothermic conditions, and temperature control could partially attenuate the hyperphosphorylation of tau. Further studies are warranted to determine the long-term impact of propofol on the tau pathology and cognitive functions.
Collapse
Affiliation(s)
- Chunxia Huang
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Olivia Tsz-Wa Ng
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Michael Garnet Irwin
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Gordon Tin-Chun Wong
- Department of Anaesthesiology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Research Centre of Heart, Brain, Hormone and Healthy Aging, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
5
|
Escitalopram Ameliorates Forskolin-Induced Tau Hyperphosphorylation in HEK239/tau441 Cells. J Mol Neurosci 2015; 56:500-8. [PMID: 25687330 DOI: 10.1007/s12031-015-0519-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
To investigate the effect of escitalopram (a widely used and highly efficacious antidepressant from the SSRI class) on tau hyperphosphorylation, HEK293/tau441 cells were pretreated with 4 μM of forskolin for 2 h. Then we treated the cells with different doses of escitalopram (0, 5, 10, 20, 40, 80 μM) for 22 h. We measured the phosphorylation level of tau by Western blotting. It was shown that escitalopram could protect tau from hyperphosphorylation induced by pharmacological activation of protein kinase A (PKA) at a dose of 20, 40, and 80 μM in vitro. Interestingly, the same dose of escitalopram could also increase the level of serine-9-phosphorylated GSK-3β (inactive form) and the phosphorylation level of Akt at Ser473 (active form) with no significant change in the level of total GSK-3β and Akt. Unexpectedly, 5-hydroxytryptamine 1A receptor (5-HT1A) agonist 8-OH-DPAT did not decrease forskolin-induced tau hyperphosphorylation. Our results suggest that escitalopram can ameliorate forskolin-induced tau hyperphosphorylation, which is not through the typical 5-HT1A pathway, and Akt/GSK-3β signaling pathway is involved. These findings may support an effective role of antidepressants in the prevention of dementia associated with depression in patients.
Collapse
|
6
|
Rodriguez R, Lopera F, Alvarez A, Fernandez Y, Galan L, Quiroz Y, Bobes MA. Spectral Analysis of EEG in Familial Alzheimer's Disease with E280A Presenilin-1 Mutation Gene. Int J Alzheimers Dis 2014; 2014:180741. [PMID: 24551475 PMCID: PMC3914466 DOI: 10.1155/2014/180741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/13/2013] [Indexed: 11/17/2022] Open
Abstract
To evaluate the hypothesis that quantitative EEG (qEEG) analysis is susceptible to detect early functional changes in familial Alzheimer's disease (AD) preclinical stages. Three groups of subjects were selected from five extended families with hereditary AD: a Probable AD group (18 subjects), an asymptomatic carrier (ACr) group (21 subjects), with the mutation but without any clinical symptoms of dementia, and a normal group of 18 healthy subjects. In order to reveal significant differences in the spectral parameter, the Mahalanobis distance (D (2)) was calculated between groups. To evaluate the diagnostic efficiency of this statistic D (2), the ROC models were used. The ROC curve was summarized by accuracy index and standard deviation. The D (2) using the parameters of the energy in the fast frequency bands shows accurate discrimination between normal and ACr groups (area ROC = 0.89) and between AD probable and ACr groups (area ROC = 0.91). This is more significant in temporal regions. Theses parameters could be affected before the onset of the disease, even when cognitive disturbance is not clinically evident. Spectral EEG parameter could be firstly used to evaluate subjects with E280A Presenilin-1 mutation without impairment in cognitive function.
Collapse
Affiliation(s)
- Rene Rodriguez
- Clinical Neurophysiology Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | | | - Alfredo Alvarez
- Clinical Neurophysiology Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | - Yuriem Fernandez
- Cognitive Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | - Lidice Galan
- Cognitive Department, Cuban Neuroscience Center, Havana, CP 10400, Cuba
| | | | | |
Collapse
|
7
|
Waedt J, Kleinow M, Kornhuber J, Lewczuk P. Neurochemical dementia diagnostics for Alzheimer’s disease and other dementias: an ISO 15189 perspective. Biomark Med 2012; 6:685-90. [DOI: 10.2217/bmm.12.63] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dementia is one of the most common causes of health problems in the elderly populations of Western industrialized countries. A combined analysis of cerebrospinal fluid-based neurochemical dementia diagnostics biomarkers (amyloid-β peptides, total tau and phosphorylated forms of tau) provides sensitivity and specificity in the range of 85% for the diagnosis of Alzheimer’s disease, the most common cause of dementia. The alterations occur very early in the course of neurodegeneration, enabling medical follow-up of persons with increased risk of developing dementia. With a growing number of laboratories performing neurochemical dementia diagnostics routinely, it is important to standardize protocols and laboratory performance to enable comparisons of results and their interpretations. Together with the recently published expert guidelines for sample handling and preparation, as well as the interpretation (post-analytical) algorithms developed by experienced centers, ISO 15189 norm provides an extremely useful tool for standardization of neurochemical dementia diagnostics.
Collapse
Affiliation(s)
- Johanna Waedt
- Department of Psychiatry & Psychotherapy, Universitätsklinikum Erlangen & Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martina Kleinow
- Department of Psychiatry & Psychotherapy, Universitätsklinikum Erlangen & Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry & Psychotherapy, Universitätsklinikum Erlangen & Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Piotr Lewczuk
- Department of Psychiatry & Psychotherapy, Universitätsklinikum Erlangen & Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
8
|
Shuai H, Zhang J, Zhang J, Xie J, Zhang M, Ma J, Zhang L, Wang X. Role of stereotaxically injected IgG from db/db mice in the phosphorylation of the microtubule-associated protein tau in hippocampus. Brain Res 2012; 1486:14-26. [PMID: 23036273 DOI: 10.1016/j.brainres.2012.08.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/21/2012] [Accepted: 08/25/2012] [Indexed: 11/29/2022]
Abstract
People with type 2 diabetes (T2DM) mellitus are high risk for dementia and Alzheimer's disease (AD) via several plausible pathways. However, the underlying mechanisms have been still unclear, and the relation of immune injury to the pathogenesis of T2DM-related AD is not yet completely understood. Our present study aimed to elucidate the possible role of immunoglobulin IgG in the immune process of AD associated with T2DM in db/db mice. Hippocampi of 20 db/db mice and 20 C57BL/6 mice were subjected to immunohistochemistry and immunofluorescence assays. The phosphorylation of tau, glycogen synthase kinase (GSK)-3β and AKT activity was examined by Western blot analysis. IgG purified from the sera of IgG deposit-positive db/db mice was stereotaxically injected into the hippocampi of another 12 db/db mice and 12 C57BL/6 mice. The phosphorylation of tau, Abeta, GSK-3β and AKT activity was analyzed. Compared with the C57BL/6 control, 13 of the 20 db/db mice exhibited high levels of IgG deposits in the hippocampus. Treatment with IgG triggered tau hyperphosphorylations and Abeta deposition, which are likely major factors in AD. Meanwhile, IgG inhibited AKT phosphorylation and promoted GSK-3β activity. The IgG deposits observed in some db/db mice were possibly related to the impairment of T2DM-related AD development. Some autoimmune processes may be involved in AD in type 2 diabetes mellitus development at the level of the hippocampus.
