1
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
2
|
Toth BA, Chang KS, Fechtali S, Burgess CR. Dopamine release in the nucleus accumbens promotes REM sleep and cataplexy. iScience 2023; 26:107613. [PMID: 37664637 PMCID: PMC10470413 DOI: 10.1016/j.isci.2023.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/21/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
Patients with the sleep disorder narcolepsy suffer from excessive daytime sleepiness, disrupted nighttime sleep, and cataplexy-the abrupt loss of postural muscle tone during wakefulness, often triggered by strong emotion. The dopamine (DA) system is implicated in both sleep-wake states and cataplexy, but little is known about the function of DA release in the striatum and sleep disorders. Recording DA release in the ventral striatum revealed orexin-independent changes across sleep-wake states as well as striking increases in DA release in the ventral, but not dorsal, striatum prior to cataplexy onset. Tonic low-frequency stimulation of ventral tegmental efferents in the ventral striatum suppressed both cataplexy and rapid eye movement (REM) sleep, while phasic high-frequency stimulation increased cataplexy propensity and decreased the latency to REM sleep. Together, our findings demonstrate a functional role of DA release in the striatum in regulating cataplexy and REM sleep.
Collapse
Affiliation(s)
- Brandon A. Toth
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Katie S. Chang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Fechtali
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Christian R. Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Toth BA, Chang KS, Burgess CR. Striatal dopamine regulates sleep states and narcolepsy-cataplexy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542872. [PMID: 37397994 PMCID: PMC10312558 DOI: 10.1101/2023.05.30.542872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Disruptions to sleep can be debilitating and have a severe effect on daily life. Patients with the sleep disorder narcolepsy suffer from excessive daytime sleepiness, disrupted nighttime sleep, and cataplexy - the abrupt loss of postural muscle tone (atonia) during wakefulness, often triggered by strong emotion. The dopamine (DA) system is implicated in both sleep-wake states and cataplexy, but little is known about the function of DA release in the striatum - a major output region of midbrain DA neurons - and sleep disorders. To better characterize the function and pattern of DA release in sleepiness and cataplexy, we combined optogenetics, fiber photometry, and sleep recordings in a murine model of narcolepsy (orexin-/-; OX KO) and in wildtype mice. Recording DA release in the ventral striatum revealed OX-independent changes across sleep-wake states as well as striking increases in DA release in the ventral, but not dorsal, striatum prior to cataplexy onset. Tonic low frequency stimulation of ventral tegmental efferents in the ventral striatum suppressed both cataplexy and REM sleep, while phasic high frequency stimulation increased cataplexy propensity and decreased the latency to rapid eye movement (REM) sleep. Together, our findings demonstrate a functional role of DA release in the striatum in regulating cataplexy and REM sleep.
Collapse
Affiliation(s)
- Brandon A. Toth
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
| | - Katie S. Chang
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Christian R. Burgess
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
4
|
Plazas Guerrero CG, Acosta Cota SDJ, Castro Sánchez FH, Vergara Jiménez MDJ, Ríos Burgueño ER, Sarmiento Sánchez JI, Picos Corrales LA, Osuna Martínez U. Evaluation of sucrose-enriched diet consumption in the development of risk factors associated to type 2 diabetes, atherosclerosis and non-alcoholic fatty liver disease in a murine model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:651-669. [PMID: 31668088 DOI: 10.1080/09603123.2019.1680817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Overconsumption of sucrose, the main contributor of the total added sugar intake in the world, has been associated with negative metabolic effects related to non-communicable diseases. However, this relationship continues to be a controversial topic and further studies are needed. The aim of this study was to evaluate the sucrose-enriched diet consumption in the development of risk factors associated with type 2 diabetes, atherosclerosis and non-alcoholic fatty liver disease in a murine model. Sucrose-enriched diet-fed rats showed a decrease in food, lipids and protein intake as well as in serum total cholesterol levels, an increase in carbohydrates intake, glucose, insulin, triglycerides, VLDL-c and HDL-c levels and a greater degree of insulin resistance, steatosis and non-alcoholic steatohepatitis. Our results show that sucrose-enriched diet consumption during 25 weeks contribute to the development of risk factors associated with type 2 diabetes, atherosclerosis and non-alcoholic fatty liver disease in male Wistar rats.
