1
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
2
|
Habek M, Blazekovic A, Gotovac Jercic K, Pivac N, Outero TF, Borovecki F, Brinar V. Genome-Wide Expression Profile in People with Optic Neuritis Associated with Multiple Sclerosis. Biomedicines 2023; 11:2209. [PMID: 37626706 PMCID: PMC10452153 DOI: 10.3390/biomedicines11082209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to perform a genome-wide expression analysis of whole-blood samples from people with optic neuritis (ON) and to determine differentially expressed mRNAs compared to healthy control subjects. The study included eight people with acute ON and six healthy control subjects. Gene expression was analyzed using DNA microarrays for whole-human-genome analysis, which contain 54,675 25-base pairs. The additional biostatistical analysis included gene ontology analysis and gene set enrichment analysis (GSEA). Quantitative RT-PCR (qPCR) was used to confirm selected differentially expressed genes. In total, 722 differently expressed genes were identified, with 377 exhibiting increased, and 345 decreased, expression. Gene ontology analysis and GSEA revealed that protein phosphorylation and intracellular compartment, apoptosis inhibition, pathways involved in cell cycles, T and B cell functions, and anti-inflammatory central nervous system (CNS) pathways are implicated in ON pathology. qPCR confirmed the differential expression of eight selected genes, with SLPI, CR3, and ITGA4 exhibiting statistically significant results. In conclusion, whole-blood gene expression analysis showed significant differences in the expression profiles of people with ON compared to healthy control subjects. Additionally, pathways involved in T cell regulation and anti-inflammatory pathways within CNS were identified as important in the early phases of MS.
Collapse
Affiliation(s)
- Mario Habek
- Department of Neurology, Referral Center for Autonomic Nervous System Disorders, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Antonela Blazekovic
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Department for Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Kristina Gotovac Jercic
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Bošković Institute, 10002 Zagreb, Croatia
| | - Tiago Fleming Outero
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE1 7RU, UK
- German Centre for Neurodegenerative Diseases (DZNE), 17475 Göttingen, Germany
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Vesna Brinar
- Department of Neurology, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Lorefice L, Pitzalis M, Murgia F, Fenu G, Atzori L, Cocco E. Omics approaches to understanding the efficacy and safety of disease-modifying treatments in multiple sclerosis. Front Genet 2023; 14:1076421. [PMID: 36793897 PMCID: PMC9922720 DOI: 10.3389/fgene.2023.1076421] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
From the perspective of precision medicine, the challenge for the future is to improve the accuracy of diagnosis, prognosis, and prediction of therapeutic responses through the identification of biomarkers. In this framework, the omics sciences (genomics, transcriptomics, proteomics, and metabolomics) and their combined use represent innovative approaches for the exploration of the complexity and heterogeneity of multiple sclerosis (MS). This review examines the evidence currently available on the application of omics sciences to MS, analyses the methods, their limitations, the samples used, and their characteristics, with a particular focus on biomarkers associated with the disease state, exposure to disease-modifying treatments (DMTs), and drug efficacies and safety profiles.
Collapse
Affiliation(s)
- Lorena Lorefice
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- *Correspondence: Lorena Lorefice,
| | - Maristella Pitzalis
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Federica Murgia
- Dpt of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppe Fenu
- Department of Neurosciences, ARNAS Brotzu, Cagliari, Italy
| | - Luigi Atzori
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int J Mol Sci 2022; 23:ijms23095162. [PMID: 35563559 PMCID: PMC9100097 DOI: 10.3390/ijms23095162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 02/08/2023] Open
Abstract
Multiple sclerosis (MS) is the inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS) that affects approximately 2.8 million people worldwide. In the last decade, a new era was heralded in by a new phenotypic classification, a new diagnostic protocol and the first ever therapeutic guideline, making personalized medicine the aim of MS management. However, despite this great evolution, there are still many aspects of the disease that are unknown and need to be further researched. A hallmark of these research are molecular biomarkers that could help in the diagnosis, differential diagnosis, therapy and prognosis of the disease. Proteomics, a rapidly evolving discipline of molecular biology may fulfill this dire need for the discovery of molecular biomarkers. In this review, we aimed to give a comprehensive summary on the utility of proteomics in the field of MS research. We reviewed the published results of the method in case of the pathogenesis of the disease and for biomarkers of diagnosis, differential diagnosis, conversion of disease courses, disease activity, progression and immunological therapy. We found proteomics to be a highly effective emerging tool that has been providing important findings in the research of MS.
Collapse
|
5
|
Smirnova EV, Rakitina TV, Ziganshin RH, Arapidi GP, Saratov GA, Kudriaeva AA, Belogurov AA. Comprehensive Atlas of the Myelin Basic Protein Interaction Landscape. Biomolecules 2021; 11:1628. [PMID: 34827627 PMCID: PMC8615356 DOI: 10.3390/biom11111628] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered myelin basic protein (MBP) is one of the key autoantigens in autoimmune neurodegeneration and multiple sclerosis particularly. MBP is highly positively charged and lacks distinct structure in solution and therefore its intracellular partners are still mostly enigmatic. Here we used combination of formaldehyde-induced cross-linking followed by immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to elucidate the interaction network of MBP in mammalian cells and provide the list of potential MBP interacting proteins. Our data suggest that the largest group of MBP-interacting proteins belongs to cellular proteins involved in the protein translation machinery, as well as in the spatial and temporal regulation of translation. MBP interacts with core ribosomal proteins, RNA helicase Ddx28 and RNA-binding proteins STAU1, TDP-43, ADAR-1 and hnRNP A0, which are involved in various stages of RNA biogenesis and processing, including specific maintaining MBP-coding mRNA. Among MBP partners we identified CTNND1, which has previously been shown to be necessary for myelinating Schwann cells for cell-cell interactions and the formation of a normal myelin sheath. MBP binds proteins MAGEB2/D2 associated with neurotrophin receptor p75NTR, involved in pathways that promote neuronal survival and neuronal death. Finally, we observed that MBP interacts with RNF40-a component of heterotetrameric Rnf40/Rnf20 E3 ligase complex, recruited by Egr2, which is the central transcriptional regulator of peripheral myelination. Concluding, our data suggest that MBP may be more actively involved in myelination not only as a main building block but also as a self-regulating element.