Collapse
Affiliation(s)
- Hongxia Shuai
- Department of Endocrinology, XiangYang Central Hospital, XiangYang, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Lewczuk P, Kornhuber J. Neurochemical dementia diagnostics in Alzheimer's disease: where are we now and where are we going? Expert Rev Proteomics 2012; 8:447-58. [PMID: 21819301 DOI: 10.1586/epr.11.37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neurochemical dementia diagnostics (NDD) is a routine laboratory tool used in the diagnostic process for patients with neurodegenerative disorders, such as Alzheimer's disease. Currently, two groups of biomarkers analyzed in the cerebrospinal fluid are considered - namely amyloid-β peptides and Tau proteins - along with the hyperphosphorylated forms of the latter (pTau). Current directions in the development of NDD include the following: search for novel biomarkers with improved analytical or diagnostic performance; optimization of the analysis of the biomarkers already available (e.g., by improved quality control and interlaboratory comparison of results); applications of novel technologies enabling better management of patient samples; and search for biomarkers in the blood. This article presents the state-of-the-art in the field of cerebrospinal fluid-based NDD, and also summarizes some of the hypotheses of how the future development of NDD tools might look.
Collapse
Affiliation(s)
- Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg, Germany.
| | | |
Collapse
|
10
|
Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, Greco A, Seripa D, Pilotto A. Immunotherapy for Alzheimer's disease: from anti-β-amyloid to tau-based immunization strategies. Immunotherapy 2012; 4:213-38. [PMID: 22339463 DOI: 10.2217/imt.11.170] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The exact mechanisms leading to Alzheimer's disease (AD) are largely unknown, limiting the identification of effective disease-modifying therapies. The two principal neuropathological hallmarks of AD are extracellular β-amyloid (Aβ), peptide deposition (senile plaques) and intracellular neurofibrillary tangles containing hyperphosphorylated tau protein. During the last decade, most of the efforts of the pharmaceutical industry were directed against the production and accumulation of Aβ. The most innovative of the pharmacological approaches was the stimulation of Aβ clearance from the brain of AD patients via the administration of Aβ antigens (active vaccination) or anti-Aβ antibodies (passive vaccination). Several active and passive anti-Aβ vaccines are under clinical investigation. Unfortunately, the first active vaccine (AN1792, consisting of preaggregate Aβ and an immune adjuvant, QS-21) was abandoned because it caused meningoencephalitis in approximately 6% of treated patients. Anti-Aβ monoclonal antibodies (bapineuzumab and solanezumab) are now being developed. The clinical results of the initial studies with bapineuzumab were equivocal in terms of cognitive benefit. The occurrence of vasogenic edema after bapineuzumab, and more rarely brain microhemorrhages (especially in Apo E ε4 carriers), has raised concerns on the safety of these antibodies directed against the N-terminus of the Aβ peptide. Solanezumab, a humanized anti-Aβ monoclonal antibody directed against the midregion of the Aβ peptide, was shown to neutralize soluble Aβ species. Phase II studies showed a good safety profile of solanezumab, while studies on cerebrospinal and plasma biomarkers documented good signals of pharmacodynamic activity. Although some studies suggested that active immunization may be effective against tau in animal models of AD, very few studies regarding passive immunization against tau protein are currently available. The results of the large, ongoing Phase III trials with bapineuzumab and solanezumab will tell us if monoclonal anti-Aβ antibodies may slow down the rate of deterioration of AD. Based on the new diagnostic criteria of AD and on recent major failures of anti-Aβ drugs in mild-to-moderate AD patients, one could argue that clinical trials on potential disease-modifying drugs, including immunological approaches, should be performed in the early stages of AD.
Collapse
Affiliation(s)
- Francesco Panza
- Geriatric Unit & Gerontology-Geriatric Research Laboratory, IRCCS Casa Sollievo della Sofferenza, Foggia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
MicroRNAs and the Regulation of Tau Metabolism. Int J Alzheimers Dis 2012; 2012:406561. [PMID: 22720189 PMCID: PMC3374946 DOI: 10.1155/2012/406561] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 04/19/2012] [Indexed: 11/17/2022] Open
Abstract
Abnormal regulation of tau phosphorylation and/or alternative splicing is associated with the development of a large (>20) group of neurodegenerative disorders collectively known as tauopathies, the most common being Alzheimer's disease. Despite intensive research, little is known about the molecular mechanisms that participate in the transcriptional and posttranscriptional regulation of endogenous tau, especially in neurons. Recently, we showed that mice lacking Dicer in the forebrain displayed progressive neurodegeneration accompanied by disease-like changes in tau phosphorylation and splicing. Dicer is a key enzyme in the biogenesis of microRNAs (miRNAs), small noncoding RNAs that function as part of the RNA-induced silencing complex (RISC) to repress gene expression at the posttranscriptional level. We identified miR-16 and miR-132 as putative endogenous modulators of neuronal tau phosphorylation and tau exon 10 splicing, respectively. Interestingly, these miRNAs have been implicated in cell survival and function, whereas changes in miR-16/132 levels correlate with tau pathology in human neurodegenerative disorders. Thus, understanding how miRNA networks influence tau metabolism and possibly other biological systems might provide important clues into the molecular causes of tauopathies, particularly the more common but less understood sporadic forms.
