1
|
Al-Khazali HM, Christensen RH, Dodick DW, Chaudhry BA, Amin FM, Burstein R, Ashina H. Hypersensitivity to PACAP-38 in post-traumatic headache: a randomized clinical trial. Brain 2024; 147:1312-1320. [PMID: 37864847 PMCID: PMC10994530 DOI: 10.1093/brain/awad367] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/07/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38), known for its role in migraine pathogenesis, has been identified as a novel drug target. Given the clinical parallels between post-traumatic headache (PTH) and migraine, we explored the possible role of PACAP-38 in the pathogenesis of PTH. To this end, we conducted a randomized, double-blind, placebo-controlled, two-way crossover trial involving adult participants diagnosed with persistent PTH resulting from mild traumatic brain injury. Participants were randomly assigned to receive a 20-min continuous intravenous infusion of either PACAP-38 (10 pmol/kg/min) or placebo (isotonic saline) on two separate experimental days, with a 1-week washout period in between. The primary outcome was the difference in incidence of migraine-like headache between PACAP-38 and placebo during a 12-h observational period post-infusion. The secondary outcome was the difference in the area under the curve (AUC) for baseline-corrected median headache intensity scores during the same 12-h observational period. Of 49 individuals assessed for eligibility, 21 were enrolled and completed the trial. The participants had a mean age of 35.2 years, and 16 (76%) were female. Most [19 of 21 (90%)] had a migraine-like phenotype. During the 12-h observational period, 20 of 21 (95%) participants developed migraine-like headache after intravenous infusion of PACAP-38, compared with two (10%) participants after placebo (P < 0.001). Furthermore, the baseline-corrected AUC values for median headache intensity scores during the 12-h observational period was higher after PACAP-38 than placebo (P < 0.001). These compelling results demonstrate that PACAP-38 is potent inducer of migraine-like headache in people with persistent PTH. Thus, targeting PACAP-38 signalling might be a promising avenue for the treatment of PTH.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Rune H Christensen
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - David W Dodick
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Neurology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Faisal Mohammad Amin
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| | - Rami Burstein
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Håkan Ashina
- Harvard Medical School, Boston, MA 02115, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital—Rigshospitalet, Copenhagen 2600, Denmark
| |
Collapse
|
2
|
Spekker E, Nagy-Grócz G, Vécsei L. Ion Channel Disturbances in Migraine Headache: Exploring the Potential Role of the Kynurenine System in the Context of the Trigeminovascular System. Int J Mol Sci 2023; 24:16574. [PMID: 38068897 PMCID: PMC10706278 DOI: 10.3390/ijms242316574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Migraine is a primary headache disorder, which is an enormous burden to the healthcare system. While some aspects of the pathomechanism of migraines remain unknown, the most accepted theory is that activation and sensitization of the trigeminovascular system are essential during migraine attacks. In recent decades, it has been suggested that ion channels may be important participants in the pathogenesis of migraine. Numerous ion channels are expressed in the peripheral and central nervous systems, including the trigeminovascular system, affecting neuron excitability, synaptic energy homeostasis, inflammatory signaling, and pain sensation. Dysfunction of ion channels could result in neuronal excitability and peripheral or central sensitization. This narrative review covers the current understanding of the biological mechanisms leading to activation and sensitization of the trigeminovascular pain pathway, with a focus on recent findings on ion channel activation and modulation. Furthermore, we focus on the kynurenine pathway since this system contains kynurenic acid, which is an endogenous glutamate receptor antagonist substance, and it has a role in migraine pathophysiology.
Collapse
Affiliation(s)
| | - Gábor Nagy-Grócz
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- Faculty of Health Sciences and Social Studies, University of Szeged, H-6726 Szeged, Hungary
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6725 Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, H-6725 Szeged, Hungary;
- HUN-REN-SZTE Neuroscience Research Group, University of Szeged, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Slabe Z, Balesar RA, Verwer RWH, Drevenšek G, Swaab DF. Increased pituitary adenylate cyclase-activating peptide genes expression in the prefrontal cortex in schizophrenia in relation to suicide. Front Mol Neurosci 2023; 16:1277958. [PMID: 38025265 PMCID: PMC10652791 DOI: 10.3389/fnmol.2023.1277958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Pituitary adenylate cyclase-activating peptide (PACAP) is a stress-related neuropeptide that is produced in several brain areas. It acts by 3 receptors: PACAP type-1 (PAC1), vasoactive intestinal peptide (VIP) -1 and -2 (VPAC1 and 2). Data on polymorphisms in PACAP and PAC1 indicate a relationship of the PACAP system with schizophrenia (SCZ). Methods The prefrontal cortex was chosen to measure PACAP-gene related expression changes, since this is a central structure in the symptoms of schizophrenia (SCZ). We investigated alterations in the expression of the PACAP-related genes by qPCR in the human dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of 35 SCZ patients and 34 matched controls in relation to SCZ, suicide, gender and medication. Results The ACC revealed an upregulation in PACAP, PAC1, VPAC1 and VPAC2 in SCZ suicide (S) completers compared to controls. An increase in PACAP, VPAC1 and VPAC2 expression was also present in the ACC in SCZ-S compared to SCZ patients who died naturally (SCZ-N). In the DLPFC, an increase in PAC1 was found in SCZ-N patients compared to SCZ-S and controls. Moreover, an increase in all PACAP-related genes was present in SCZ-N male patients compared to SCZ-N females. Concluding, expression changes were found in PACAP-related genes in relation to SCZ, suicide and gender. In particular, there was a higher PACAP-related gene expression in SCZ patients in the ACC in relation to suicide and in DLPFC in relation to SCZ. Discussion These findings suggest a potential link between PACAP and the pathophysiology of SCZ and suicide. Further research is needed to understand the functional significance and potential clinical applications of these changes.