Collapse
Affiliation(s)
| | | | | | | | - Efrén Rafael Ríos Burgueño
- Centro de Investigación y Docencia en Ciencias de la Salud, Universidad Autónoma de Sinaloa, Culiacán de Rosales, Mexico
| | | | | | - Ulises Osuna Martínez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacán de Rosales, Mexico
| |
Collapse
|
5
|
Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021; 157:1473-1494. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022]
Abstract
Orexins are hypothalamic neuropeptides originally discovered to play a role in the regulation of feeding behaviour. The broad connections of orexin neurons to mesocorticolimbic circuitry suggest they may play a role in mediating reward-related behaviour beyond homeostatic feeding. Here, we review the role of orexin in a variety of eating-related behaviour, with a focus on reward and motivation, and the neural circuits driving these effects. One emerging finding is the involvement of orexins in hedonic and appetitive behaviour towards palatable food, in addition to their role in homeostatic feeding. This review discusses the brain circuitry and possible mechanisms underlying the role of orexins in these behaviours. Overall, there is a marked bias in the literature towards studies involving male subjects. As such, future work needs to be done to involve female subjects. In summary, orexins play an important role in driving motivation for high salient rewards such as highly palatable food and may serve as the intersection between homeostatic and hedonic feeding.
Collapse
Affiliation(s)
- Muthmainah Muthmainah
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville, Melbourne, Vic., Australia.,The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Vic., Australia.,Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Andrea Gogos
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville, Melbourne, Vic., Australia
| | - Priya Sumithran
- Department of Medicine (Austin), University of Melbourne, Heidelberg, Vic., Australia.,Department of Endocrinology, Austin Health, Heidelberg, Vic., Australia
| | - Robyn M Brown
- The Florey Institute of Neuroscience and Mental Health, Mental Health Research Theme, Parkville, Melbourne, Vic., Australia.,The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Vic., Australia
| |
Collapse
|
6
|
Tunisi L, D'Angelo L, Fernández-Rilo AC, Forte N, Piscitelli F, Imperatore R, de Girolamo P, Di Marzo V, Cristino L. Orexin-A/Hypocretin-1 Controls the VTA-NAc Mesolimbic Pathway via Endocannabinoid-Mediated Disinhibition of Dopaminergic Neurons in Obese Mice. Front Synaptic Neurosci 2021; 13:622405. [PMID: 33613258 PMCID: PMC7890184 DOI: 10.3389/fnsyn.2021.622405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 01/27/2023] Open
Abstract
Disinhibition of orexin-A/hypocretin-1 (OX-A) release occurs to several output areas of the lateral hypothalamus (LH) in the brain of leptin knockout obese ob/ob mice. In this study, we have investigated whether a similar increase of OX-A release occurs to the ventral tegmental area (VTA), an orexinergic LH output area with functional effects on dopaminergic signaling at the mesolimbic circuit. By confocal and correlative light and electron microscopy (CLEM) morphological studies coupled to molecular, biochemical, and pharmacological approaches, we investigated OX-A-mediated dopaminergic signaling at the LH-VTA-nucleus accumbens (NAc) pathway in obese ob/ob mice compared to wild-type (wt) lean littermates. We found an elevation of OX-A trafficking and release to the VTA of ob/ob mice and consequent orexin receptor-1 (OX1R)-mediated over-activation of dopaminergic (DA) neurons via phospholipase C (PLC)/diacylglycerol lipase (DAGL-α)-induced biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). In fact, by retrograde signaling to cannabinoid receptor type 1 (CB1R) at inhibitory inputs to DA neurons, 2-AG inhibited GABA release thus inducing an increase in DA concentration in the VTA and NAc of ob/ob mice. This effect was prevented by the OX1R antagonist SB-334867 (30 mg/Kg, i.p.), or the CB1R antagonist AM251 (10 mg/Kg, i.p.) and mimicked by OX-A injection (40 μg/Kg, i.p.) in wt lean mice. Enhanced DA signaling to the NAc in ob/ob mice, or in OX-A-injected wt mice, was accompanied by β-arrestin2-mediated desensitization of dopamine D2 receptor (D2R) in a manner prevented by SB-334867 or the D2R antagonist L741 (1.5 mg/Kg, i.p.). These results further support the role of OX-A signaling in the control of neuroadaptive responses, such as compulsive reward-seeking behavior or binge-like consumption of high palatable food, and suggest that aberrant OX-A trafficking to the DA neurons in the VTA of ob/ob mice influences the D2R response at NAc, a main target area of the mesolimbic pathway, via 2-AG/CB1-mediated retrograde signaling.