Collapse
|
12
|
Neill D. Should Alzheimer's disease be equated with human brain ageing? A maladaptive interaction between brain evolution and senescence. Ageing Res Rev 2012; 11:104-22. [PMID: 21763787 DOI: 10.1016/j.arr.2011.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/26/2011] [Accepted: 06/28/2011] [Indexed: 10/18/2022]
Abstract
In this review Alzheimer's disease is seen as a maladaptive interaction between human brain evolution and senescence. It is predicted to occur in everyone although does not necessarily lead to dementia. The pathological process is initiated in relation to a senescence mediated functional down-regulation in the posteromedial cortex (Initiation Phase). This leads to a loss of glutamatergic excitatory input to layer II entorhinal cortex neurons. A human specific maladaptive neuroplastic response is initiated in these neurons leading to neuronal dysfunction, NFT formation and death. This leads to further loss of glutamatergic excitatory input and propagation of the maladaptive response along excitatory pathways linking evolutionary progressed vulnerable neurons (Propagation Phase). Eventually neurons are affected in many brain areas resulting in dementia. Possible therapeutic approaches include enhancing glutamatergic transmission. The theory may have implications with regards to how Alzheimer's disease is classified.
Collapse
|
13
|
Liao K, Liu D, Zhu LQ. Enriched odor exposure decrease tau phosphorylation in the rat hippocampus and cortex. Neurosci Lett 2012; 507:22-6. [DOI: 10.1016/j.neulet.2011.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
|
14
|
Lizio R, Vecchio F, Frisoni GB, Ferri R, Rodriguez G, Babiloni C. Electroencephalographic rhythms in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:927573. [PMID: 21629714 PMCID: PMC3100729 DOI: 10.4061/2011/927573] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 03/13/2011] [Indexed: 11/20/2022] Open
Abstract
Physiological brain aging is characterized by synapses loss and neurodegeneration that slowly lead to an age-related decline of cognition. Neural/synaptic redundancy and plastic remodelling of brain networking, also due to mental and physical training, promotes maintenance of brain activity in healthy elderly subjects for everyday life and good social behaviour and intellectual capabilities. However, age is the major risk factor for most common neurodegenerative disorders that impact on cognition, like Alzheimer's disease (AD). Brain electromagnetic activity is a feature of neuronal network function in various brain regions. Modern neurophysiological techniques, such as electroencephalography (EEG) and event-related potentials (ERPs), are useful tools in the investigation of brain cognitive function in normal and pathological aging with an excellent time resolution. These techniques can index normal and abnormal brain aging analysis of corticocortical connectivity and neuronal synchronization of rhythmic oscillations at various frequencies. The present review suggests that discrimination between physiological and pathological brain aging clearly emerges at the group level, with suggested applications also at the level of single individual. The possibility of combining the use of EEG together with biological/neuropsychological markers and structural/functional imaging is promising for a low-cost, non-invasive, and widely available assessment of groups of individuals at-risk.
Collapse
|
15
|
Hébert SS, Papadopoulou AS, Smith P, Galas MC, Planel E, Silahtaroglu AN, Sergeant N, Buée L, De Strooper B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010; 19:3959-69. [PMID: 20660113 DOI: 10.1093/hmg/ddq311] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Type III RNase Dicer is responsible for the maturation and function of microRNA (miRNA) molecules in the cell. It is now well-documented that Dicer and the fine-tuning of the miRNA gene network are important for neuronal integrity. However, the underlying mechanisms involved in neuronal death, particularly in the adult brain, remain poorly defined. Here we show that the absence of Dicer in the adult forebrain is accompanied by a mixed neurodegenerative phenotype. Although neuronal loss is observed in the hippocampus, cellular shrinkage is predominant in the cortex. Interestingly, neuronal degeneration coincides with the hyperphosphorylation of endogenous tau at several epitopes previously associated with neurofibrillary pathology. Transcriptome analysis of enzymes involved in tau phosphorylation identified ERK1 as one of the candidate kinases responsible for this event in vivo. We further demonstrate that miRNAs belonging to the miR-15 family are potent regulators of ERK1 expression in mouse neuronal cells and co-expressed with ERK1/2 in vivo. Finally, we show that miR-15a is specifically downregulated in Alzheimer's disease brain. In summary, these results support the hypothesis that changes in the miRNA network may contribute to a neurodegenerative phenotype by affecting tau phosphorylation.
Collapse
|
16
|
Abstract
Alzheimer's disease is a progressive neurodegenerative disease for which no cure exists. There is a substantial need for new therapies that offer improved symptomatic benefit and disease-slowing capabilities. In recent decades there has been substantial progress in understanding the molecular and cellular changes associated with Alzheimer's disease pathology. This has resulted in identification of a large number of new drug targets. These targets include, but are not limited to, therapies that aim to prevent production of or remove the amyloid-beta protein that accumulates in neuritic plaques; to prevent the hyperphosphorylation and aggregation into paired helical filaments of the microtubule-associated protein tau; and to keep neurons alive and functioning normally in the face of these pathologic challenges. We provide a review of these targets for drug development.
Collapse
Affiliation(s)
- Joshua D Grill
- Mary S. Easton Center for Alzheimer's Disease Research, Deane F. Johnson Center for Neurotherapeutics, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|
17
|
c-Abl tyrosine kinase modulates tau pathology and Cdk5 phosphorylation in AD transgenic mice. Neurobiol Aging 2009; 32:1249-61. [PMID: 19700222 DOI: 10.1016/j.neurobiolaging.2009.07.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 06/18/2009] [Accepted: 07/17/2009] [Indexed: 12/11/2022]
Abstract
The c-Abl tyrosine kinase is an important link in signal transduction pathways that promote cytoskeletal rearrangement and apoptotic signalling. We have previously shown that amyloid-β-peptide (Aβ) activates c-Abl. Herein we show that c-Abl participates in Aβ-induced tau phosphorylation through Cdk5 activation. We found that intraperitoneal administration of STI571, a specific inhibitor for c-Abl kinase, decreased tau phosphorylation in the APPswe/PSEN1ΔE9 transgenic mouse brain. In addition, when neurons were treated with Aβ we observed: (i) an increase in active c-Abl and tau phosphorylation, (ii) the prevention of tau phosphorylation by STI571 and (iii) the inhibition of c-Abl expression by shRNA, as well as the expression of a c-Abl kinase death mutant, decreased AT8 and PHF1 signals. Furthermore, the increase of c-Abl was associated with Tyr15 phosphorylation of Cdk5 and its association with c-Abl. Brains from APPswe/PSEN1ΔE9 mice showed higher levels of c-Abl and phospho-Cdk5 than wild-type mice. Moreover, STI571 treatment decreased the phospho-Cdk5 levels. Together, the evidence suggests that activation of c-Abl by Aβ promotes tau phosphorylation through Tyr15 phosphorylation-mediated Cdk5 activation.