Collapse
Affiliation(s)
- Evgeniya V. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Tatiana V. Rakitina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Rustam H. Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Georgij P. Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - George A. Saratov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Moscow Institute of Physics and Technology, National Research University, 141701 Dolgoprudny, Moscow Region, Russia
| | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.S.); (T.V.R.); (R.H.Z.); (G.P.A.); (G.A.S.); (A.A.K.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia
| |
Collapse
|
6
|
Jin J, Shi X, Li Y, Zhang Q, Guo Y, Li C, Tan P, Fang Q, Ma Y, Ma RZ. Reticulocalbin 3 Deficiency in Alveolar Epithelium Exacerbated Bleomycin-induced Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2019; 59:320-333. [PMID: 29676583 DOI: 10.1165/rcmb.2017-0347oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum (ER) lumen protein localized to the secretory pathway. We have reported that Rcn3 plays a critical role in alveolar epithelial type II cell maturation during perinatal lung development, but its biological role in the adult lung is largely unknown. In this study, we found marked induction of Rcn3 expression in alveolar epithelium during bleomycin-induced pulmonary fibrosis, which is most obvious in alveolar epithelial type II cells (AECIIs). To further examine Rcn3 in pulmonary injury remodeling, we generated transgenic mice to selectively delete Rcn3 in AECIIs in adulthood. Although Rcn3 deletion did not cause obvious abnormalities in the lung architecture and mechanics, the exposure of Rcn3-deleted mice to bleomycin led to exacerbated pulmonary fibrosis and reduced lung mechanics. These Rcn3-deleted mice also displayed enhanced alveolar epithelial cell (AEC) apoptosis and ER stress after bleomycin treatment, which was confirmed by in vitro studies both in primary AECIIs and mouse lung epithelial cells. Consistently, Rcn3 deficiency also enhanced ER stress and apoptosis induced by ER stress inducers, tunicamycin and thapsigargin. In addition, Rcn3 deficiency caused blunted wound closure capability of AECs, but not altered proliferation and bleomycin-induced epithelial-mesenchymal transition process. Collectively, these findings indicate that bleomycin-induced upregulation of Rcn3 in AECIIs appears to contribute to AECII survival and wound healing. These observations, for the first time, suggest a novel role of Rcn3 in regulating pulmonary injury remodeling, and shed additional light on the mechanism of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Jiawei Jin
- 1 The Clinical Research Center, and.,4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaoqian Shi
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| | - Yongchao Li
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,2 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Qianyu Zhang
- 3 Key Laboratory of Reproduction and Genetics, Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Yu Guo
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| | - Chaokun Li
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Tan
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiuhong Fang
- 3 Key Laboratory of Reproduction and Genetics, Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Yingmin Ma
- 3 Key Laboratory of Reproduction and Genetics, Guangdong Higher Education Institutes, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; and
| | - Runlin Z Ma
- 4 Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,5 The University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Martínez-Martínez E, Ibarrola J, Fernández-Celis A, Santamaria E, Fernández-Irigoyen J, Rossignol P, Jaisser F, López-Andrés N. Differential Proteomics Identifies Reticulocalbin-3 as a Novel Negative Mediator of Collagen Production in Human Cardiac Fibroblasts. Sci Rep 2017; 7:12192. [PMID: 28939891 PMCID: PMC5610303 DOI: 10.1038/s41598-017-12305-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/06/2017] [Indexed: 01/18/2023] Open
Abstract
Cardiac fibrosis is characterized by an excessive accumulation of extracellular matrix components, including collagens. Galectin-3 (Gal-3) and Cardiotrophin-1 (CT-1) are two profibrotic molecules that mediate Aldosterone (Aldo)-induced cardiac fibrosis. However the underlying mechanisms are not well defined. Our aim is to characterize changes in the proteome of human cardiac fibroblasts treated with Aldo, Gal-3 or CT-1 to identify new common proteins that might be new therapeutic targets in cardiac fibrosis. Using a quantitative proteomic approach in human cardiac fibroblasts, our results show that Aldo, Gal-3 and CT-1 modified the expression of 30, 17 and 89 proteins respectively, being common the reticulocalbin (RCN) family members. RCN-3 down-regulation triggered by Aldo, Gal-3 and CT-1 was verified. Treatment with recombinant RCN-3 decreased collagens expression in human cardiac fibroblasts through Akt phosphorylation. Interestingly, CRISPR/Cas9-mediated activation of RCN-3 decreased collagen production in human cardiac fibroblasts. In addition, recombinant RCN-3 blocked the profibrotic effects of Aldo, Gal-3 and CT-1. Interestingly, RCN-3 blunted the increase in collagens expression induced by other profibrotic stimuli, angiotensin II, in human cardiac fibroblasts. Our results suggest that RCN-3 emerges as a new potential negative regulator of collagen production and could represent a therapeutic target in the context of cardiac fibrosis.