Collapse
Affiliation(s)
- Lea Tunisi
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Alba Clara Fernández-Rilo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Nicola Forte
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy.,Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec City, QC, Canada.,Heart and Lung Research Institute of Université Laval, and Institute for Nutrition and Functional Foods, Université Laval, Québec City, QC, Canada
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| |
Collapse
|
7
|
Genders SG, Scheller KJ, Djouma E. Neuropeptide modulation of addiction: Focus on galanin. Neurosci Biobehav Rev 2020; 110:133-149. [DOI: 10.1016/j.neubiorev.2018.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022]
|
8
|
Tanaka S, Higuchi M, Seki S, Enomoto A, Kogo M. Orexins modulate membrane excitability in rat trigeminal motoneurons. J Oral Sci 2020; 62:265-270. [DOI: 10.2334/josnusd.19-0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Susumu Tanaka
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Masataka Higuchi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Soju Seki
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Akifumi Enomoto
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, Kindai University
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
9
|
Summers CH, Yaeger JDW, Staton CD, Arendt DH, Summers TR. Orexin/hypocretin receptor modulation of anxiolytic and antidepressive responses during social stress and decision-making: Potential for therapy. Brain Res 2018; 1731:146085. [PMID: 30590027 DOI: 10.1016/j.brainres.2018.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Hypothalmic orexin/hypocretin (Orx) neurons in the lateral and dorsomedial perifornical region (LH-DMH/PeF) innervate broadly throughout the brain, and receive similar inputs. This wide distribution, as well as two Orx peptides (OrxA and OrxB) and two Orx receptors (Orx1 and Orx2) allow for functionally related but distinctive behavioral outcomes, that include arousal, sleep-wake regulation, food seeking, metabolism, feeding, reward, addiction, and learning. These are all motivational functions, and tie the orexin systems to anxiety and depression as well. We present evidence, that for affective behavior, Orx1 and Orx2 receptors appear to have opposing functions. The majority of research on anxiety- and depression-related outcomes has focused on Orx1 receptors, which appear to have primarily anxiogenic and pro-depressive actions. Although there is significant research suggesting contrary findings, the primary potential for pharmacotherapies linked to the Orx1 receptor is via antagonists to block anxious and depressive behavior. Dual orexin receptor antagonists have been approved for treatment of sleep disorders, and are likely candidates for adaptation for affect disorder treatments. However, we present evidence here that demonstrates the Orx2 receptors are anxiolytic and antidepressive. Using a new experimental pre-clinical model of anxious and depressive behavior stimulated by social stress and decision-making that produces two stable behavioral phenotypes, Escape/Resilient and Stay/Susceptible, we tested the effects of intracerebroventricular injections of Orx2 agonist and antagonist drugs. Over ten behavioral measures, we have demonstrated that Orx2 agonists promote resilience, as well as anxiolytic and antidepressive behavior. In contrast, Orx2 antagonists or knockdown kindle anxious and pro-depressive behavior plus increase susceptibility. The results suggest that the Orx2 receptor may be a useful target for pharmacotherapies to treat anxiety and depression.
Collapse
Affiliation(s)
- Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA.
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| | - Clarissa D Staton
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| | - David H Arendt
- Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA
| | - Tangi R Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069 USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
10
|
|
11
|
Tyree SM, Borniger JC, de Lecea L. Hypocretin as a Hub for Arousal and Motivation. Front Neurol 2018; 9:413. [PMID: 29928253 PMCID: PMC5997825 DOI: 10.3389/fneur.2018.00413] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023] Open
Abstract
The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.