Collapse
|
18
|
Liu XA, Zhu LQ, Zhang Q, Shi HR, Wang SH, Wang Q, Wang JZ. Estradiol attenuates tau hyperphosphorylation induced by upregulation of protein kinase-A. Neurochem Res 2008; 33:1811-20. [PMID: 18338250 DOI: 10.1007/s11064-008-9638-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 02/20/2008] [Indexed: 12/16/2022]
Abstract
Protein kinase A (PKA) plays a crucial role in tau hyperphosphorylation, an early event of Alzheimer disease (AD), and 17beta-estradiol replacement in aging women forestalls the onset of AD. However, the role of estradiol in PKA-induced tau hyperphosphorylation is not known. Here, we investigated the effect of 17beta-estradiol on cAMP/PKA activity and the PKA-induced tau hyperphosphorylation in HEK293 cells stably expressing tau441. We found that 17beta-estradiol effectively attenuated forskolin-induced overactivation of PKA and elevation of cAMP, and thus prevented tau from hyperphosphorylation. These data provide the first evidence that 17beta-estradiol can inhibit PKA overactivation and the PKA-induced tau hyperphosphorylation, implying a preventive role of 17beta-estradiol in AD-like tau pathology.
Collapse
Affiliation(s)
- Xin-An Liu
- Pathophysiology Department, Tongji Medical College, Hua-Zhong University of Science and Technology, Wuhan, 430030, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Lewczuk P, Wiltfang J. Neurochemical dementia diagnostics: State of the art and research perspectives. Proteomics 2008; 8:1292-301. [DOI: 10.1002/pmic.200700703] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
20
|
Rossini PM, Rossi S, Babiloni C, Polich J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol 2007; 83:375-400. [PMID: 17870229 DOI: 10.1016/j.pneurobio.2007.07.010] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 05/03/2007] [Accepted: 07/26/2007] [Indexed: 02/06/2023]
Abstract
Physiological brain aging is characterized by a loss of synaptic contacts and neuronal apoptosis that provokes age-dependent decline of sensory processing, motor performance, and cognitive function. Neural redundancy and plastic remodelling of brain networking, also secondary to mental and physical training, promotes maintenance of brain activity in healthy elderly for everyday life and fully productive affective and intellectual capabilities. However, age is the main risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) that impact on cognition. Oscillatory electromagnetic brain activity is a hallmark of neuronal network function in various brain regions. Modern neurophysiological techniques including electroencephalography (EEG), event-related potential (ERP), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) can accurately index normal and abnormal brain aging to facilitate non-invasive analysis of cortico-cortical connectivity and neuronal synchronization of firing and coherence of rhythmic oscillations at various frequencies. The present review provides a perspective of these issues by assaying different neurophysiological methods and integrating the results with functional brain imaging findings. It is concluded that discrimination between physiological and pathological brain aging clearly emerges at the group level, with applications at the individual level also suggested. Integrated approaches utilizing neurophysiological techniques together with biological markers and structural and functional imaging are promising for large-scale, low-cost and non-invasive evaluation of at-risk populations. Practical implications of the methods are emphasized.
Collapse
Affiliation(s)
- Paolo M Rossini
- Clinica Neurologica University Campus Bio-Medico, Rome, Italy.
| | | | | | | |
Collapse
|
21
|
Chen B, Cheng M, Hong DJ, Sun FY, Zhu CQ. Okadaic acid induced cyclin B1 expression and mitotic catastrophe in rat cortex. Neurosci Lett 2006; 406:178-82. [PMID: 16919876 DOI: 10.1016/j.neulet.2006.06.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 06/03/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
Accumulating evidence indicates that the aberrant re-entry of post-mitotic neurons into the G2/M phase of cell cycle and the resulting mitotic catastrophe may contribute to the pathogenesis of Alzheimer's disease. However, the cellular event that drives the differentiated neurons to abnormally enter G2/M phase remains elusive. Similarly, whether mitotic catastrophe is indeed one of the death pathways for differentiated neurons is not clear. Previous studies revealed that okadaic acid (OA), a phosphatase inhibitor that induces AD like pathological changes, evokes mitotic changes in neuroblastoma cells. In this study, we examined the in vivo effects of OA on cyclin B1 expression, the induction of mitosis, and subsequent mitotic catastrophe. We found that cyclin B1 expression in adult neurons was significantly increased after injecting OA into rat frontal cortex, which also increased tau protein phosphorylation. Interestingly, cyclin B1 and phosphorylated tau were well co-localized around the OA injection site, but were only partially co-localized in other brain regions. Staining with toluidine blue, Giemsa dye or propidium iodide revealed typical mitotic and mitotic catastrophe-like morphological changes with irregular arrangement of condensed chromatin and chromosome fibers in a few cells. Furthermore, the strong cyclin B1 staining in these cells suggests that cyclin B1 promoted G2 to M phase transition is required for the mitotic catastrophe. The detection of neuron-specific enolase in a portion of these cells demonstrated that at least part them are neuron. All together, our results suggest that the disturbance of the protein kinase-phosphatase system caused by OA is sufficient to induce neuronal cyclin B1 expression, force neurons into the mitotic phase of cell cycle, and cause mitotic catastrophe.
Collapse
Affiliation(s)
- Bo Chen
- National Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | | | | | | | | |
Collapse
|
22
|
de Almeida LMV, Funchal C, Gottfried C, Wajner M, Pessoa-Pureur R. Propionic acid induces cytoskeletal alterations in cultured astrocytes from rat cerebral cortex. Metab Brain Dis 2006; 21:51-62. [PMID: 16773470 DOI: 10.1007/s11011-006-9002-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 01/04/2006] [Indexed: 02/08/2023]
Abstract
Severe neurological symptoms, cerebral edema, and atrophy are common features of the inherited metabolic disorder propionic acidemia. However, the pathomechanisms involved in the neuropathology of this disease are not well established. In this study, we investigate the effects of propionic acid (PA), a metabolite accumulating in this disorder, on cytoskeletal reorganization, on cell viability, and on the in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes from cerebral cortex of neonatal rats. We observed that the astrocytes changed their usual polygonal morphology when exposed to 5 mM PA for 72 h, leading to the appearance of fusiform or process-bearing cells, without elicit cell death. We also noticed that after 72 h treatment with 5 mM PA cells showed retracted cytoplasm with bipolar processes containing packed GFAP filaments and disorganized actin stress fibers, as revealed by immunocytochemistry. In addition, the morphological alterations were accompanied by increased in vitro 32P incorporation into GFAP and vimentin recovered into the high-salt Triton-insoluble cytoskeletal fraction. In conclusion, our results indicate that PA lead to cytoskeletal reorganization and to increased in vitro phosphorylation of Triton-insoluble GFAP and vimentin. On the basis of our results we could suppose that Triton-insoluble GFAP and vimentin hyperphosphorylation could be implicated in the reorganization of cellular structure and these findings could be involved in the brain damage characteristic of propionic acidemia patients.