Collapse
Affiliation(s)
- Ernesto Martínez-Martínez
- Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.,INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, University Pierre and Marie Curie, Paris, France
| | - Jaime Ibarrola
- Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Enrique Santamaria
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Proteored-ISCIII, Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, IDISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Patrick Rossignol
- INSERM, Centre d'Investigations Cliniques- Plurithématique 1433, UMR 1116 Université de Lorraine, CHRU de Nancy, FCRIN INI-CRCT, France
| | - Frederic Jaisser
- INSERM UMRS 1138 Team 1, Centre de Recherche des Cordeliers, University Pierre and Marie Curie, Paris, France.,INSERM, Centre d'Investigations Cliniques- Plurithématique 1433, UMR 1116 Université de Lorraine, CHRU de Nancy, FCRIN INI-CRCT, France
| | - Natalia López-Andrés
- Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain. .,INSERM, Centre d'Investigations Cliniques- Plurithématique 1433, UMR 1116 Université de Lorraine, CHRU de Nancy, FCRIN INI-CRCT, France.
| |
Collapse
|
8
|
Connor DE, Chaitanya GV, Chittiboina P, McCarthy P, Scott LK, Schrott L, Minagar A, Nanda A, Alexander JS. Variations in the cerebrospinal fluid proteome following traumatic brain injury and subarachnoid hemorrhage. PATHOPHYSIOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY FOR PATHOPHYSIOLOGY 2017; 24:169-183. [PMID: 28549769 PMCID: PMC7303909 DOI: 10.1016/j.pathophys.2017.04.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 04/06/2017] [Accepted: 04/28/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Proteomic analysis of cerebrospinal fluid (CSF) has shown great promise in identifying potential markers of injury in neurodegenerative diseases [1-13]. Here we compared CSF proteomes in healthy individuals, with patients diagnosed with traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) in order to characterize molecular biomarkers which might identify these different clinical states and describe different molecular mechanisms active in each disease state. METHODS Patients presenting to the Neurosurgery service at the Louisiana State University Hospital-Shreveport with an admitting diagnosis of TBI or SAH were prospectively enrolled. Patients undergoing CSF sampling for diagnostic procedures were also enrolled as controls. CSF aliquots were subjected to 2-dimensional gel electrophoresis (2D GE) and spot percentage densities analyzed. Increased or decreased spot expression (compared to controls) was defined in terms of in spot percentages, with spots showing consistent expression change across TBI or SAH specimens being followed up by Matrix-Assisted Laser Desorption/Ionization mass spectrometry (MALDI-MS). Polypeptide masses generated were matched to known standards using a search of the NCBI and/or GenPept databases for protein matches. Eight hundred fifteen separately identifiable polypeptide migration spots were identified on 2D GE gels. MALDI-MS successfully identified 13 of 22 selected 2D GE spots as recognizable polypeptides. RESULTS Statistically significant changes were noted in the expression of fibrinogen, carbonic anhydrase-I (CA-I), peroxiredoxin-2 (Prx-2), both α and β chains of hemoglobin, serotransferrin (Tf) and N-terminal haptoglobin (Hp) in TBI and SAH specimens, as compared to controls. The greatest mean fold change among all specimens was seen in CA-I and Hp at 30.7 and -25.7, respectively. TBI specimens trended toward greater mean increases in CA-I and Prx-2 and greater mean decreases in Hp and Tf. CONCLUSIONS Consistent CSF elevation of CA-I and Prx-2 with concurrent depletion of Hp and Tf may represent a useful combination of biomarkers for the prediction of severity and prognosis following brain injury.
Collapse
Affiliation(s)
- David E Connor
- Baptist Health Neurosurgery Arkansas, Little Rock, AR, United States.
| | - Ganta V Chaitanya
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States.
| | - Prashant Chittiboina
- Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, Bethesda, MD, United States.
| | - Paul McCarthy
- Department of Medicine, Sect. of Nephrology, University of Maryland, Baltimore, MD, United States.
| | - L Keith Scott
- Department of Critical Care Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Lisa Schrott
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Anil Nanda
- Department of Neurosurgery, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
9
|
Jin J, Li Y, Ren J, Man Lam S, Zhang Y, Hou Y, Zhang X, Xu R, Shui G, Ma RZ. Neonatal Respiratory Failure with Retarded Perinatal Lung Maturation in Mice Caused by Reticulocalbin 3 Disruption. Am J Respir Cell Mol Biol 2016; 54:410-23. [PMID: 26252542 DOI: 10.1165/rcmb.2015-0036oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reticulocalbin 3 (Rcn3) is an endoplasmic reticulum lumen protein localized to the secretory pathway. As a Ca2t-binding protein of 45 kDa (Cab45)/Rcn/ER Ca2t-binding protein of 55 kDa (ERC45)/calumenin (CREC) family member, Rcn3 is reported to function as a chaperone protein involved in protein synthesis and secretion; however, the biological role of Rcn3 is largely unknown. The results presented here, for the first time, depict an indispensable physiological role of Rcn3 in perinatal lung maturation by using an Rcn3 gene knockout mouse model. These mutant mice die immediately at birth owing to atelectasis-induced neonatal respiratory distress, although these embryos are produced with grossly normal development. This respiratory distress results from a failure of functional maturation of alveolar epithelial type II cells during alveogenesis. This immaturity of type II cells is associated with a dramatic reduction in surfactant protein A and D, a disruption in surfactant phospholipid homeostasis, and a disorder in lamellar body. In vitro studies further show that Rcn3 deficiency blunts the secretion of surfactant proteins and phospholipids from lung epithelial cells, suggesting a decrease in availability of surfactants for their surface activity. Collectively, these observations indicate an essential role of Rcn3 in perinatal lung maturation and neonatal respiratory adaptation as well as shed additional light on the mechanism of neonatal respiratory distress syndrome development.