Collapse
Affiliation(s)
- Zala Slabe
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rawien A. Balesar
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Ronald W. H. Verwer
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Gorazd Drevenšek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
4
|
Al-Khazali HM, Christensen RH, Dodick DW, Chaudhry BA, Burstein R, Ashina H. Hypersensitivity to opening of ATP-sensitive potassium channels in post-traumatic headache. Cephalalgia 2023; 43:3331024231210930. [PMID: 37917826 DOI: 10.1177/03331024231210930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/04/2023]
Abstract
OBJECTIVE To investigate whether levcromakalim (a KATP channel opener) induces migraine-like headache in people with persistent post-traumatic headache who had no known history of migraine. METHODS In a randomized, double-blind, placebo-controlled, 2-way crossover trial, participants were randomly assigned to receive a 20-minute continuous intravenous infusion of levcromakalim (50 µg/mL) or placebo (isotonic saline) on two separate experimental days with a 1-week wash-out period in between. The primary endpoint was the difference in incidence of migraine-like headache between levcromakalim and placebo during a 12-hour observational period after infusion start. The secondary endpoint was the difference in area under the curve for baseline-corrected median headache intensity scores between levcromakalim and placebo during the 12-hour observational period. RESULTS A total of 21 participants with persistent post-traumatic headache were randomized and completed the trial. During the 12-hour observational period, 12 (57%) of 21 participants reported experiencing migraine-like headache following the levcromakalim infusion, compared with three after placebo (P = 0.013). Moreover, the baseline-corrected median headache intensity scores were higher following the levcromakalim infusion than after placebo (P = 0.003). CONCLUSION Our findings suggest that KATP channels play an important role in the pathogenesis of migraine-like headache in people with persistent post-traumatic headache. This implies that KATP channel blockers might represent a promising avenue for drug development. Further research is warranted to explore the potential therapeutic benefits of KATP channel blockers in managing post-traumatic headache.Trial Registration: ClinicalTrials.gov Identifier: NCT05243953.
Collapse
Affiliation(s)
- Haidar M Al-Khazali
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune H Christensen
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David W Dodick
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, USA
| | - Basit Ali Chaudhry
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rami Burstein
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Håkan Ashina
- Harvard Medical School, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Brain and Spinal Cord Injury, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Al-Hassany L, Boucherie DM, Creeney H, van Drie RWA, Farham F, Favaretto S, Gollion C, Grangeon L, Lyons H, Marschollek K, Onan D, Pensato U, Stanyer E, Waliszewska-Prosół M, Wiels W, Chen HZ, Amin FM. Future targets for migraine treatment beyond CGRP. J Headache Pain 2023; 24:76. [PMID: 37370051 DOI: 10.1186/s10194-023-01567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Migraine is a disabling and chronic neurovascular headache disorder. Trigeminal vascular activation and release of calcitonin gene-related peptide (CGRP) play a pivotal role in the pathogenesis of migraine. This knowledge has led to the development of CGRP(-receptor) therapies. Yet, a substantial proportion of patients do not respond to these treatments. Therefore, alternative targets for future therapies are warranted. The current narrative review provides a comprehensive overview of the pathophysiological role of these possible non-CGRP targets in migraine. FINDINGS We covered targets of the metabotropic receptors (pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), amylin, and adrenomedullin), intracellular targets (nitric oxide (NO), phosphodiesterase-3 (PDE3) and -5 (PDE5)), and ion channels (potassium, calcium, transient receptor potential (TRP), and acid-sensing ion channels (ASIC)). The majority of non-CGRP targets were able to induce migraine-like attacks, except for (i) calcium channels, as it is not yet possible to directly target channels to elucidate their precise involvement in migraine; (ii) TRP channels, activation of which can induce non-migraine headache; and (iii) ASICs, as their potential in inducing migraine attacks has not been investigated thus far. Drugs that target its receptors exist for PACAP, NO, and the potassium, TRP, and ASIC channels. No selective drugs exist for the other targets, however, some existing (migraine) treatments appear to indirectly antagonize responses to amylin, adrenomedullin, and calcium channels. Drugs against PACAP, NO, potassium channels, TRP channels, and only a PAC1 antibody have been tested for migraine treatment, albeit with ambiguous results. CONCLUSION While current research on these non-CGRP drug targets has not yet led to the development of efficacious therapies, human provocation studies using these targets have provided valuable insight into underlying mechanisms of migraine headaches and auras. Further studies are needed on these alternative therapies in non-responders of CGRP(-receptor) targeted therapies with the ultimate aim to pave the way towards a headache-free future for all migraine patients.
Collapse
Affiliation(s)
- Linda Al-Hassany
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deirdre M Boucherie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hannah Creeney
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ruben W A van Drie
- Department of Internal Medicine, Division of Vascular Medicine and Pharmacology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Cardiology, Division of Experimental Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Fatemeh Farham
- Department of Headache, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Silvia Favaretto
- Headache Center, Neurology Clinic, University Hospital of Padua, Padua, Italy
| | - Cédric Gollion
- Department of Neurology, University Hospital of Toulouse, Toulouse, France
| | - Lou Grangeon
- Neurology Department, Rouen University Hospital, Rouen, France
| | - Hannah Lyons
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Karol Marschollek
- Department of Neurology, Wroclaw Medical University, Wrocław, Poland
| | - Dilara Onan
- Spine Health Unit, Faculty of Physical Therapy and Rehabilitation, Hacettepe University, Ankara, Turkey
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Umberto Pensato
- Neurology and Stroke Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele, Milan, Italy
| | - Emily Stanyer
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Wietse Wiels
- Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Zhou Chen
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Faculty of Health and Medical Sciences, Rigshospitalet Glostrup, University of Copenhagen, Copenhagen, Denmark.
- Department of Neurorehabilitation/Traumatic Brain Injury, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Involvement of Potassium Channel Signalling in Migraine Pathophysiology. Pharmaceuticals (Basel) 2023; 16:ph16030438. [PMID: 36986537 PMCID: PMC10057509 DOI: 10.3390/ph16030438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Migraine is a primary headache disorder ranked as the leading cause of years lived with disability among individuals younger than 50 years. The aetiology of migraine is complex and might involve several molecules of different signalling pathways. Emerging evidence implicates potassium channels, predominantly ATP-sensitive potassium (KATP) channels and large (big) calcium-sensitive potassium (BKCa) channels in migraine attack initiation. Basic neuroscience revealed that stimulation of potassium channels activated and sensitized trigeminovascular neurons. Clinical trials showed that administration of potassium channel openers caused headache and migraine attack associated with dilation of cephalic arteries. The present review highlights the molecular structure and physiological function of KATP and BKCa channels, presents recent insights into the role of potassium channels in migraine pathophysiology, and discusses possible complementary effects and interdependence of potassium channels in migraine attack initiation.