Collapse
Affiliation(s)
- Lúcia Maria Vieira de Almeida
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003 Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
23
|
Zhang Y, Li HL, Wang DL, Liu SJ, Wang JZ. A transitory activation of protein kinase-A induces a sustained tau hyperphosphorylation at multiple sites in N2a cells-imply a new mechanism in Alzheimer pathology. J Neural Transm (Vienna) 2006; 113:1487-97. [PMID: 16465464 DOI: 10.1007/s00702-005-0421-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/23/2005] [Indexed: 01/21/2023]
Abstract
Overactivation of protein kinase in the end stage of Alzheimer's disease brain has not been established. The purpose of the present study was to explore the possible mechanism for protein kinases in leading to Alzheimer-like tau hyperphosphorylation. We found that incubation of N2a/tau441 with forskolin, a specific activator of cAMP-dependent protein kinase (PKA), induced an increased phosphorylation level of tau at both PKA and non-PKA sites in a dose- and time-dependent manner, and the hyperphosphorylation of tau was positively correlated with the elevation of PKA activity. When the cells were transitorily incubated with forskolin, a temporary activation of PKA with a sustained and almost equally graded tau hyperphosphorylation at some non-PKA sites was observed. In either case, the activity of glycogen synthase kinase-3 (GSK-3) was not changed. It is suggested that only transitory activation of PKA in early stage of Alzheimer disease may result in a sustained tau hyperphosphorylation at multiple sites, implying a new mechanism to Alzheimer-like tau hyperphosphorylation.
Collapse
Affiliation(s)
- Y Zhang
- Pathophysiology Department, Key Laboratory for Neurological Diseases of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | |
Collapse
|
24
|
Wiltfang J, Lewczuk P, Riederer P, Grünblatt E, Hock C, Scheltens P, Hampel H, Vanderstichele H, Iqbal K, Galasko D, Lannfelt L, Otto M, Esselmann H, Henkel AW, Kornhuber J, Blennow K. Consensus paper of the WFSBP Task Force on Biological Markers of Dementia: the role of CSF and blood analysis in the early and differential diagnosis of dementia. World J Biol Psychiatry 2005; 6:69-84. [PMID: 16156480 DOI: 10.1080/15622970510029786] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Aging of population, and increasing life expectancy result in an increasing number of patients with dementia. This symptom can be a part of a completely curable disease of the central nervous system (e.g, neuroinflammation), or a disease currently considered irreversible (e.g, Alzheimer's disease, AD). In the latter case, several potentially successful treatment approaches are being tested now, demanding reasonable standards of pre-mortem diagnosis. Cerebrospinal fluid and serum analysis (CSF/serum analysis), whereas routinely performed in neuroinflammatory diseases, still requires standardization to be used as an aid to the clinically based diagnosis of AD. Several AD-related CSF parameters (total tau, phosphorylated forms of tau, Abeta peptides, ApoE genotype, p97, etc.) tested separately or in a combination provide sensitivity and specificity in the range of 85%, the figure commonly expected from a good diagnostic tool. In this review, recently published reports regarding progress in neurochemical pre-mortem diagnosis of dementias are discussed with a focus on an early and differential diagnosis of AD. Novel perspectives offered by recently introduced technologies, e.g, fluorescence correlation spectroscopy (FCS) and surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) are briefly discussed.
Collapse
Affiliation(s)
- J Wiltfang
- Molecular Neurobiology Lab, Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Funchal C, Zamoner A, dos Santos AQ, Moretto MB, Rocha JBT, Wajner M, Pessoa-Pureur R. Evidence that intracellular Ca2+ mediates the effect of α-ketoisocaproic acid on the phosphorylating system of cytoskeletal proteins from cerebral cortex of immature rats. J Neurol Sci 2005; 238:75-82. [PMID: 16111708 DOI: 10.1016/j.jns.2005.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/13/2005] [Accepted: 06/27/2005] [Indexed: 02/07/2023]
Abstract
In this study we investigated the involvement of Ca2+ on the effects of alpha-ketoisocaproic acid (KIC), the main metabolite accumulating in maple syrup urine disease (MSUD), on the phosphorylating system associated with the intermediate filament (IF) proteins in slices from cerebral cortex of 9-day-old rats. We first observed that KIC significantly decreased the in vitro phosphorylation of IF proteins in brain slices. KIC-induced dephosphorylation was mediated especially by the protein phosphatase PP2B, a Ca2+-dependent protein phosphatase, but also by PP2A. We also demonstrated the involvement of Ca2+-dependent mechanisms in the KIC effects using the specific L-voltage-dependent Ca2+ channels (L-VDCC) inhibitor nifedipine, the NMDA antagonist DL-AP5 and the intracellular Ca2+ chelator BAPTA-AM. Blockage of Ca2+ channels or chelating intracellular Ca2+ completely prevented the effects of KIC on the phosphorylating system associated to IF proteins. In addition, we verified that KIC increased 45Ca2+ uptake in brain slices after 3 and 30 min incubation. Taken together, our present data indicate that KIC increase intracellular Ca2+ levels, probably promoting the activation of calcineurin. These results might be associated with the increased dephosphorylation of the IF proteins in slices of cerebral cortex of immature rats exposed to KIC at similar concentrations from those found in blood and tissues of patients with MSUD.