Collapse
Affiliation(s)
- Susan M Tyree
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jeremy C Borniger
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
12
|
Steiner N, Rossetti C, Sakurai T, Yanagisawa M, de Lecea L, Magistretti PJ, Halfon O, Boutrel B. Hypocretin/orexin deficiency decreases cocaine abuse liability. Neuropharmacology 2018; 133:395-403. [PMID: 29454841 DOI: 10.1016/j.neuropharm.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/12/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022]
Abstract
Compelling evidence indicates that hypocretin/orexin signaling regulates arousal, stress and reward-seeking behaviors. However, most studies on drug reward-related processes have so far described the effects of pharmacological blockers disrupting hypocretin/orexin transmission. We report here an extensive study on cocaine-related behaviors in hypocretin/orexin-deficient mice (KO) and their heterozygous (HET) and wildtype (WT) littermates. We evaluated behavioral sensitization following repeated administrations and preference for an environment repeatedly paired with cocaine injections (15 mg/kg). Mice were also trained to self-administer cocaine (0.5-1.5 mg/kg/infusion). Our observations show that whereas all mice exhibited quite similar responses to acute administration of cocaine, only Hcrt KO mice exhibited reduced cocaine-seeking behaviors following a period of abstinence or extinction, and reduced cocaine incubation craving. Further, if the present findings confirm that Hcrt deficient mice may display a hypoactive phenotype, possibly linked to a reduced alertness concomitant to a decreased exploration of their environment, hypocretin/orexin defiency did not cause any attentional deficit. We thus report that innate disruption of hypocretin/orexin signaling moderately alters cocaine reward but significantly reduces long-term affective dependence that may explain the lack of relapse for cocaine seeking seen in Hcrt KO mice. Overall, with blunted cocaine intake at the highest concentration and reduced responsiveness to cocaine cues after prolonged abstinence, our findings suggest that hypocretin deficient mice may display signs of resilience to cocaine addiction.
Collapse
Affiliation(s)
- Nadia Steiner
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Switzerland
| | - Clara Rossetti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Switzerland
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Japan
| | - Luis de Lecea
- Dept. of Psychiatry and Behavioral Sciences, Stanford University, USA
| | - Pierre J Magistretti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Switzerland
| | - Olivier Halfon
- Division of Adolescent and Child Psychiatry, Department of Psychiatry, Lausanne University Hospital, Switzerland
| | - Benjamin Boutrel
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Switzerland; Division of Adolescent and Child Psychiatry, Department of Psychiatry, Lausanne University Hospital, Switzerland.
| |
Collapse
|
13
|
Luan X, Sun X, Guo F, Zhang D, Wang C, Ma L, Xu L. Lateral hypothalamic Orexin-A-ergic projections to the arcuate nucleus modulate gastric functionin vivo. J Neurochem 2017; 143:697-707. [DOI: 10.1111/jnc.14233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao Luan
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Xiangrong Sun
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Feifei Guo
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Di Zhang
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Cheng Wang
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| | - Li Ma
- Departmemt of Clinical Nutrition; Affiliated Hospital; Qingdao University; Qingdao China
| | - Luo Xu
- Department of Pathophysiology; Medical College of Qingdao University; Qingdao China
| |
Collapse
|
14
|
Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The neuropeptide orexin/hypocretin (OX), while largely transcribed within the hypothalamus, is released throughout the brain to affect complex behaviors. Primarily through the hypothalamus itself, OX homeostatically regulates adaptive behaviors needed for survival, including food intake, sleep-wake regulation, mating, and maternal behavior. However, through extrahypothalamic limbic brain regions, OX promotes seeking and intake of rewarding substances of abuse, like palatable food, alcohol, nicotine, and cocaine. This neuropeptide, in turn, is stimulated by the intake of or early life exposure to these substances, forming a nonhomeostatic, positive feedback loop. The specific OX receptor involved in these behaviors, whether adaptive behavior or substance seeking and intake, is dependent on the particular brain region that contributes to them. Thus, we propose that, while the primary function of OX is to maintain arousal for the performance of adaptive behaviors, this neuropeptide system is readily co-opted by rewarding substances that involve positive feedback, ultimately promoting their abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Drexel University College of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
15
|
Feillet CA, Bainier C, Mateo M, Blancas-Velázquez A, Salaberry NL, Ripperger JA, Albrecht U, Mendoza J. Rev-erbα modulates the hypothalamic orexinergic system to influence pleasurable feeding behaviour in mice. Addict Biol 2017; 22:411-422. [PMID: 26632340 DOI: 10.1111/adb.12339] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/04/2015] [Accepted: 10/28/2015] [Indexed: 01/21/2023]
Abstract
The drive to eat is regulated by two compensatory brain pathways termed as homeostatic and hedonic. Hypothalamic orexinergic (ORX) neurons regulate metabolism, feeding and reward, thus controlling physiological and hedonic appetite. Circadian regulation of feeding, metabolism and rhythmic activity of ORX cells are driven by the brain suprachiasmatic clock. How the circadian clock impacts on ORX signalling and feeding-reward rhythms is, however, unknown. Here we used mice lacking the nuclear receptor REV-ERBα, a transcription repressor and a key component of the molecular clockwork, to study food-reward behaviour. Rev-Erbα mutant mice showed highly motivated behaviours to obtain palatable food, an increase in the intake and preference for tasty diets, and in the expression of the ORX protein in the hypothalamus. Palatable food intake was inhibited in animals treated with the ORX1R antagonist. Analyzing the Orx promoter, we found Retinoic acid-related Orphan receptor Response Element binding sites for Rev-Erbα. Furthermore, Rev-Erbα dampened the activation of Orx in vitro and in vivo. Our data provide evidence for a possible repressive role of Rev-Erbα in the regulation of ORX signalling, highlighting an implication of the circadian clockwork in modulating food-reward behaviours with an important impact for the central regulation of overeating.