Collapse
|
7
|
Novel Therapeutic Targets for Migraine. Biomedicines 2023; 11:biomedicines11020569. [PMID: 36831105 PMCID: PMC9952984 DOI: 10.3390/biomedicines11020569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Migraine, a primary headache disorder involving a dysfunctional trigeminal vascular system, remains a major debilitating neurological condition impacting many patients' quality of life. Despite the success of multiple new migraine therapies, not all patients achieve significant clinical benefits. The success of CGRP pathway-targeted therapy highlights the importance of translating the mechanistic understanding toward effective therapy. Ongoing research has identified multiple potential mechanisms in migraine signaling and nociception. In this narrative review, we discuss several potential emerging therapeutic targets, including pituitary adenylate cyclase-activating polypeptide (PACAP), adenosine, δ-opioid receptor (DOR), potassium channels, transient receptor potential ion channels (TRP), and acid-sensing ion channels (ASIC). A better understanding of these mechanisms facilitates the discovery of novel therapeutic targets and provides more treatment options for improved clinical care.
Collapse
|
8
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
9
|
Kokoti L, Al-Mahdi Al-Karagholi M, Elbahi FA, Coskun H, Ghanizada H, Amin FM, Ashina M. Effect of K ATP channel blocker glibenclamide on PACAP38-induced headache and hemodynamic. Cephalalgia 2022; 42:846-858. [PMID: 35301859 DOI: 10.1177/03331024221080574] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE To determine whether glibenclamide, a non-selective adenosine 5'-triphosphate-sensitive K+ (KATP) channel blocker, attenuates pituitary adenylate cyclase-activating polypeptide-38 (PACAP38)-induced headache and vascular changes in healthy volunteers. METHODS In a double-blind, randomized, placebo controlled and crossover design, 22 healthy volunteers were assigned to receive an intravenous infusion of 10 picomole/kg/min pituitary adenylate cyclase-activating polypeptide-38 over 20 minutes followed by oral administration of 10 mg glibenclamide or placebo. The primary endpoint was the difference in incidence of headache (0-12 hours) between glibenclamide and placebo. The secondary endpoints were a difference in area under the curve for headache intensity scores, middle cerebral artery velocity (VmeanMCA), superficial temporal artery diameter, radial artery diameter, heart rate, mean arterial blood pressure and facial skin blood flow between the two study days. RESULTS Twenty participants completed the study. We found no difference in the incidence of pituitary adenylate cyclase-activating polypeptide-38-induced headache after glibenclamide (19/20, 95%) compared to placebo (18/20, 90%) (P = 0.698). The area under the curve for headache intensity, middle cerebral artery velocity, superficial temporal artery diameter, radial artery diameter, facial skin blood flow, heart rate and mean arterial blood pressure did not differ between pituitary adenylate cyclase-activating polypeptide-38-glibenclamide day compared to pituitary adenylate cyclase-activating polypeptide-38-placebo day (P > 0.05). CONCLUSIONS Posttreatment with 5'-triphosphate-sensitive K+ channel inhibitor glibenclamide did not attenuate pituitary adenylate cyclase-activating polypeptide-38-induced headache and hemodynamic changes in healthy volunteers. We suggest that pituitary adenylate cyclase-activating polypeptide-38-triggered signaling pathway could be mediated by specific isoforms of sulfonylurea receptor subunits of 5'-triphosphate-sensitive K+ channels and other types of potassium channels.
Collapse
Affiliation(s)
- Lili Kokoti
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Fatima Azzahra Elbahi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hande Coskun
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Faisal Mohammad Amin
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Danish Headache Knowledge Center, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
10
|
Le N, Hernandez J, Gastelum C, Perez L, Vahrson I, Sayers S, Wagner EJ. Pituitary Adenylate Cyclase Activating Polypeptide Inhibits A 10 Dopamine Neurons and Suppresses the Binge-like Consumption of Palatable Food. Neuroscience 2021; 478:49-64. [PMID: 34597709 DOI: 10.1016/j.neuroscience.2021.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 10/20/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) binds to PACAP-specific (PAC1) receptors in multiple hypothalamic areas, especially those regulating energy balance. PACAP neurons in the ventromedial nucleus (VMN) exert anorexigenic effects within the homeostatic energy balance circuitry. Since PACAP can also reduce the consumption of palatable food, we tested the hypothesis that VMN PACAP neurons project to the ventral tegmental area (VTA) to inhibit A10 dopamine neurons via PAC1 receptors and KATP channels, and thereby suppress binge-like consumption. We performed electrophysiological recordings in mesencephalic slices from male PACAP-Cre and tyrosine hydroxylase (TH)-Cre mice. Initially, we injected PACAP (30 pmol) into the VTA, where it suppressed binge intake in wildtype male but not female mice. Subsequent tract tracing studies uncovered projections of VMN PACAP neurons to the VTA. Optogenetic stimulation of VMN PACAP neurons in voltage clamp induced an outward current and increase in conductance in VTA neurons, and a hyperpolarization and decrease in firing in current clamp. These effects were markedly attenuated by the KATP channel blocker tolbutamide (100 μM) and PAC1 receptor antagonist PACAP6-38 (200 nM). In recordings from A10 dopamine neurons in TH-Cre mice, we replicated the outward current by perfusing PACAP1-38 (100 nM). This response was again completely blocked by tolbutamide and PACAP6-38, and associated with a hyperpolarization and decrease in firing. These findings demonstrate that PACAP activates PAC1 receptors and KATP channels to inhibit A10 dopamine neurons and sex-dependently suppress binge-like consumption. Accordingly, they advance our understanding of how PACAP regulates energy homeostasis via the hedonic energy balance circuitry.