Collapse
Affiliation(s)
- Jiawei Jin
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongchao Li
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiangong Ren
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Sin Man Lam
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yidi Zhang
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Hou
- 2 Department of Pulmonary Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; and
| | - Xiaojuan Zhang
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Rener Xu
- 3 Institute of Development Biology and Molecular Medicine, Fudan University, Shanghai, China
| | - Guanghou Shui
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Runlin Z Ma
- 1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Silva C, Santa C, Anjo SI, Manadas B. A reference library of peripheral blood mononuclear cells for SWATH-MS analysis. Proteomics Clin Appl 2016; 10:760-4. [DOI: 10.1002/prca.201600070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Carolina Silva
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Department of Chemistry; University of Aveiro; Aveiro Portugal
| | - Cátia Santa
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Institute for Interdisciplinary Research; University of Coimbra; Coimbra Portugal
| | - Sandra Isabel Anjo
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
- Faculty of Sciences and Technology; University of Coimbra; Coimbra Portugal
| | - Bruno Manadas
- CNC - Center for Neuroscience and Cell Biology; University of Coimbra; Coimbra Portugal
| |
Collapse
|
11
|
Slubowski CJ, Paulissen SM, Huang LS. The GCKIII kinase Sps1 and the 14-3-3 isoforms, Bmh1 and Bmh2, cooperate to ensure proper sporulation in Saccharomyces cerevisiae. PLoS One 2014; 9:e113528. [PMID: 25409301 PMCID: PMC4237420 DOI: 10.1371/journal.pone.0113528] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 11/19/2022] Open
Abstract
Sporulation in the budding yeast Saccharomyces cerevisiae is a developmental program initiated in response to nutritional deprivation. Sps1, a serine/threonine kinase, is required for sporulation, but relatively little is known about the molecular mechanisms through which it regulates this process. Here we show that SPS1 encodes a bona-fide member of the GCKIII subfamily of STE20 kinases, both through phylogenetic analysis of the kinase domain and examination of its C-terminal regulatory domain. Within the regulatory domain, we find Sps1 contains an invariant ExxxPG region conserved from plant to human GCKIIIs that we call the EPG motif; we show this EPG motif is important for SPS1 function. We also find that Sps1 is phosphorylated near its N-terminus on Threonine 12, and that this phosphorylation is required for the efficient production of spores. In Sps1, Threonine 12 lies within a 14-3-3 consensus binding sequence, and we show that the S. cerevisiae 14-3-3 proteins Bmh1 and Bmh2 bind Sps1 in a Threonine 12-dependent fashion. This interaction is significant, as BMH1 and BMH2 are required during sporulation and genetically interact with SPS1 in sporulating cells. Finally, we observe that Sps1, Bmh1 and Bmh2 are present in both the nucleus and cytoplasm during sporulation. We identify a nuclear localization sequence in Sps1 at amino acids 411-415, and show that this sequence is necessary and sufficient for nuclear localization. Taken together, these data identify regions within Sps1 critical for its function and indicate that SPS1 and 14-3-3s act together to promote proper sporulation in S. cerevisiae.
Collapse
Affiliation(s)
- Christian J. Slubowski
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Scott M. Paulissen
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Linda S. Huang
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
12
|
Karamanos Y, Gosselet F, Dehouck MP, Cecchelli R. Blood–Brain Barrier Proteomics: Towards the Understanding of Neurodegenerative Diseases. Arch Med Res 2014; 45:730-7. [DOI: 10.1016/j.arcmed.2014.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/15/2022]
|
13
|
Turvey ME, Koudelka T, Comerford I, Greer JM, Carroll W, Bernard CCA, Hoffmann P, McColl SR. Quantitative proteome profiling of CNS-infiltrating autoreactive CD4+ cells reveals selective changes during experimental autoimmune encephalomyelitis. J Proteome Res 2014; 13:3655-70. [PMID: 24933266 DOI: 10.1021/pr500158r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a murine model of multiple sclerosis, a chronic neurodegenerative and inflammatory autoimmune condition of the central nervous system (CNS). Pathology is driven by the infiltration of autoreactive CD4(+) lymphocytes into the CNS, where they attack neuronal sheaths causing ascending paralysis. We used an isotope-coded protein labeling approach to investigate the proteome of CD4(+) cells isolated from the spinal cord and brain of mice at various stages of EAE progression in two EAE disease models: PLP139-151-induced relapsing-remitting EAE and MOG35-55-induced chronic EAE, which emulate the two forms of human multiple sclerosis. A total of 1120 proteins were quantified across disease onset, peak-disease, and remission phases of disease, and of these 13 up-regulated proteins of interest were identified with functions relating to the regulation of inflammation, leukocyte adhesion and migration, tissue repair, and the regulation of transcription/translation. Proteins implicated in processes such as inflammation (S100A4 and S100A9) and tissue repair (annexin A1), which represent key events during EAE progression, were validated by quantitative PCR. This is the first targeted analysis of autoreactive cells purified from the CNS during EAE, highlighting fundamental CD4(+) cell-driven processes that occur during the initiation of relapse and remission stages of disease.
Collapse
Affiliation(s)
- Michelle E Turvey
- Chemokine Biology Laboratory, School of Molecular and Biomedical Science, University of Adelaide and Centre for Molecular Pathology , South Australia 5005, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Edelmann AR, Schwartz-Baxter S, Dibble CF, Byrd WC, Carlson J, Saldarriaga I, Bencharit S. Systems biology and proteomic analysis of cerebral cavernous malformation. Expert Rev Proteomics 2014; 11:395-404. [PMID: 24684205 DOI: 10.1586/14789450.2014.896742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
UNLABELLED Cerebral cavernous malformations (CCM) are vascular anomalies caused by mutations in genes encoding KRIT1, OSM and PDCD10 proteins causing hemorrhagic stroke. We examine proteomic change of loss of CCM gene expression. Using human umbilical vein endothelial cells, label-free differential protein expression analysis with multidimensional liquid chromatography/tandem mass spectrometry was applied to three CCM protein knockdown cell lines and two control cell lines: ProteomeXchange identifier PXD000362. Principle component and cluster analyses were used to examine the differentially expressed proteins associated with CCM. The results from the five cell lines revealed 290 and 192 differentially expressed proteins (p < 0.005 and p < 0.001, respectively). Most commonly affected proteins were cytoskeleton-associated proteins, in particular myosin-9. Canonical genetic pathway analysis suggests that CCM may be a result of defective cell-cell interaction through dysregulation of cytoskeletal associated proteins. CONCLUSION The work explores signaling pathways that may elucidate early detection and novel therapy for CCM.