Collapse
Affiliation(s)
- Céline A. Feillet
- Department of Biology, Unit of Biochemistry; University of Fribourg; Chemin du Musée 5 Fribourg Switzerland
| | - Claire Bainier
- Institute of Cellular and Integrative Neurosciences; CNRS UPR-3212; 5 rue Blaise Pascal Strasbourg France
| | - Maria Mateo
- Institute of Cellular and Integrative Neurosciences; CNRS UPR-3212; 5 rue Blaise Pascal Strasbourg France
| | - Aurea Blancas-Velázquez
- Institute of Cellular and Integrative Neurosciences; CNRS UPR-3212; 5 rue Blaise Pascal Strasbourg France
| | - Nora L. Salaberry
- Institute of Cellular and Integrative Neurosciences; CNRS UPR-3212; 5 rue Blaise Pascal Strasbourg France
| | - Jürgen A. Ripperger
- Department of Biology, Unit of Biochemistry; University of Fribourg; Chemin du Musée 5 Fribourg Switzerland
| | - Urs Albrecht
- Department of Biology, Unit of Biochemistry; University of Fribourg; Chemin du Musée 5 Fribourg Switzerland
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences; CNRS UPR-3212; 5 rue Blaise Pascal Strasbourg France
| |
Collapse
|
16
|
Bojanowska E, Ciosek J. Can We Selectively Reduce Appetite for Energy-Dense Foods? An Overview of Pharmacological Strategies for Modification of Food Preference Behavior. Curr Neuropharmacol 2016; 14:118-42. [PMID: 26549651 PMCID: PMC4825944 DOI: 10.2174/1570159x14666151109103147] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/19/2015] [Accepted: 10/31/2015] [Indexed: 12/11/2022] Open
Abstract
Excessive intake of food, especially palatable and energy-dense carbohydrates and fats, is
largely responsible for the growing incidence of obesity worldwide. Although there are a number of
candidate antiobesity drugs, only a few of them have been proven able to inhibit appetite for palatable
foods without the concurrent reduction in regular food consumption. In this review, we discuss the
interrelationships between homeostatic and hedonic food intake control mechanisms in promoting
overeating with palatable foods and assess the potential usefulness of systemically administered pharmaceuticals that
impinge on the endogenous cannabinoid, opioid, aminergic, cholinergic, and peptidergic systems in the modification of
food preference behavior. Also, certain dietary supplements with the potency to reduce specifically palatable food intake
are presented. Based on human and animal studies, we indicate the most promising therapies and agents that influence the
effectiveness of appetite-modifying drugs. It should be stressed, however, that most of the data included in our review
come from preclinical studies; therefore, further investigations aimed at confirming the effectiveness and safety of the
aforementioned medications in the treatment of obese humans are necessary.
Collapse
Affiliation(s)
- Ewa Bojanowska
- Department of Behavioral Pathophysiology, Institute of General and Experimental Pathology, Medical University of Lodz, 60 Narutowicza Street, 90-136 Lodz, Poland.
| | | |
Collapse
|
17
|
Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction. Physiol Behav 2016; 162:27-36. [PMID: 26945612 DOI: 10.1016/j.physbeh.2016.02.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/04/2016] [Accepted: 02/29/2016] [Indexed: 12/12/2022]
Abstract
Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin signaling during Pavlovian appetitive conditioning and extinction.