Collapse
Affiliation(s)
- Cláudia Funchal
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Rua Ramiro Barcelos 2600 anexo, 90035-003 Porto Alegre RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
26
|
Funchal C, Dos Santos AQ, Jacques-Silva MC, Zamoner A, Gottfried C, Wajner M, Pessoa-Pureur R. Branched-chain alpha-keto acids accumulating in maple syrup urine disease induce reorganization of phosphorylated GFAP in C6-glioma cells. Metab Brain Dis 2005; 20:205-17. [PMID: 16167198 DOI: 10.1007/s11011-005-7208-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/07/2005] [Indexed: 11/30/2022]
Abstract
In this study we investigate the effects of the branched-chain keto acids (BCKA) alpha-ketoisocaproic (KIC), alpha-ketoisovaleric (KIV), and alpha-keto-beta-methylvaleric (KMV) acids, metabolites accumulating in maple syrup urine disease (MSUD), on the in vitro phosphorylation of glial fibrillary acidic protein (GFAP) and cytoskeletal reorganization in C6-glioma cells. We observed that after 3 h treatment with KIC, KIV, or KMV cells showed retracted cytoplasm with bipolar processes containing packed GFAP filaments as revealed by immunocytochemistry. Western Blot analysis by anti-GFAP monoclonal antibody demonstrated that BCKA were not able to alter GFAP immunocontent in total cell homogenate, but the immunocontent as well as the in vitro (32)P incorporation into GFAP recovered into the high salt Triton-insoluble cytoskeletal fraction were significantly increased. Western Blot using monoclonal antiphosphoserine antibody showed that BCKA induced increased immunocontent of phosphoserine-containing amino acids in several proteins in total cell homogenate. In addition, the immunocontent of phosphoserine-containing amino acids was also greatly increased in GFAP recovered in the high-salt Triton insoluble cytoskeletal fraction, corresponding to the polymerized intermedite filament (IF) proteins present in the cell. In conclusion, our results indicate that KIC, KIV, or KMV increased the serine/threonine in vitro phosphorylation of GFAP leading to increased Triton-insoluble GFAP immunocontent and cytoskeletal reorganization. Considering IF networks can be regulated by phosphorylation of polypeptide subunits leading to reorganization of the IF filamentous structure, we could suppose that GFAP hyperphosphorylation and disorganization of cellular structure could be involved in the brain damage characteristic of MSUD patients.
Collapse
Affiliation(s)
- Cláudia Funchal
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Johnson GVW, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 2005; 117:5721-9. [PMID: 15537830 DOI: 10.1242/jcs.01558] [Citation(s) in RCA: 431] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tau is a group of neuronal microtubule-associated proteins that are formed by alternative mRNA splicing and accumulate in neurofibrillary tangles in Alzheimer's disease (AD) brain. Tau plays a key role in regulating microtubule dynamics, axonal transport and neurite outgrowth, and all these functions of tau are modulated by site-specific phosphorylation. There is significant evidence that a disruption of normal phosphorylation events results in tau dysfunction in neurodegenerative diseases, such as AD, and is a contributing factor to the pathogenic processes. Indeed, the abnormal tau phosphorylation that occurs in neurodegenerative conditions not only results in a toxic loss of function (e.g. decreased microtubule binding) but probably also a toxic gain of function (e.g. increased tau-tau interactions). Although tau is phosphorylated in vitro by numerous protein kinases, how many of these actually phosphorylate tau in vivo is unclear. Identification of the protein kinases that phosphorylate tau in vivo in both physiological and pathological processes could provide potential therapeutic targets for the treatment of AD and other neurodegenerative diseases in which there is tau pathology.
Collapse
Affiliation(s)
- Gail V W Johnson
- Department of Psychiatry, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA.
| | | |
Collapse
|
28
|
Moretto MB, Funchal C, Zeni G, Rocha JBT, Pessoa-Pureur R. Organoselenium compounds prevent hyperphosphorylation of cytoskeletal proteins induced by the neurotoxic agent diphenyl ditelluride in cerebral cortex of young rats. Toxicology 2005; 210:213-22. [PMID: 15840435 DOI: 10.1016/j.tox.2005.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 01/24/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
In this work we investigated the protective ability of the selenium compounds ebselen and diphenyl diselenide against the effect of diphenyl ditelluride on the in vitro incorporation of 32P into intermediate filament (IF) proteins from slices of cerebral cortex of 17-day-old rats. We observed that ditelluride in the concentrations of 1, 15 and 50 microM induced hyperphosphorylation of the high-salt Triton insoluble neurofilament subunits (NF-M and NF-L), glial fibrillary acidic protein (GFAP) and vimentin, without altering the immunocontent of these proteins. Concerning the selenium compounds, diselenide (1,15 and 50 microM) did not induce alteration of the in vitro phosphorylation of the IF proteins. Otherwise, ebselen induced an altered in vitro phosphorylation of the cytoskeletal proteins in a dose-dependent manner. At intermediate concentrations (15 and 30 microM) it increased the in vitro phosphorylation even though, at low (5 microM) or high (50 and 100 microM) concentrations this compound was ineffective in altering the activity of the cytoskeletal-associated phosphorylating system. In addition, 15 microM diselenide and 5 microM ebselen, presented a protective effect against the action of ditelluride, on the phosphorylation of the proteins studied. Considering that hyperphosphorylation of cytoskeletal proteins is associated with neuronal dysfunction and neurodegeneration, it is probable that the effects of ditelluride could be related to the remarkable neurotoxicity of this organic form of tellurium. Furthermore the neuroprotective action of selenium compounds against tellurium effects could be a promising route to be exploited for a possible treatment of organic tellurium poisoning.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | | | | | | |
Collapse
|
29
|