Collapse
Affiliation(s)
- Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Edward J Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA; College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
11
|
Al-Karagholi MAM, Ghanizada H, Waldorff Nielsen CA, Skandarioon C, Snellman J, Lopez-Lopez C, Hansen JM, Ashina M. Opening of BKCa channels causes migraine attacks: a new downstream target for the treatment of migraine. Pain 2021; 162:2512-2520. [PMID: 34252916 DOI: 10.1097/j.pain.0000000000002238] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Migraine is a common and frequently disabling neurological disorder, but the initiating migraine mechanisms are still poorly understood. Potassium channel opening may cause migraine, and we therefore examined the migraine-inducing effect of MaxiPost, a large (big)-conductance calcium-activated potassium (BKCa) channel opener, on migraine induction and cephalic vasodilation in individuals with migraine. Twenty-six patients with migraine without aura were randomly allocated to receive an infusion of MaxiPost or placebo on 2 study days separated by at least 1 week. The primary endpoint was the difference in incidence of migraine attacks after MaxiPost compared with placebo. The secondary endpoints were the difference in incidence of headaches and the difference in area under the curve for headache intensity scores (0-12 hours), for middle cerebral artery blood flow velocity (VMCA) (0-2 hours), and for superficial temporal artery and radial artery diameter. Twenty-two patients completed the study. Twenty-one of 22 (95%) developed migraine attacks after MaxiPost compared with none after placebo (P < 0.0001); the difference of incidence is 95% (95% confidence interval 86%-100%). The incidence of headache over the 12-hour observation period was higher after MaxiPost day (n = 22) than after placebo (n = 7) (P < 0.0001). We found a significant increase of VMCA and superficial temporal and radial arteries' diameter. Because BKCa channel opening initiates migraine attacks, we suggest that BKCa channel blockers could be potential candidates for novel antimigraine drugs.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hashmat Ghanizada
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Skandarioon
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Jakob Møller Hansen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Danish Knowledge Center on Headache Disorders, Rigshospitalet-Glostrup, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
12
|
Gastelum C, Perez L, Hernandez J, Le N, Vahrson I, Sayers S, Wagner EJ. Adaptive Changes in the Central Control of Energy Homeostasis Occur in Response to Variations in Energy Status. Int J Mol Sci 2021; 22:2728. [PMID: 33800452 PMCID: PMC7962960 DOI: 10.3390/ijms22052728] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Energy homeostasis is regulated in coordinate fashion by the brain-gut axis, the homeostatic energy balance circuitry in the hypothalamus and the hedonic energy balance circuitry comprising the mesolimbcortical A10 dopamine pathway. Collectively, these systems convey and integrate information regarding nutrient status and the rewarding properties of ingested food, and formulate it into a behavioral response that attempts to balance fluctuations in consumption and food-seeking behavior. In this review we start with a functional overview of the homeostatic and hedonic energy balance circuitries; identifying the salient neural, hormonal and humoral components involved. We then delve into how the function of these circuits differs in males and females. Finally, we turn our attention to the ever-emerging roles of nociceptin/orphanin FQ (N/OFQ) and pituitary adenylate cyclase-activating polypeptide (PACAP)-two neuropeptides that have garnered increased recognition for their regulatory impact in energy homeostasis-to further probe how the imposed regulation of energy balance circuitry by these peptides is affected by sex and altered under positive (e.g., obesity) and negative (e.g., fasting) energy balance states. It is hoped that this work will impart a newfound appreciation for the intricate regulatory processes that govern energy homeostasis, as well as how recent insights into the N/OFQ and PACAP systems can be leveraged in the treatment of conditions ranging from obesity to anorexia.
Collapse
Affiliation(s)
- Cassandra Gastelum
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Lynnea Perez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Jennifer Hernandez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Nikki Le
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Isabella Vahrson
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Sarah Sayers
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
| | - Edward J. Wagner
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA; (C.G.); (L.P.); (J.H.); (N.L.); (I.V.); (S.S.)
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
13
|
Hariharan A, Weir N, Robertson C, He L, Betsholtz C, Longden TA. The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Front Cell Neurosci 2020; 14:601324. [PMID: 33390906 PMCID: PMC7775489 DOI: 10.3389/fncel.2020.601324] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022] Open
Abstract
Brain pericytes reside on the abluminal surface of capillaries, and their processes cover ~90% of the length of the capillary bed. These cells were first described almost 150 years ago (Eberth, 1871; Rouget, 1873) and have been the subject of intense experimental scrutiny in recent years, but their physiological roles remain uncertain and little is known of the complement of signaling elements that they employ to carry out their functions. In this review, we synthesize functional data with single-cell RNAseq screens to explore the ion channel and G protein-coupled receptor (GPCR) toolkit of mesh and thin-strand pericytes of the brain, with the aim of providing a framework for deeper explorations of the molecular mechanisms that govern pericyte physiology. We argue that their complement of channels and receptors ideally positions capillary pericytes to play a central role in adapting blood flow to meet the challenge of satisfying neuronal energy requirements from deep within the capillary bed, by enabling dynamic regulation of their membrane potential to influence the electrical output of the cell. In particular, we outline how genetic and functional evidence suggest an important role for Gs-coupled GPCRs and ATP-sensitive potassium (KATP) channels in this context. We put forth a predictive model for long-range hyperpolarizing electrical signaling from pericytes to upstream arterioles, and detail the TRP and Ca2+ channels and Gq, Gi/o, and G12/13 signaling processes that counterbalance this. We underscore critical questions that need to be addressed to further advance our understanding of the signaling topology of capillary pericytes, and how this contributes to their physiological roles and their dysfunction in disease.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Colin Robertson
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Liqun He
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicine Huddinge (MedH), Karolinska Institutet & Integrated Cardio Metabolic Centre, Huddinge, Sweden
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
14
|
York NW, Parker H, Xie Z, Tyus D, Waheed MA, Yan Z, Grange DK, Remedi MS, England SK, Hu H, Nichols CG. Kir6.1- and SUR2-dependent KATP over-activity disrupts intestinal motility in murine models of Cantu Syndrome. JCI Insight 2020; 5:141443. [PMID: 33170808 PMCID: PMC7714409 DOI: 10.1172/jci.insight.141443] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
Cantύ Syndrome (CS), caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunit genes, is frequently accompanied by gastrointestinal (GI) dysmotility, and we describe one CS patient who required an implanted intestinal irrigation system for successful stooling. We used gene-modified mice to assess the underlying KATP channel subunits in gut smooth muscle, and to model the consequences of altered KATP channels in CS gut. We show that Kir6.1/SUR2 subunits underlie smooth muscle KATP channels throughout the small intestine and colon. Knock-in mice, carrying human KCNJ8 and ABCC9 CS mutations in the endogenous loci, exhibit reduced intrinsic contractility throughout the intestine, resulting in death when weaned onto solid food in the most severely affected animals. Death is avoided by weaning onto a liquid gel diet, implicating intestinal insufficiency and bowel impaction as the underlying cause, and GI transit is normalized by treatment with the KATP inhibitor glibenclamide. We thus define the molecular basis of intestinal KATP channel activity, the mechanism by which overactivity results in GI insufficiency, and a viable approach to therapy.