Collapse
Affiliation(s)
- Alexander R Edelmann
- Department of Prosthodontics and the Dental Research Center, School of Dentistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Chaitanya GV, Omura S, Sato F, Martinez NE, Minagar A, Ramanathan M, Guttman BW, Zivadinov R, Tsunoda I, Alexander JS. Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature. J Neuroinflammation 2013; 10:125. [PMID: 24124909 PMCID: PMC3854084 DOI: 10.1186/1742-2094-10-125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023] Open
Abstract
Background Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature. Methods We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler’s murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature. Results and conclusions Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation.
Collapse
Affiliation(s)
- Ganta Vijay Chaitanya
- Department of Molecular & Cellular Physiology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Alexander JS, Prouty L, Tsunoda I, Ganta CV, Minagar A. Venous endothelial injury in central nervous system diseases. BMC Med 2013; 11:219. [PMID: 24228622 PMCID: PMC3851779 DOI: 10.1186/1741-7015-11-219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/09/2013] [Indexed: 02/08/2023] Open
Abstract
The role of the venous system in the pathogenesis of inflammatory neurological/neurodegenerative diseases remains largely unknown and underinvestigated. Aside from cerebral venous infarcts, thromboembolic events, and cerebrovascular bleeding, several inflammatory central nervous system (CNS) diseases, such as multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), and optic neuritis, appear to be associated with venous vascular dysfunction, and the neuropathologic hallmark of these diseases is a perivenous, rather than arterial, lesion. Such findings raise fundamental questions about the nature of these diseases, such as the reasons why their pathognomonic lesions do not develop around the arteries and what exactly are the roles of cerebral venous inflammation in their pathogenesis. Apart from this inflammatory-based view, a new hypothesis with more focus on the hemodynamic features of the cerebral and extracerebral venous system suggests that MS pathophysiology might be associated with the venous system that drains the CNS. Such a hypothesis, if proven correct, opens new therapeutic windows in MS and other neuroinflammatory diseases. Here, we present a comprehensive review of the pathophysiology of MS, ADEM, pseudotumor cerebri, and optic neuritis, with an emphasis on the roles of venous vascular system programming and dysfunction in their pathogenesis. We consider the fundamental differences between arterial and venous endothelium, their dissimilar responses to inflammation, and the potential theoretical contributions of venous insufficiency in the pathogenesis of neurovascular diseases.
Collapse
Affiliation(s)
- Jonathan S Alexander
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA.
| | | | | | | | | |
Collapse
|
17
|
Identification of an essential endogenous regulator of blood-brain barrier integrity, and its pathological and therapeutic implications. Proc Natl Acad Sci U S A 2012; 110:832-41. [PMID: 23277546 DOI: 10.1073/pnas.1209362110] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The blood-brain barrier (BBB), a critical guardian of communication between the periphery and the brain, is frequently compromised in neurological diseases such as multiple sclerosis (MS), resulting in the inappropriate passage of molecules and leukocytes into the brain. Here we show that the glucocorticoid anti-inflammatory messenger annexin A1 (ANXA1) is expressed in brain microvascular endothelial cells, where it regulates BBB integrity. In particular, ANXA1(-/-) mice exhibit significantly increased BBB permeability as a result of disrupted interendothelial cell tight junctions, essentially related to changes in the actin cytoskeleton, which stabilizes tight and adherens junctions. This situation is reminiscent of early MS pathology, a relationship confirmed by our detection of a selective loss of ANXA1 in the plasma and cerebrovascular endothelium of patients with MS. Importantly, this loss is swiftly restored by i.v. administration of human recombinant ANXA1. Analysis in vitro confirms that treatment of cerebrovascular endothelial cells with recombinant ANXA1 restores cell polarity, cytoskeleton integrity, and paracellular permeability through inhibition of the small G protein RhoA. We thus propose ANXA1 as a critical physiological regulator of BBB integrity and suggest it may have utility in the treatment of MS, correcting BBB function and hence ameliorating disease.
Collapse
|
18
|
Characterization of the role of protein-cysteine residues in the binding with sodium arsenite. Arch Toxicol 2012; 86:911-22. [PMID: 22422341 DOI: 10.1007/s00204-012-0828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/27/2012] [Indexed: 12/15/2022]
Abstract
To better characterize the interaction of protein-cysteines with sodium arsenite, arsenic-binding proteins were identified from the arsenic-resistant Chinese hamster ovary cell line SA7 using a p-aminophenylarsine oxide (PAO)-agarose matrix in combination with proteomic techniques. Twenty of the isolated arsenic-binding proteins were further peptide-mapped by MALDI-Q-TOF-MS. The binding capacity of PAO-agarose-retained proteins was then verified by re-applying Escherichia coli overexpressed recombinant proteins with various numbers of cysteine residues onto the PAO-agarose matrix. The results showed that recombinant heat shock protein 27 (HSP27, with one cysteine residue), reticulocalbin-3 (RCN3, with no cysteine residue), galectin-1 (GAL1, with six cysteine residues), but not peroxiredoxin 6 (Prdx6, with one cysteine residue but not retained by the PAO-agarose matrix), were bound to the PAO-agarose matrix. The six free cysteine residues in GAL1 were individually or double-mutated to alanine by means of site-directed mutagenesis and subjected to CD and ICP-MS analysis. The binding capacity of GAL1 for sodium arsenite was significantly attenuated in C16A, C88A and all double mutant clones. Taken together, our current data suggest that the cysteine residues in GAL1 may play a critical role in the binding of arsenic, but that in the case of RCN3 and Prdx6, this interaction may be mediated by other factors.