Moretto MB, Funchal C, Zeni G, Pessoa-Pureur R, Rocha JBT. Selenium Compounds Prevent the Effects of Methylmercury on the in Vitro Phosphorylation of Cytoskeletal Proteins in Cerebral Cortex of Young Rats. Toxicol Sci 2005; 85:639-46. [PMID: 15716487 DOI: 10.1093/toxsci/kfi114] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this study we investigated the protective ability of the selenium compounds ebselen and diphenyldiselenide against the effect of methylmercury on the in vitro incorporation of 32P into intermediate filament (IF) proteins from the cerebral cortex of 17-day-old rats. We observed that methylmercury in the concentrations of 1 and 5 microM was able to inhibit the phosphorylating system associated with IF proteins without altering the immunocontent of these proteins. Concerning the selenium compounds, diselenide (1, 15, and 50 microM) did not induce alteration of the in vitro phosphorylation of IF proteins. Conversely, 15 microM diselenide was effective in preventing the toxic effects induced by methylmercury. Otherwise, ebselen induced an altered in vitro phosphorylation of the cytoskeletal proteins in a dose-dependent manner. Ebselen at intermediate concentrations (15 and 30 microM) increased the in vitro phosphorylation. However, at low (5 microM) or high (50 and 100 microM) concentrations it was ineffective in altering the cytoskeletal-associated phosphorylating system. Furthermore, 5 microM ebselen presented a protective effect against the action of methylmercury on the phosphorylating system. In conclusion, our results indicate that the selenium compounds ebselen and diselenide present protective actions toward the alterations of the phosphorylating system associated with the IF proteins induced by methylmercury in slices of the cerebral cortex of rats.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
30
|
Huang Y, Tanimukai H, Liu F, Iqbal K, Grundke-Iqbal I, Gong CX. Elevation of the level and activity of acid ceramidase in Alzheimer's disease brain. Eur J Neurosci 2005; 20:3489-97. [PMID: 15610181 DOI: 10.1111/j.1460-9568.2004.03852.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein glycosylation modifies the processing of several key proteins involved in the molecular pathogenesis of Alzheimer's disease (AD). Aberrant glycosylation of tau and down-regulation of sialyltransferase in AD brain suggest a possible dysregulation of protein glycosylation that may play a role in AD. We therefore isolated major glycoproteins from AD brain by using lectin-affinity chromatographies and ion-exchange chromatography and further separated them using SDS-polyacylamide gel electrophoresis. Mass spectrometry analysis of 11 isolated glycoproteins led to their identification as: neuronal cell adhesion molecule, beta-globin, IgM heavy chain VH1 region precursor, contactin precursor, dipeptidylpeptidase VI, CD81 partner 3, prenylcysteine lyase, adipocyte plasma-associated protein, acid ceramidase and two novel proteins. We found that the level and activity of acid ceramidase (AC), one of the major identified human brain glycoproteins, were significantly elevated in AD brain. Immunohistochemical staining indicated that AC was located mainly in the cell bodies of neurons and colocalized with neurofibrillary tangles. Our findings suggest that AC might play a role in controlling neuronal apoptosis and that AC-mediated signalling pathways might be involved in the molecular mechanism of AD.
Collapse
Affiliation(s)
- Yu Huang
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314-6399, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ko LW, DeTure M, Sahara N, Chihab R, Vega IE, Yen SH. Recent advances in experimental modeling of the assembly of tau filaments. Biochim Biophys Acta Mol Basis Dis 2005; 1739:125-39. [PMID: 15615632 DOI: 10.1016/j.bbadis.2004.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 09/01/2004] [Accepted: 09/07/2004] [Indexed: 10/26/2022]
Abstract
Intracellular assembly of microtubule-associated protein tau into filamentous inclusions is central to Alzheimer's disease and related disorders collectively known as tauopathies. Although tau mutations, posttranslational modifications and degradations have been the focus of investigations, the mechanism of tau fibrillogenesis in vivo still remains elusive. Different strategies have been undertaken to generate animal and cellular models for tauopathies. Some are used to study the molecular events leading to the assembly and accumulation of tau filaments, and others to identify potential therapeutic agents that are capable of impeding tauopathy. This review highlights the latest developments in new models and how their utility improves our understanding of the sequence of events leading to human tauopathy.
Collapse
Affiliation(s)
- Li-Wen Ko
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by cognitive and intellectual deficits and behavior disturbance. The electroencephalogram (EEG) has been used as a tool for diagnosing AD for several decades. The hallmark of EEG abnormalities in AD patients is a shift of the power spectrum to lower frequencies and a decrease in coherence of fast rhythms. These abnormalities are thought to be associated with functional disconnections among cortical areas resulting from death of cortical neurons, axonal pathology, cholinergic deficits, etc. This article reviews main findings of EEG abnormalities in AD patients obtained from conventional spectral analysis and nonlinear dynamical methods. In particular, nonlinear alterations in the EEG of AD patients, i.e. a decreased complexity of EEG patterns and reduced information transmission among cortical areas, and their clinical implications are discussed. For future studies, improvement of the accuracy of differential diagnosis and early detection of AD based on multimodal approaches, longitudinal studies on nonlinear dynamics of the EEG, drug effects on the EEG dynamics, and linear and nonlinear functional connectivity among cortical regions in AD are proposed to be investigated. EEG abnormalities of AD patients are characterized by slowed mean frequency, less complex activity, and reduced coherences among cortical regions. These abnormalities suggest that the EEG has utility as a valuable tool for differential and early diagnosis of AD.
Collapse
Affiliation(s)
- Jaeseung Jeong
- Center for Neurodynamics and the Department of Physics, Korea University, Sungbuk-gu, Anham-dong 5-1, Seoul 136-701, South Korea.