Collapse
Affiliation(s)
- Nathaniel W York
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Helen Parker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Zili Xie
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - David Tyus
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Maham A Waheed
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Zihan Yan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Dorothy K Grange
- Divison of Clinical Genetics, Washington University School of Medicine, St. Louis, United States of America
| | - Maria S Remedi
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Hongzhen Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
15
|
Al-Karagholi MAM, Ghanizada H, Nielsen CAW, Skandarioon C, Snellman J, Lopez Lopez C, Hansen JM, Ashina M. Opening of BKCa channels alters cerebral hemodynamic and causes headache in healthy volunteers. Cephalalgia 2020; 40:1145-1154. [DOI: 10.1177/0333102420940681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Introduction Preclinical data implicate large conductance calcium-activated potassium (BKCa) channels in the pathogenesis of headache and migraine, but the exact role of these channels is still unknown. Here, we investigated whether opening of BKCa channels would cause headache and vascular effects in healthy volunteers. Methods In a randomized, double-blind, placebo-controlled, cross-over study, 21 healthy volunteers aged 18–39 years were randomly allocated to receive an intravenous infusion of 0.05 mg/min BKCa channel opener MaxiPost and placebo on two different days. The primary endpoints were the difference in incidence of headache and the difference in area under the curve (AUC) for headache intensity scores (0–12 hours) and for middle cerebral artery blood flow velocity (VMCA) (0–2 hours) between MaxiPost and placebo. The secondary endpoints were the differences in area under the curve for superficial temporal artery and radial artery diameter (0–2 hours) between MaxiPost and placebo. Results Twenty participants completed the study. Eighteen participants (90%) developed headache after MaxiPost compared with six (30%) after placebo ( p = 0.0005); the difference of incidence is 60% (95% confidence interval 36–84%). The area under the curve for headache intensity (AUC0–12 hours, p = 0.0003), for mean VMCA (AUC0–2 hours, p = 0.0001), for superficial temporal artery diameter (AUC0–2 hours, p = 0.003), and for radial artery diameter (AUC0–2 hours, p = 0.03) were significantly larger after MaxiPost compared to placebo. Conclusion MaxiPost caused headache and dilation in extra- and intracerebral arteries. Our findings suggest a possible role of BKCa channels in headache pathophysiology in humans. ClinicalTrials.gov, ID: NCT03887325.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Camilla Skandarioon
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | | | | | - Jakob Møller Hansen
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
- Danish Headache Knowledge Center, Rigshospitalet Glostrup, Glostrup, Denmark
| |
Collapse
|
16
|
Abstract
Large (big)-conductance calcium-activated potassium (BKCa) channels are expressed in migraine-related structures such as the cranial arteries, trigeminal ganglion and trigeminal spinal nucleus, and they play a substantial role in vascular tonus and neuronal excitability. Using synthetic BKCa channels openers was associated with headache as a frequent adverse effect in healthy volunteers. Additionally, BKCa channels are downstream molecules in migraine signalling pathways that are activated by several compounds known to provoke migraine, including calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP) and glyceryl trinitrate (GTN). Also, there is a high affinity and a close coupling between BKCa channels and ATP-sensitive potassium (KATP) channels, the role of which has recently been established in migraine pathophysiology. These observations raise the question as to whether direct BKCa channel activation can provoke migraine in migraine patients, and whether the BKCa channel could be a potential novel anti-migraine target. Hence, randomized and placebo-controlled clinical studies on BKCa channel openers or blockers in migraine patients are needed.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Cherie Amalie Waldorff Nielsen
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, University of Copenhagen, Valdemar Hansen Vej 5, 2600, Glostrup, Denmark. .,Glostrup Research Park, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
17
|
Manoury B, Idres S, Leblais V, Fischmeister R. Ion channels as effectors of cyclic nucleotide pathways: Functional relevance for arterial tone regulation. Pharmacol Ther 2020; 209:107499. [PMID: 32068004 DOI: 10.1016/j.pharmthera.2020.107499] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2018] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Numerous mediators and drugs regulate blood flow or arterial pressure by acting on vascular tone, involving cyclic nucleotide intracellular pathways. These signals lead to regulation of several cellular effectors, including ion channels that tune cell membrane potential, Ca2+ influx and vascular tone. The characterization of these vasocontrictive or vasodilating mechanisms has grown in complexity due to i) the variety of ion channels that are expressed in both vascular endothelial and smooth muscle cells, ii) the heterogeneity of responses among the various vascular beds, and iii) the number of molecular mechanisms involved in cyclic nucleotide signalling in health and disease. This review synthesizes key data from literature that highlight ion channels as physiologically relevant effectors of cyclic nucleotide pathways in the vasculature, including the characterization of the molecular mechanisms involved. In smooth muscle cells, cation influx or chloride efflux through ion channels are associated with vasoconstriction, whereas K+ efflux repolarizes the cell membrane potential and mediates vasodilatation. Both categories of ion currents are under the influence of cAMP and cGMP pathways. Evidence that some ion channels are influenced by CN signalling in endothelial cells will also be presented. Emphasis will also be put on recent data touching a variety of determinants such as phosphodiesterases, EPAC and kinase anchoring, that complicate or even challenge former paradigms.