Collapse
|
19
|
Zhao J, Meyerkord CL, Du Y, Khuri FR, Fu H. 14-3-3 proteins as potential therapeutic targets. Semin Cell Dev Biol 2011; 22:705-12. [PMID: 21983031 DOI: 10.1016/j.semcdb.2011.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 02/05/2023]
Abstract
The 14-3-3 family of phosphoserine/phosphothreonine-binding proteins dynamically regulates the activity of client proteins in various signaling pathways that control diverse physiological and pathological processes. In response to environmental cues, 14-3-3 proteins orchestrate the highly regulated flow of signals through complex networks of molecular interactions to achieve well-controlled physiological outputs, such as cell proliferation or differentiation. Accumulating evidence now supports the concept that either an abnormal state of 14-3-3 protein expression, or dysregulation of 14-3-3/client protein interactions, contributes to the development of a large number of human diseases. In particular, clinical investigations in the field of oncology have demonstrated a correlation between upregulated 14-3-3 levels and poor survival of cancer patients. These studies highlight the rapid emergence of 14-3-3 proteins as a novel class of molecular target for potential therapeutic intervention. The current status of 14-3-3 modulator discovery is discussed.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
20
|
Alexander JS, Zivadinov R, Maghzi AH, Ganta VC, Harris MK, Minagar A. Multiple sclerosis and cerebral endothelial dysfunction: Mechanisms. ACTA ACUST UNITED AC 2011; 18:3-12. [PMID: 20663648 DOI: 10.1016/j.pathophys.2010.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 03/30/2010] [Accepted: 04/08/2010] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is believed to be an immune-mediated neurodegenerative disorder of the human central nervous system which usually affects younger adults with certain genetic backgrounds. The causes and cure for MS remain elusive. Based on the recent advances in our understanding of the pathogenic mechanisms of MS, it appears to represents a heterogeneous group of disorders with dissimilar pathophysiology and neuropathology. Currently, there is no unifying hypothesis to explain the pathogenesis of this complex disease. The three prevailing concepts on the pathogenesis of MS include viral, immunological, and vascular hypotheses. This review presents MS as a neuroinflammatory disease with a significant vascular component and examines the existing evidence for the role of cerebral endothelial cell dysfunction in the pathogenesis of this progressive central nervous system (CNS) inflammatory disorder.
Collapse
Affiliation(s)
- J Steven Alexander
- Department of Cellular and Molecular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | |
Collapse
|
21
|
Pottiez G, Deracinois B, Duban-Deweer S, Cecchelli R, Fenart L, Karamanos Y, Flahaut C. A large-scale electrophoresis- and chromatography-based determination of gene expression profiles in bovine brain capillary endothelial cells after the re-induction of blood-brain barrier properties. Proteome Sci 2010; 8:57. [PMID: 21078152 PMCID: PMC2993662 DOI: 10.1186/1477-5956-8-57] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 11/15/2010] [Indexed: 12/23/2022] Open
Abstract
Background Brain capillary endothelial cells (BCECs) form the physiological basis of the blood-brain barrier (BBB). The barrier function is (at least in part) due to well-known proteins such as transporters, tight junctions and metabolic barrier proteins (e.g. monoamine oxidase, gamma glutamyltranspeptidase and P-glycoprotein). Our previous 2-dimensional gel proteome analysis had identified a large number of proteins and revealed the major role of dynamic cytoskeletal remodelling in the differentiation of bovine BCECs. The aim of the present study was to elaborate a reference proteome of Triton X-100-soluble species from bovine BCECs cultured in the well-established in vitro BBB model developed in our laboratory. Results A total of 215 protein spots (corresponding to 130 distinct proteins) were identified by 2-dimensional gel electrophoresis, whereas over 350 proteins were identified by a shotgun approach. We classified around 430 distinct proteins expressed by bovine BCECs. Our large-scale gene expression analysis enabled the correction of mistakes referenced into protein databases (e.g. bovine vinculin) and constitutes valuable evidence for predictions based on genome annotation. Conclusions Elaboration of a reference proteome constitutes the first step in creating a gene expression database dedicated to capillary endothelial cells displaying BBB characteristics. It improves of our knowledge of the BBB and the key proteins in cell structures, cytoskeleton organization, metabolism, detoxification and drug resistance. Moreover, our results emphasize the need for both appropriate experimental design and correct interpretation of proteome datasets.
Collapse
|
22
|
Tseveleki V, Rubio R, Vamvakas SS, White J, Taoufik E, Petit E, Quackenbush J, Probert L. Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer's disease and stroke for identifying commonly regulated and disease-specific gene changes. Genomics 2010; 96:82-91. [PMID: 20435134 DOI: 10.1016/j.ygeno.2010.04.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 04/22/2010] [Accepted: 04/22/2010] [Indexed: 12/17/2022]
Abstract
The brain responds to injury and infection by activating innate defense and tissue repair mechanisms. Working upon the hypothesis that the brain defense response involves common genes and pathways across diverse pathologies, we analysed global gene expression in brain from mouse models representing three major central nervous system disorders, cerebral stroke, multiple sclerosis and Alzheimer's disease compared to normal brain using DNA microarray expression profiling. A comparison of dysregulated genes across disease models revealed common genes and pathways including key components of estrogen and TGF-beta signaling pathways that have been associated with neuroprotection as well as a neurodegeneration mediator, TRPM7. Further, for each disease model, we discovered collections of differentially expressed genes that provide novel insight into the individual pathology and its associated mechanisms. Our data provide a resource for exploring the complex molecular mechanisms that underlie brain neurodegeneration and a new approach for identifying generic and disease-specific targets for therapy.