| |
Collapse
|
33
|
Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease. Proc Natl Acad Sci U S A 2004; 101:10804-9. [PMID: 15249677 PMCID: PMC490015 DOI: 10.1073/pnas.0400348101] [Citation(s) in RCA: 558] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Microtubule-associated protein tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles in brains of individuals with Alzheimer's disease (AD) and other tauopathies. Tau pathology is critical to pathogenesis and correlates to the severity of dementia. However, the mechanisms leading to abnormal hyperphosphorylation are unknown. Here, we demonstrate that human brain tau was modified by O-GlcNAcylation, a type of protein O-glycosylation by which the monosaccharide beta-N-acetylglucosamine (GlcNAc) attaches to serine/threonine residues via an O-linked glycosidic bond. O-GlcNAcylation regulated phosphorylation of tau in a site-specific manner both in vitro and in vivo. At most of the phosphorylation sites, O-GlcNAcylation negatively regulated tau phosphorylation. In an animal model of starved mice, low glucose uptake/metabolism that mimicked those observed in AD brain produced a decrease in O-GlcNAcylation and consequent hyperphosphorylation of tau at the majority of the phosphorylation sites. The O-GlcNAcylation level in AD brain extracts was decreased as compared to that in controls. These results reveal a mechanism of regulation of tau phosphorylation and suggest that abnormal hyperphosphorylation of tau could result from decreased tau O-GlcNAcylation, which probably is induced by deficient brain glucose uptake/metabolism in AD and other tauopathies.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Quantitative neuropsychiatry has provided increasingly precise descriptions of behavioral phenotypes associated with neurodegenerative disorders. Degenerative diseases of the brain are disturbances of protein metabolism, with failure of protein degredation by the ubiquitin-proteosome system, production of neurotoxic peptide oligomers, and accumulation of intracellular protein deposits. Abnormalities of amyloid beta peptide, alpha-synuclein protein, and hyperphosphorylated tau protein account for more than 90% of degenerative dementias. Functionally related neuroanatomical systems have shared metabolic characteristics and common vulnerabilities to protein dysmetabolism, providing the basis for phenotypes that reflect the underlying proteotype. Patients with alpha-synuclein disorders are particularly prone to hallucinations, delusions, and rapid eye movement sleep behavior disorder. Patients with tauopathies manifest disproportionate disinhibition and apathy, and may exhibit compulsions. Alzheimer's disease is a triple proteinopathy with abnormalities of A-beta, tau, and alpha-synculein leading to a complex behavioral phenotype. This molecular approach to neuropsychiatry may assist in understanding the mechanisms of degenerative diseases, provide insight into the pathophysiology of neuropsychiatric symptoms, and contribute to monitoring disease-modifying therapies.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Tariot PN, Federoff HJ. Current Treatment for Alzheimer Disease and Future Prospects. Alzheimer Dis Assoc Disord 2003; 17 Suppl 4:S105-13. [PMID: 14512816 DOI: 10.1097/00002093-200307004-00005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A cascade of pathophysiological events is triggered in Alzheimer disease (AD) that ultimately involves common cellular signaling pathways and leads to cellular and network dysfunction, failure of neurotransmission, cell death, and a common clinical outcome. The process is asynchronous, meaning that viable neurons remain as targets for therapy even in the diseased state, and each stage of the cascade affords the possibility for therapeutic intervention. Cholinesterase inhibitors are the only available treatment in the United States for patients with mild to moderate AD, helping maintain cognitive and functional abilities in most patients and conferring beneficial behavioral effects in some. Memantine is an NMDA receptor antagonist that has recently been approved in Europe for treatment of moderately severe to severe AD and is under investigation in the United States. Its mechanism of action may include enhanced neurotransmission in several systems as well as antiexcitotoxic effects. There are data regarding the effectiveness of the combination of memantine with cholinesterase inhibitors that will be useful for the practicing clinician. Other agents have shown some benefit in clinical trials, including the antioxidants vitamin E, selegiline, and Ginkgo biloba extracts, although the weight of evidence regarding their effects is not sufficient to define clinical practice. Potential future therapies currently are in development that target multiple aspects of the illness cascade, including aberrant inflammation, neurotrophic function, and processing of beta amyloid and tau proteins. These newer approaches hold promise for disease modification but are as yet unproven. Whether or not disease-modifying or preventive therapies become a reality, clinicians will be faced with AD patients who require treatment at all stages of illness for the indefinite future. Cholinergic and emerging noncholinergic medications will likely prevail as the standards of treatment for years to come.
Collapse
Affiliation(s)
- Pierre N Tariot
- Department of Psychiatry, University of Rochester Medical Center, Rochester, New York, USA.
| | | |
Collapse
|
36
|
Allain H, Bentué-Ferrer D, Tribut O, Mérienne M, Belliard S. Drug therapy of frontotemporal dementia. Hum Psychopharmacol 2003; 18:221-5. [PMID: 12672175 DOI: 10.1002/hup.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Frontal lobe dementia, or more generally frontotemporal dementia (FTD), includes several clinical entities and, although highly prevalent, lacks any codified therapeutic strategy. The present review is an attempt to depict the main neurochemical correlates of FTD and, as a consequence, to propose the most sound targets for symptomatic drugs. Large scale double-blind controlled clinical trials should be carried out to test any hypothesis: serotonergic agents, glutamate neurotransmission enhancers, monoamine oxidase inhibitors. The recent discovery of tau gene mutations in FTD with Parkinsonism linked to chromosome 17 has reinforced the direct role attributed to abnormal tau proteins (hyperphosphorylation) and thus raised the possibility to target specifically these processes by drugs (aetiopathogenic compounds).
Collapse
Affiliation(s)
- Hervé Allain
- Laboratory of Clinical and Experimental Pharmacology Faculty of Medicine, University of Rennes I, 2, avenue du Pr. Léon Bernard, CS 34317, F-35043 Rennes cedex, France.
| | | | | | | | | |
Collapse
|
37
|
Funchal C, de Lima Pelaez P, Loureiro SO, Vivian L, Dall Bello Pessutto F, de Almeida LMV, Tchernin Wofchuk S, Wajner M, Pessoa Pureur R. alpha-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 139:267-76. [PMID: 12480141 DOI: 10.1016/s0165-3806(02)00578-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study we investigated the effects of alpha-ketoisocaproic acid (KIC), the main keto acid accumulating in the inherited neurometabolic disorder maple syrup urine disease (MSUD), on the in vitro incorporation of 32P into intermediate filament (IF) proteins from cerebral cortex of rats during development. KIC decreased the in vitro incorporation of 32P into the IF proteins studied up to day 12, had no effect on day 15, and increased this phosphorylation in cortical slices of 17- and 21-day-old rats. A similar effect on IF phosphorylation was achieved along development by incubating cortical slices with glutamate. Furthermore, the altered phosphorylation caused by the presence of KIC in the incubation medium was mediated by the ionotropic receptors NMDA, AMPA and kainate up to day 12 and by NMDA and AMPA in tissue slices from 17- and 21-day-old rats. The results suggest that alterations of IF phosphorylation may be associated with the neuropathology of MSUD.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cerebral Cortex/drug effects
- Cerebral Cortex/growth & development
- Cerebral Cortex/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Glial Fibrillary Acidic Protein/drug effects
- Glial Fibrillary Acidic Protein/metabolism
- Glutamic Acid/metabolism
- Glutamic Acid/pharmacology
- Intermediate Filament Proteins/drug effects
- Intermediate Filament Proteins/metabolism
- Intermediate Filaments/drug effects
- Intermediate Filaments/metabolism
- Keto Acids/metabolism
- Keto Acids/pharmacology
- Maple Syrup Urine Disease/metabolism
- Maple Syrup Urine Disease/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Organ Culture Techniques
- Phosphorylation/drug effects
- Rats
- Rats, Wistar
- Receptors, AMPA/drug effects
- Receptors, AMPA/metabolism
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/metabolism
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Vimentin/drug effects
- Vimentin/metabolism
Collapse
Affiliation(s)
- Cláudia Funchal
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica, Rua Ramiro Barcelos 2600 anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|