Collapse
Affiliation(s)
- Boris Manoury
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France.
| | - Sarah Idres
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | - Véronique Leblais
- Inserm, Umr-S 1180, Université Paris-Saclay, Châtenay-Malabry, France
| | | |
Collapse
|
18
|
Johnson GC, May V, Parsons RL, Hammack SE. Parallel signaling pathways of pituitary adenylate cyclase activating polypeptide (PACAP) regulate several intrinsic ion channels. Ann N Y Acad Sci 2019; 1455:105-112. [PMID: 31162688 DOI: 10.1111/nyas.14116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP), acting through its cognate receptors PAC1, VPAC1, and VPAC2, is a pleiotropic signaling neuropeptide of the vasoactive intestinal peptide/secretin/glucagon family. PACAP has known functions in neuronal growth, development, and repair, and central PACAP signaling has acute behavioral consequences. One of the ways in which PACAP may affect neuronal function is through the modulation of intrinsic membrane currents to control neuronal excitability. Here, we review the evidence of PACAP-dependent modulation of calcium- and voltage-gated potassium currents, hyperpolarization-activated cation currents, calcium currents, and voltage-gated sodium currents. Interestingly, PACAP signaling pathways diverge into parallel pathways to target different ionic currents for modulation, though single pathways are not limited to modulating just one target ionic current. Despite the various targets of modulation, the weight of the evidence suggests that PACAP signaling most commonly leads to a net increase in neuronal excitability. We discuss possible mechanisms by which PACAP signaling leads to the modulation of intrinsic membrane currents that may contribute to changes in behavior.
Collapse
Affiliation(s)
- Gregory C Johnson
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| | - Victor May
- Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Rodney L Parsons
- Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, Vermont
| |
Collapse
|
19
|
VPAC1 receptors play a dominant role in PACAP-induced vasorelaxation in female mice. PLoS One 2019; 14:e0211433. [PMID: 30682157 PMCID: PMC6347420 DOI: 10.1371/journal.pone.0211433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2018] [Accepted: 01/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background PACAP and VIP are closely related neuropeptides with wide distribution and potent effect in the vasculature. We previously reported vasomotor activity in peripheral vasculature of male wild type (WT) and PACAP-deficient (KO) mice. However, female vascular responses are still unexplored. We hypothesized that PACAP-like activity is maintained in female PACAP KO mice and the mechanism through which it is regulated differs from that of male PACAP KO animals. Methods We investigated the vasomotor effects of VIP and PACAP isoforms and their selective blockers in WT and PACAP KO female mice in carotid and femoral arteries. The expression and level of different PACAP receptors in the vessels were measured by RT-PCR and Western blot. Results In both carotid and femoral arteries of WT mice, PACAP1-38, PACAP1-27 or VIP induced relaxation, without pronounced differences between them. Reduced relaxation was recorded only in the carotid arteries of KO mice as compared to their WT controls. The specific VPAC1R antagonist completely blocked the PACAP/VIP-induced relaxation in both arteries of all mice, while PAC1R antagonist affected relaxation only in their femoral arteries. Conclusion In female WT mice, VPAC1 receptors appear to play a dominant role in PACAP-induced vasorelaxation both in carotid and in femoral arteries. In the PACAP KO group PAC1R activation exerts vasorelaxation in the femoral arteries but in carotid arteries there is no significant effect of the activation of this receptor. In the background of this regional difference, decreased PAC1R and increased VPAC1R availability in the carotid arteries was found.
Collapse
|
20
|
Two ancient neuropeptides, PACAP and AVP, modulate motivated behavior at synapses in the extrahypothalamic brain: a study in contrast. Cell Tissue Res 2018; 375:103-122. [DOI: 10.1007/s00441-018-2958-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/02/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
|
21
|
Peng J, Zhang J, Zhang L, Tian Y, Li Y, Qiao L. Dihydromyricetin improves vascular hyporesponsiveness in experimental sepsis via attenuating the over-excited MaxiK and K ATP channels. PHARMACEUTICAL BIOLOGY 2018; 56:344-350. [PMID: 30003825 PMCID: PMC6130638 DOI: 10.1080/13880209.2018.1478430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
CONTEXT Dihydromyricetin (DMY) has oxidation resistance, anti-inflammatory and free radical scavenging capabilities. The preventive effects of DMY for vascular hyporeactivity remain unclear. OBJECTIVE This study investigates the preventive effects of DMY in vascular hyporeactivity. MATERIALS AND METHODS The experimental sepsis was induced by transvenous administration of lipopolysaccharide (LPS) to Sprague-Dawley (SD) rats. DMY-treated rats received daily administration of DMY, 5 μg/kg dissolved in DMSO through the tail vein for 7 days. The invasive mean arterial pressure (MAP) of the caudal ventral artery was measured. Dose-response curves for norepinephrine (NE, doses from 10-9 to 10-6 M) were obtained in isolated thoracic aorta in a cumulative manner. The function of MaxiK and KATP channels were investigated using whole-cell patch clamp recording. The Elisa was adopted to measure the serum concentration of NO, MDA, 3-NT, IL-1β and TNF-α. RESULTS The increased MAP in septic rats induced by vasopressor agents was smaller than that in control rats. However, the % of increased MAP induced by vasopressor agents was raised by DMY injection (NE: 20.4 ± 8.495 vs. 15.16 ± 5.195%; AVP: 14.05 ± 2.459 vs. 9.583 ± 2.982%, p < 0.05). The vascular hyporesponsiveness to NE (10-6 M) in vitro. was increased by 51% in LPS + DMY group compared with that in LPS + Con group (2.74 ± 0.81 vs. 1.82 ± 0.92 g, p < 0.05). Charybdotoxin (a potent MaxiK channel blocker) and glibenclamide (a KATP channel blocker) pretreatment, instead of 4-aminopyridine (4-AP) and BaCl2, could diminish the DMY-induced improvement of vasoconstrictor hyporeactivity (ChTX: 73.2 ± 11.8 vs. 71.8 ± 13.5%; Glib: 63.1 ± 12.5 vs. 58.1 ± 13.7%, p > 0.05). DMY blunted the highly sensitized MaxiK and KATP channels of arterial smooth muscle cells isolated from the thoracic aorta of LPS rats. DMY decreased the serum level of NO, MDA, IL-1β and TNF-α, which had increased in LPS rats. DISCUSSION AND CONCLUSIONS Our results indicate that DMY administration ameliorated the impaired contractility of the rat aorta in experimental sepsis. Such an effect is mediated by normalization of the over-excited MaxiK and KATP, channels possibly via oxidative stress inhibition.