Collapse
|
23
|
Gandhi KS, McKay FC, Diefenbach E, Crossett B, Schibeci SD, Heard RN, Stewart GJ, Booth DR, Arthur JW. Novel approaches to detect serum biomarkers for clinical response to interferon-beta treatment in multiple sclerosis. PLoS One 2010; 5:e10484. [PMID: 20463963 PMCID: PMC2864746 DOI: 10.1371/journal.pone.0010484] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 04/09/2010] [Indexed: 11/28/2022] Open
Abstract
Interferon beta (IFNβ) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNβ. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1α, between clinical responders and non-responders, despite the association of these proteins with IFNβ treatment in MS.
Collapse
Affiliation(s)
- Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Eve Diefenbach
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Ben Crossett
- School of Molecular and Microbial Bioscience, University of Sydney, Sydney, Australia
| | | | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Sydney, Australia
| | - Jonathan W. Arthur
- Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, Australia
- Sydney Bioinformatics, University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
24
|
Harris VK, Sadiq SA. Disease biomarkers in multiple sclerosis: potential for use in therapeutic decision making. Mol Diagn Ther 2010; 13:225-44. [PMID: 19712003 DOI: 10.1007/bf03256329] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the brain and spinal cord that predominantly affects white matter. MS has a variable clinical presentation and has no 'diagnostic' laboratory test; this often results in delays to definite diagnosis. In confronting the disease, early diagnosis and appropriate, timely therapeutic intervention are critical factors in ensuring favorable long-term outcomes. The availability of reliable biomarkers could radically alter our management of MS at critical phases of the disease spectrum. Identification of markers that could predict the development of MS in high-risk populations would allow for intervention strategies that may prevent evolution to definite disease. Work with anti-myelin antibodies and the ongoing analysis of microarray gene expression have thus far not yielded biomarkers that predict future disease development. Similarly, extensive studies with serum and cerebrospinal fluid (CSF) have not yielded a disease-specific and sensitive diagnostic biomarker for MS. Establishment of disease diagnosis always leads to questions about long-term prognosis because in an individual patient the natural history of the disease is clinically unpredictable. Biomarkers that correlate with myelin loss, spinal cord disease, grey matter and subcortical demyelination need to be developed in order to accurately predict the disease course. The bulk of effort in biomarker development in MS has been concentrated in the area of monitoring disease activity. At present, a disease 'activation' panel of CSF biomarkers would include the following: interleukin-6 or its soluble receptor, nitric oxide and nitric oxide synthase, osteopontin, and fetuin-A. Although disease activity in MS is predominantly inflammatory, disease progression is likely to be the result of neurodegeneration. Therefore, the roles of proteins indicative of neuronal, axonal, and glial loss such as neurofilaments, tau, 14-3-3 proteins, and N-acetylaspartate are all under investigation, as are proteins affecting remyelination and regeneration, such as Nogo-A. With the increasing awareness of cognition dysfunction in MS, molecules such as apolipoprotein and proteins in the amyloid precursor protein pathway implicated in dementia are also being examined. Serum biomarkers that help monitor therapeutic efficacy such as the titer of antibody to beta-interferon, a first-line medication in MS, are established in clinical practice. Ongoing work with biomarkers that reflect drug bioavailability and factors that distinguish between medication responders and nonresponders are also under investigation. The discovery of new biomarkers relies on applying advances in proteomics along with microarray gene and antigen analysis and will hopefully result in the establishment of specific biomarkers for MS.
Collapse
Affiliation(s)
- Violaine K Harris
- Multiple Sclerosis Research Center of New York, New York, New York 10019, USA
| | | |
Collapse
|
25
|
Pottiez G, Flahaut C, Cecchelli R, Karamanos Y. Understanding the blood-brain barrier using gene and protein expression profiling technologies. ACTA ACUST UNITED AC 2009; 62:83-98. [PMID: 19770003 DOI: 10.1016/j.brainresrev.2009.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 08/31/2009] [Accepted: 09/12/2009] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier (BBB) contributes to the brain homeostasis by regulating the passage of endogenous and exogenous compounds. This function is in part due to well-known proteins such as tight junction proteins, plasma membrane transporters and metabolic barrier proteins. Over the last decade, genomics and proteomics have emerged as supplementary tools for BBB research. The development of genomic and proteomic technologies has provided several means to extend the BBB knowledge and to investigate additional routes for the bypass of this barrier. These profiling technologies have been used on BBB models to decipher the physiological characteristics and, under stress conditions, to understand the molecular mechanisms of brain diseases. In this review, we will report and discuss the genomic and proteomic studies recently carried out to enhance the understanding of BBB features.
Collapse
|
26
|
Honoré B. The rapidly expanding CREC protein family: members, localization, function, and role in disease. Bioessays 2009; 31:262-77. [PMID: 19260022 DOI: 10.1002/bies.200800186] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although many aspects of the physiological and pathophysiological mechanisms remain unknown, recent advances in our knowledge suggest that the CREC proteins are promising disease biomarkers or targets for therapeutic intervention in a variety of diseases. The CREC family of low affinity, Ca2+-binding, multiple EF-hand proteins are encoded by five genes, RCN1, RCN2, RCN3, SDF4, and CALU, resulting in reticulocalbin, ER Ca2+-binding protein of 55 kDa (ERC-55), reticulocalbin-3, Ca2+-binding protein of 45 kDa (Cab45), and calumenin. Alternative splicing increases the number of gene products. The proteins are localized in the cytosol, in various parts of the secretory pathway, secreted to the extracellular space or localized on the cell surface. The emerging functions appear to be highly diverse. The proteins interact with several different ligands. Rather well-described functions are attached to calumenin with the inhibition of several proteins in the endoplasmic or sarcoplasmic reticulum membrane, the vitamin K(1) 2,3-epoxide reductase, the gamma-carboxylase, the ryanodine receptor, and the Ca2+-transporting ATPase. Other functions concern participation in the secretory process, chaperone activity, signal transduction as well as participation in a large variety of disease processes.