Collapse
|
18
|
Abstract
Initially implicated in the regulation of feeding, orexins/hypocretins are now acknowledged to play a major role in the control of a wide variety of biological processes, such as sleep, energy expenditure, pain, cardiovascular function and neuroendocrine regulation, a feature that makes them one of the most pleiotropic families of hypothalamic neuropeptides. While the orexigenic effect of orexins is well described, their central effects on energy expenditure and particularly on brown adipose tissue (BAT) thermogenesis are not totally unraveled. Better understanding of these actions and their possible interrelationship with other hypothalamic systems controlling thermogenesis, such as AMP-activated protein kinase (AMPK) and endoplasmic reticulum (ER) stress, will help to clarify the exact role and pathophysiological relevance of these neuropeptides have on energy balance.
Collapse
Affiliation(s)
- Johan Fernø
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, N-5021 Bergen, Norway.
| | - Rosa Señarís
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain
| | - Carlos Diéguez
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) 15706, Spain.
| |
Collapse
|
19
|
Laque A, Yu S, Qualls-Creekmore E, Gettys S, Schwartzenburg C, Bui K, Rhodes C, Berthoud HR, Morrison CD, Richards BK, Münzberg H. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol Metab 2015; 4:706-17. [PMID: 26500842 PMCID: PMC4588437 DOI: 10.1016/j.molmet.2015.07.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 11/30/2022] Open
Abstract
Objective Leptin modulates food reward via central leptin receptor (LepRb) expressing neurons. Food reward requires stimulation of midbrain dopamine neurons and is modulated by central leptin action, but the exact central mechanisms remain unclear. Stimulatory and inhibitory leptin actions on dopamine neurons have been reported, e.g. by indirect actions on orexin neurons or via direct innervation of dopamine neurons in the ventral tegmental area. Methods We showed earlier that LepRb neurons in the lateral hypothalamus (LHA) co-express the inhibitory acting neuropeptide galanin (GAL-LepRb neurons). We studied the involvement of GAL-LepRb neurons to regulate nutrient reward in mice with selective LepRb deletion from galanin neurons (GAL-LepRbKO mice). Results We found that the rewarding value and preference for sucrose over fat was increased in GAL-LepRbKO mice compared to controls. LHA GAL-LepRb neurons innervate orexin neurons, but not the VTA. Further, expression of galanin and its receptor GalR1 are decreased in the LHA of GAL-LepRbKO mice, resulting in increased activation of orexin neurons. Conclusion We suggest galanin as an important mediator of leptin action to modulate nutrient reward by inhibiting orexin neurons. GAL-LepRbKO shows ↓ galanin and ↓ GalR1 mRNA, ↑ body weight gain. GAL-LepRbKO shows ↑ orexin/hypocretin neuronal activation. GAL-LepRb neurons innervate local orexin/hypocretin and noradrenergic locus coeruleus neurons. Leptin regulates natural reward and body weight via GAL-LepRb neurons.
Collapse
Affiliation(s)
- Amanda Laque
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Sangho Yu
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Emily Qualls-Creekmore
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Sarah Gettys
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Candice Schwartzenburg
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Kelly Bui
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | | | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurosignaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Brenda K Richards
- Genetics of Eating Behavior Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| | - Heike Münzberg
- Central Leptin Signaling Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, LA, USA
| |
Collapse
|
20
|
Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015; 9:9. [PMID: 25741247 PMCID: PMC4332303 DOI: 10.3389/fnsys.2015.00009] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 01/15/2015] [Indexed: 12/26/2022] Open
Abstract
Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA) is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH) or orexins/hypocretins (OX) are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts) has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.
Collapse
Affiliation(s)
- Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University East Lansing, MI, USA ; Center for Integrative Toxicology East Lansing, MI, USA
| | | | - Gina M Leinninger
- Center for Integrative Toxicology East Lansing, MI, USA ; Department of Physiology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
21
|
Abstract
Orexins are a pair of hypothalamic neuropeptides that were discovered in the late 1990s and named initially for their ability to promote feeding. Subsequent studies have revealed the importance of orexins to a variety of physiological functions, including brown fat thermogenesis, sleep/wake cycles, physical activity, and cognition. We aim to elucidate the various roles of orexins and discuss how these multiple functions are interlinked. We explain that although the unique dual roles of orexins in increasing feeding while concomitantly elevating energy expenditure appear counterproductive, they are necessary for physiological scenarios during which simultaneous stimulation of energy expenditure and feeding occur, namely diet-induced thermogenesis and arousal from hibernation. The position of orexins at the interface between sleep/wake cycles, energy homeostasis, and environmental factors has important implications in the treatment of obesity.