Collapse
Affiliation(s)
- Jin Peng
- Department of ICU, Shengli Oilfield Central Hospital, Dongying, China
| | - Jian Zhang
- Department of ICU, Shengli Oilfield Central Hospital, Dongying, China
| | - Li Zhang
- Department of ICU, Shengli Oilfield Central Hospital, Dongying, China
| | - Yonggang Tian
- Department of ICU, Shengli Oilfield Central Hospital, Dongying, China
| | - Yahong Li
- Department of ICU, Shengli Oilfield Central Hospital, Dongying, China
| | - Lujun Qiao
- Department of ICU, Shengli Oilfield Central Hospital, Dongying, China
- CONTACT Lujun Qiao Department of ICU, Shengli Oilfield Central Hospital, Dongying257034, Shandong, China
| |
Collapse
|
22
|
Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch 2018; 470:1271-1289. [PMID: 29748711 DOI: 10.1007/s00424-018-2151-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Ion channels in vascular smooth muscle regulate myogenic tone and vessel contractility. In particular, activation of calcium- and voltage-gated potassium channels of large conductance (BK channels) results in outward current that shifts the membrane potential toward more negative values, triggering a negative feed-back loop on depolarization-induced calcium influx and SM contraction. In this short review, we first present the molecular basis of vascular smooth muscle BK channels and the role of subunit composition and trafficking in the regulation of myogenic tone and vascular contractility. BK channel modulation by endogenous signaling molecules, and paracrine and endocrine mediators follows. Lastly, we describe the functional changes in smooth muscle BK channels that contribute to, or are triggered by, common physiological conditions and pathologies, including obesity, diabetes, and systemic hypertension.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA.
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
23
|
Al-Mufti F, Alkanaq A, Amuluru K, Nuoman R, Abdulrazzaq A, Sami T, Nuoaman H, Hayes-Rosen C, Prestigiacomo CJ, Gandhi CD. Genetic Insights into Cerebrovascular Disorders: A Comprehensive Review. JOURNAL OF VASCULAR AND INTERVENTIONAL NEUROLOGY 2017; 9:21-32. [PMID: 29163746 PMCID: PMC5683023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 06/07/2023]
Affiliation(s)
- Fawaz Al-Mufti
- Rutgers University - Robert Wood Johnson Medical School, Department of Neurology, Division of Neuroendovascular Surgery and Neurocritical Care, New Brunswick, New Jersey, USA
- Rutgers University - New Jersey Medical School, Department of Neurosurgery, Newark, New Jersey, USA
| | - Ahmed Alkanaq
- Rutgers University - Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Krishna Amuluru
- University of Pittsburgh Medical Center- Hamot, Department of Neurointerventional Radiology, Erie, Pennsylvania, USA
| | - Rolla Nuoman
- Rutgers University - New Jersey Medical School, Department of Neurology, Division of Child Neurology, Newark, New Jersey, USA
| | - Ahmed Abdulrazzaq
- Rutgers University - School of Dental Medicine, Newark, New Jersey, USA
| | - Tamarah Sami
- Rutgers University - Robert Wood Johnson Medical School, Department of Neurology, New Brunswick, New Jersey, USA
| | - Halla Nuoaman
- Rutgers University - Robert Wood Johnson Medical School, Department of Neurology, New Brunswick, New Jersey, USA
| | - Caroline Hayes-Rosen
- Rutgers University - New Jersey Medical School, Department of Neurology, Division of Child Neurology, Newark, New Jersey, USA
| | - Charles J Prestigiacomo
- Rutgers University - New Jersey Medical School, Department of Neurosurgery, Newark, New Jersey, USA
| | - Chirag D Gandhi
- Westchester Medical Center, New York Medical College, Department of Neurosurgery, Valhalla, New York, USA
| |
Collapse
|
24
|
Ivic I, Fulop BD, Juhasz T, Reglodi D, Toth G, Hashimoto H, Tamas A, Koller A. Backup Mechanisms Maintain PACAP/VIP-Induced Arterial Relaxations in Pituitary Adenylate Cyclase-Activating Polypeptide-Deficient Mice. J Vasc Res 2017; 54:180-192. [PMID: 28490016 DOI: 10.1159/000457798] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2016] [Accepted: 01/21/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multifunctional neuropeptide in the VIP/secretin/glucagon peptide superfamily. Two active forms, PACAP1-38 and PACAP1-27, act through G protein-coupled receptors, the PAC1 and VPAC1/2 receptors. Effects of PACAP include potent vasomotor activity. Vasomotor activity and organ-specific vasomotor effects of PACAP-deficient mice have not yet been investigated; thus, the assessment of its physiological importance in vasomotor functions is still missing. We hypothesized that backup mechanisms exist to maintain PACAP pathway activity in PACAP knockout (KO) mice. Thus, we investigated the vasomotor effects of exogenous vasoactive intestinal peptide (VIP) and PACAP polypeptides in PACAP wild-type (WT) and PACAP-deficient (KO) male mice. METHODS Carotid and femoral arteries were isolated from 8- to 12-week-old male WT and PACAP-KO mice. Vasomotor responses were measured with isometric myography. RESULTS In the arteries of WT mice the peptides induced relaxations, which were significantly greater to PACAP1-38 than to PACAP1-27 and VIP. In KO mice, PACAP1-38 did not elicit relaxation, whereas PACAP1-27 and VIP elicited significantly greater relaxation in KO mice than in WT mice. The specific PAC1R and VPAC1R antagonist completely blocked the PACAP-induced relaxations. CONCLUSION Our data suggest that in PACAP deficiency, backup mechanisms maintain arterial relaxations to polypeptides, indicating an important physiological role for the PACAP pathway in the regulation of vascular tone.