Collapse
Affiliation(s)
- Bent Honoré
- Department of Medical Biochemistry, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
27
|
|
28
|
Fissolo N, Haag S, de Graaf KL, Drews O, Stevanovic S, Rammensee HG, Weissert R. Naturally presented peptides on major histocompatibility complex I and II molecules eluted from central nervous system of multiple sclerosis patients. Mol Cell Proteomics 2009; 8:2090-101. [PMID: 19531498 DOI: 10.1074/mcp.m900001-mcp200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tandem mass spectrometry was used to identify naturally processed peptides bound to major histocompatibility complex (MHC) I and MHC II molecules in central nervous system (CNS) of eight patients with multiple sclerosis (MS). MHC molecules were purified from autopsy CNS material by immunoaffinity chromatography with monoclonal antibody directed against HLA-A, -B, -C, and -DR. Subsequently peptides were separated by reversed-phase HPLC and analyzed by mass spectrometry. Database searches revealed 118 amino acid sequences from self-proteins eluted from MHC I molecules and 191 from MHC II molecules, corresponding to 174 identified source proteins. These sequences define previously known and potentially novel autoantigens in MS possibly involved in disease induction and antigen spreading. Taken together, we have initiated the characterization of the CNS-expressed MHC ligandome in CNS diseases and were able to demonstrate the presentation of naturally processed myelin basic protein peptides in the brain of MS patients.
Collapse
Affiliation(s)
- Nicolas Fissolo
- Hertie Institute for Clinical Brain Research, Experimental Neuroimmunology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Tumani H, Hartung HP, Hemmer B, Teunissen C, Deisenhammer F, Giovannoni G, Zettl UK. Cerebrospinal fluid biomarkers in multiple sclerosis. Neurobiol Dis 2009; 35:117-27. [PMID: 19426803 DOI: 10.1016/j.nbd.2009.04.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 04/10/2009] [Accepted: 04/27/2009] [Indexed: 12/25/2022] Open
Abstract
In patients with multiple sclerosis (MS) intensive efforts are directed at identifying biomarkers in bodily fluids related to underlying disease mechanisms, disease activity and progression, and therapeutic response. Besides MR imaging parameters cerebrospinal fluid (CSF) biomarkers provide important and specific information since changes in the CSF composition may reflect disease mechanisms inherent to MS. The different cellular and protein-analytical methods of the CSF and the recommended standard of the diagnostic CSF profile in MS are described. A brief update on possible CSF biomarkers that might reflect key pathological processes of MS such as inflammation, demyelination, neuroaxonal loss, gliosis and regeneration is provided.
Collapse
Affiliation(s)
- Hayrettin Tumani
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm D-89081, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Minagar A, Steven Alexander J, Kelley RE, Harper M, Jennings MH. Proteomic Analysis of Human Cerebral Endothelial Cells Activated by Glutamate/MK-801: Significance in Ischemic Stroke Injury. J Mol Neurosci 2008; 38:182-92. [DOI: 10.1007/s12031-008-9149-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/29/2008] [Indexed: 01/28/2023]
|
31
|
Vandenbroeck K, Matute C. Pharmacogenomics of the response to IFN-β in multiple sclerosis: ramifications from the first genome-wide screen. Pharmacogenomics 2008; 9:639-45. [DOI: 10.2217/14622416.9.5.639] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Evaluation of: Byun E, Caillier SJ, Montalban X et al.: Genome-wide pharmacogenomic analysis of the response to interferon-β therapy in multiple sclerosis. Arch. Neurol. 65(3) 337–344 (2008). Specifically, IFN-β is the most widely used disease-modifying therapy for the treatment of multiple sclerosis. The main benefits of the therapy, fewer and less severe relapses as well as delayed disease progression, are seen in only approximately 50% of the patients. Genetic polymorphisms may constitute in-built determinants of individual differences in response to IFN-β. Prior attempts to identify such ‘predictors of response’ were hypothesis-driven in that they were based on preselection of candidate genes associated with Type I interferon pathways. In the present study, the authors performed the first ever nonbiased genome-wide association screen in an attempt to identify response-predictive SNPs. Using a robust four-stage completion strategy coupled to advanced SNP ranking/clustering algorithms, 18 significant SNPs were identified, many of which are located in genes that have never before been linked clearly to Type I interferon biology or therapeutic effects. While this study was not designed per se so as to validate earlier findings, genes arising from previous pharmacogenomic studies were generally not confirmed. This is due to major discrepancies between interstudy sets of used SNPs, but may also reflect differential strategies for ascertainment of response to IFN-β, or simply Type I/II errors. The 100-K SNP screen by Byun et al. hallmarks a new stage of pharmacogenomics research applied to multiple sclerosis treatments. Through the judicious implementation of DNA pooling on SNP microarrays, it vividly demonstrates that informative genome-wide pharmacogenomic screens can be performed at a fraction of the cost of individual microarray genotyping. Although, unquestionably, higher-density SNP screens and further replication studies are needed, this study is instrumental in bringing the concept of personalized medicine a (small) step closer to the multiple sclerosis patient. In addition, it has generated a flurry of novel information of likely importance in furthering our understanding of Type I interferon biology.
Collapse
Affiliation(s)
- Koen Vandenbroeck
- University of the Basque Country (UPV-EHU), Neurogenomiks Laboratory, Neuroscience Department, 48940 Leioa, Vizcaya, Spain
| | - Carlos Matute
- University of the Basque Country (UPV-EHU), Neurotek Laboratory, Neuroscience Department, 48940 Leioa, Vizcaya, Spain
| |
Collapse
|