Collapse
Affiliation(s)
- Dyan Sellayah
- Metabolic Signaling and Disease Program, Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, 6400 Sanger Road, Orlando, Florida 32827.
| | | |
Collapse
|
22
|
Chen YW, Barson JR, Chen A, Hoebel BG, Leibowitz SF. Opioids in the perifornical lateral hypothalamus suppress ethanol drinking. Alcohol 2013. [PMID: 23199698 DOI: 10.1016/j.alcohol.2012.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The opioid system is known to enhance motivated behaviors, including ethanol drinking and food ingestion, by acting in various reward-related brain regions, such as the nucleus accumbens, ventral tegmental area and medial hypothalamus. There is indirect evidence, however, suggesting that opioid peptides may act differently in the perifornical lateral hypothalamus (PF/LH), causing a suppression of consummatory behavior. Using brain-cannulated Sprague-Dawley rats trained to voluntarily drink 7% ethanol, the present study tested the hypothesis that opioids in the PF/LH can reduce the consumption of ethanol, with animals receiving PF/LH injections of the δ-opioid receptor agonist D-Ala2-met-enkephalinamide (DALA), the μ-receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO), the κ-receptor agonist (±)-trans-U-50,488 methanesulfonate (U-50,488H), or the general opioid antagonist methylated naloxone (m-naloxone). The consumption of ethanol, lab chow, and water was monitored for 4 h after injection. The results showed that the three opioid receptor agonists injected into the PF/LH specifically and significantly reduced ethanol intake, while causing little change in chow or water intake, and the opposite effect, enhanced ethanol intake, was observed with the opioid antagonist. Of the three opioid agonists, the δ-agonist appears to produce the most consistent and long-lasting suppression of consumption. This effect was not observed with injections 2 mm dorsal to this area, focusing attention on the PF/LH as the main site of action. These results suggest that the opioid peptides have a specific role in the PF/LH of reducing ethanol drinking, which is distinct from their more commonly observed appetitive actions in other brain areas. The additional finding, that m-naloxone in the PF/LH stimulates ethanol intake in contrast to its generally suppressive effect in other regions, focuses attention on this hypothalamic area and its distinctive role in contributing to the variable effects sometimes observed with opioid antagonist therapy for alcoholism.
Collapse
|
23
|
Barson JR, Morganstern I, Leibowitz SF. Complementary roles of orexin and melanin-concentrating hormone in feeding behavior. Int J Endocrinol 2013; 2013:983964. [PMID: 23935621 PMCID: PMC3727095 DOI: 10.1155/2013/983964] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/21/2013] [Indexed: 11/18/2022] Open
Abstract
Transcribed within the lateral hypothalamus, the neuropeptides orexin/hypocretin (OX) and melanin-concentrating hormone (MCH) both promote palatable food intake and are stimulated by palatable food. While these two neuropeptides share this similar positive relationship with food, recent evidence suggests that this occurs through different albeit complementary effects on behavior, with OX promoting food seeking and motivation for palatable food and MCH functioning during ongoing food intake, reinforcing the consumption of calorically dense foods. Further differences are evident in their effects on physiological processes, which are largely opposite in nature. For example, activation of OX receptors, which is neuronally excitatory, promotes waking, increases energy expenditure, and enhances limbic dopamine levels and reward. In contrast, activation of MCH receptors, which is neuronally inhibitory, promotes paradoxical sleep, enhances energy conservation, reduces limbic dopamine, and increases depressive behavior. This review describes these different effects of the neuropeptides, developing the hypothesis that they stimulate the consumption of palatable food through excessive seeking in the case of OX and through excessive energy conservation in the case of MCH. It proposes that OX initiates food intake and subsequently stimulates MCH which then acts to prolong the consumption of palatable, energy-dense food.