Collapse
Affiliation(s)
- Ivan Ivic
- Institute for Translational Medicine, University of Pecs, Pecs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 235] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
26
|
Badhwar A, Brown R, Stanimirovic DB, Haqqani AS, Hamel E. Proteomic differences in brain vessels of Alzheimer's disease mice: Normalization by PPARγ agonist pioglitazone. J Cereb Blood Flow Metab 2017; 37:1120-1136. [PMID: 27339263 PMCID: PMC5363486 DOI: 10.1177/0271678x16655172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Cerebrovascular insufficiency appears years prior to clinical symptoms in Alzheimer's disease. The soluble, highly toxic amyloid-β species, generated from the amyloidogenic processing of amyloid precursor protein, are known instigators of the chronic cerebrovascular insufficiency observed in both Alzheimer's disease patients and transgenic mouse models. We have previously demonstrated that pioglitazone potently reverses cerebrovascular impairments in a mouse model of Alzheimer's disease overexpressing amyloid-β. In this study, we sought to characterize the effects of amyloid-β overproduction on the cerebrovascular proteome; determine how pioglitazone treatment affected the altered proteome; and analyze the relationship between normalized protein levels and recovery of cerebrovascular function. Three-month-old wildtype and amyloid precursor protein mice were treated with pioglitazone- (20 mg/kg/day, 14 weeks) or control-diet. Cerebral arteries were surgically isolated, and extracted proteins analyzed by gel-free and gel-based mass spectrometry. 193 cerebrovascular proteins were abnormally expressed in amyloid precursor protein mice. Pioglitazone treatment rescued a third of these proteins, mainly those associated with oxidative stress, promotion of cerebrovascular vasocontractile tone, and vascular compliance. Our results demonstrate that amyloid-β overproduction perturbs the cerebrovascular proteome. Recovery of cerebrovascular function with pioglitazone is associated with normalized levels of key proteins in brain vessel function, suggesting that pioglitazone-responsive cerebrovascular proteins could be early biomarkers of Alzheimer's disease.
Collapse
Affiliation(s)
- AmanPreet Badhwar
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | - Rebecca Brown
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council of Canada, Ottawa, Ontario, Canada
| | - Edith Hamel
- Laboratory of Cerebrovascular Research, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
- Edith Hamel, Laboratory of Cerebrovascular research, Montreal Neurological Institute, 3801 University St., Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
27
|
Overexcited MaxiK and K ATP channels underlie obstructive jaundice-induced vasoconstrictor hyporeactivity of arterial smooth muscle. Sci Rep 2016; 6:39246. [PMID: 28000721 PMCID: PMC5175282 DOI: 10.1038/srep39246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2016] [Accepted: 11/21/2016] [Indexed: 01/14/2023] Open
Abstract
Substantial evidence has shown that obstructive jaundice can induce vascular hyporesponsiveness. The present study was designed to investigate mechanisms of MaxiK channel and KATP underlying cholestasis-induced vascular dysfunction. The isolated thoracic aorta was used to explore norepinephrine (NE)-induced contraction. The function of MaxiK and KATP channels were investigated using whole-cell patch clamp recording. Compared with Sham group, NE-induced vascular contraction was blunted after bile duct ligation (BDL), which could not be ameliorated significantly after endothelial denudation. Charybdotoxin and glibenclamide induced a more pronounced recovery from vascular hyporesponsiveness to NE in BDL group compared with Sham group. BDL significantly promoted the charybdotoxin sensitive MaxiK current and KATP current in isolated aortic smooth muscle cells. In addition, the expression of auxiliary subunits (MaxiK-β1 and SUR2B) rather pore-forming subunits (MaxiK-α and Kir6.1) was significantly up-regulated after BDL. These findings suggest that MaxiK and KATP channels play an important role in regulating vascular hyporesponsiveness in BDL rats.
Collapse
|
28
|
Krajcs N, Hernádi L, Pirger Z, Reglődi D, Tóth G, Kiss T. PACAP Modulates Acetylcholine-Elicited Contractions at Nicotinic Neuromuscular Contacts of the Land Snail. J Mol Neurosci 2015; 57:492-500. [PMID: 26138333 DOI: 10.1007/s12031-015-0605-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2014] [Accepted: 06/17/2015] [Indexed: 12/29/2022]
Abstract
In this study, we investigate the potentiating effect of PACAP27 on cholinergic neuromuscular transmission in the recently discovered flexor muscles of the land snail, Helix pomatia. Using immunohistochemistry, we show that PACAP and PAC1 receptors are present in nerve fibers innervating the flexor muscles but not in the muscle itself. We also observed that PACAP27 exerts both pre- and postsynaptic effects on the cholinergic synapse and performed tests using a broad spectrum of chemicals in order to explore the possible intracellular pathways through which PACAP mediates its stimulatory effect. Our pharmacological data demonstrate that PACAP27 presynaptically enhances the release of acetylcholine by activating the adenylate cyclase-cAMP-PKA pathway. Postsynaptically, PACAP27 was found to enhance muscle contractility by PKC-mediated signaling pathway resulting in an increased Ca(2+) release from intracellular stores. These findings suggest that regulation of Ca(2+) release may contribute to the stimulatory effect of PACAP. Our data are the first demonstration of the potentiating effect of PACAP27 at the molluscan excitatory neuromuscular contact.
Collapse
Affiliation(s)
- Nóra Krajcs
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary
| | - László Hernádi
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary
| | - Zsolt Pirger
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary.,Adaptive Neuroethology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary.,MTA-PTE "Momentum" PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Dóra Reglődi
- MTA-PTE "Momentum" PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Gábor Tóth
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Tibor Kiss
- Chemical Ecology and Neurobiology Research Group, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kuno u 3, H-8237, Tihany, Hungary.
| |
Collapse
|