Collapse
Affiliation(s)
- Jessica R. Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Irene Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- *Sarah F. Leibowitz:
| |
Collapse
|
24
|
Holtz NA, Zlebnik NE, Carroll ME. Differential orexin/hypocretin expression in addiction-prone and -resistant rats selectively bred for high (HiS) and low (LoS) saccharin intake. Neurosci Lett 2012; 522:12-5. [PMID: 22668854 PMCID: PMC3437307 DOI: 10.1016/j.neulet.2012.05.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 10/28/2022]
Abstract
Rats that have been selectively bred for high (HiS) saccharin intake demonstrate elevated drug-seeking behavior in several phases of addiction compared to those bred for low (LoS) saccharin intake. HiS rats also consume greater amounts of highly palatable substances compared to LoS rats; however, little is known about the neurobiological substrates moderating the divergent behaviors found between the HiS and LoS lines. Orexins are neuropeptides that have been implicated in the conditioned cue aspects of drug abuse and overconsumption of palatable substances, and differential orexin activity in the HiS and LoS phenotypes may enhance our understanding of the close relationship between food and drug reward, and ultimately food and drug addiction. The lateral hypothalamus (LH) and perifornical area (PFA) are brain regions that have been implicated in regulating feeding behavior and addiction processes, and they contain orexinergic neurons that project broadly throughout the brain. Thus, we investigated orexin and c-Fos expression in the LH and PFA using immunohistochemistry in HiS and LoS rats following either control or cocaine (15 mg/kg) injections. Results indicated that HiS rats have higher orexin-positive cell counts compared to LoS rats in both the LH and PFA, regardless of cocaine (vs. saline) treatment. In contrast, neuronal activity indicated by c-Fos expression did not differ in either of these brain areas in HiS vs. LoS rats. These results suggest that the orexin system may be involved in aspects of genetically-mediated differences in vulnerability to compulsive, reward-driven behaviors.
Collapse
Affiliation(s)
- Nathan A Holtz
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
25
|
Morganstern I, Barson JR, Leibowitz SF. Regulation of drug and palatable food overconsumption by similar peptide systems. ACTA ACUST UNITED AC 2012; 4:163-73. [PMID: 21999690 DOI: 10.2174/1874473711104030163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 11/22/2022]
Abstract
This review is aimed at understanding some of the common neurochemical, behavioral and physiological determinants of drug and food overconsumption. Much current work has been devoted to determining the similarities between the brain circuits controlling excessive use of addictive drugs and the overconsumption of palatable foods. The brain systems involved likely include peptides of both mesolimbic and hypothalamic origin. Evidence gathered from expression and injection studies suggests that the consumption of drugs, such as ethanol and nicotine, and also of palatable foods rich in fat is stimulated by different orexigenic peptides, such as enkephalin, galanin, orexin, and melaninconcentrating hormone, acting within the hypothalamus or various limbic structures, while another peptide, neuropeptide Y, is closely related to carbohydrate consumption and shows an inverse relationship with ethanol and nicotine consumption. Moreover, studies in animal models suggest that a propensity to overconsume these reinforcing substances may result from preexisting disturbances in these same peptide systems. These neurochemical disturbances, in turn, may also be closely linked to specific behaviors associated with excessive consummatory behavior, such as hyperactivity or novelty-seeking, palatable food preference, and also fluctuations in circulating lipid levels. Clear understanding of the relationship between these various determinants of consummatory behavior will allow researchers to effectively predict and examine at early stages of exposure animals that are prone to drug and food overconsumption. This work may ultimately aid in the identification of inherent traits that increase the risk for drug abuse and palatable food overconsumption.
Collapse
Affiliation(s)
- Irene Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
26
|
|
27
|
Leinninger GM. Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus. Physiol Behav 2011; 104:572-81. [PMID: 21550356 DOI: 10.1016/j.physbeh.2011.04.060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 04/19/2011] [Accepted: 04/28/2011] [Indexed: 12/30/2022]
Abstract
The lateral hypothalamic area (LHA) was initially described as a "feeding center" but we are now beginning to understand that the LHA contributes to other aspects of physiology as well. Indeed, the best-characterized neuronal populations of the LHA (which contain melanin-concentrating hormone (MCH) or the hypocretins/orexins (OX)) are not strictly orexigenic, but also have roles in regulation of the autonomic and sympathetic nervous systems as well as in modulating motivated behavior. Leptin is an anorectic hormone that regulates energy homeostasis and the mesolimbic DA system (which transduces the wanting of food, drugs of abuse, and sex) in part, via actions at the LHA. At least three populations of LHA neurons are regulated by leptin: those containing MCH, OX or the long form of the leptin receptor, LepRb. The emerging picture of leptin interaction with these LHA populations suggests that the LHA is not merely regulating feeding, but is a crucial integrator of energy balance and motivated behavior.
Collapse
Affiliation(s)
- Gina M Leinninger
- Division of Metabolism, Endocrinology and Diabetes, Department of Medicine, University of Michigan Medical School, 100 Wall Street, Ann Arbor, MI 48105, USA
| |
Collapse
|