1
|
Detka J, Płachtij N, Strzelec M, Manik A, Sałat K. p38α Mitogen-Activated Protein Kinase-An Emerging Drug Target for the Treatment of Alzheimer's Disease. Molecules 2024; 29:4354. [PMID: 39339348 PMCID: PMC11433989 DOI: 10.3390/molecules29184354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, characterized by the formation of amyloid β and tau protein aggregates in the brain, neuroinflammation, impaired cholinergic neurotransmission, and oxidative stress, resulting in the gradual loss of neurons and neuronal function, which leads to cognitive and memory deficits in AD patients. Chronic neuroinflammation plays a particularly important role in the progression of AD since the excessive release of proinflammatory cytokines from glial cells (microglia and astrocytes) induces neuronal damage, which subsequently causes microglial activation, thus facilitating further neurodegenerative changes. Mitogen-activated protein kinase (MAPK) p38α is one of the key enzymes involved in the control of innate immune response. The increased activation of the p38α MAPK pathway, observed in AD, has been for a long time associated not only with the maintenance of excessive inflammatory process but is also linked with pathophysiological hallmarks of this disease, and therefore is currently considered an attractive drug target for novel AD therapeutics. This review aims to summarize the current state of knowledge about the involvement of p38α MAPK in different aspects of AD pathophysiology and also provides insight into the possible therapeutic effects of novel p38α MAPK inhibitors, which are currently studied as potential drug candidates for AD treatment.
Collapse
Affiliation(s)
- Jan Detka
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Natalia Płachtij
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Martyna Strzelec
- Department of Transplantation, Institute of Pediatrics, Faculty of Medicine, Jagiellonian University Medical College, 265 Wielicka St., 30-663 Krakow, Poland;
| | - Aleksandra Manik
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (J.D.); (N.P.); (A.M.)
| |
Collapse
|
2
|
Valipour M, Mohammadi M, Valipour H. CNS-Active p38α MAPK Inhibitors for the Management of Neuroinflammatory Diseases: Medicinal Chemical Properties and Therapeutic Capabilities. Mol Neurobiol 2024; 61:3911-3933. [PMID: 38041716 DOI: 10.1007/s12035-023-03829-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
During the last two decades, many p38α mitogen-activated protein kinase (p38α MAPK) inhibitors have been developed and tested in preclinical/clinical studies for the treatment of various disorders, especially problems with the origin of inflammation. Previous studies strongly suggest the involvement of the p38α MAPK pathway in the pathogenesis of neurodegenerative disorders. Despite the significant progress made in this field, so far no studies have focused on p38α MAPK inhibitors that have the capability to be used for the treatment of neurodegenerative disorders. In the present review, we evaluated a wide range of well-known p38α MAPK inhibitors (more than 140 small molecules) by measuring key physicochemical parameters to identify those capable of successfully crossing the blood-brain barrier (BBB). As a result, we identify about 50 naturally occurring and synthetic p38α MAPK inhibitors with high potential to cross the BBB, which can be further explored in the future for the treatment of neurodegenerative disorders. In addition, a detailed analysis of the previously released X-ray crystal structure of the inhibitors in the active site of the p38α MAPK enzyme revealed that some residues such as Met109 play a critical role in the occurrence of effective interactions by constructing strong H-bonds. This study can encourage scientists to focus more on the design, production, and biological evaluation of new central nervous system (CNS)-active p38α MAPK inhibitors in the future.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Mohammadi
- Department of Neurology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Habib Valipour
- Department of Neuroscience, Faculty of Medicine, Aja University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Bai X, Wang S, Li N, Xu M, Chen JL, Qian YP, Wang TH. Role of Qufeng Tongqiao Prescription in the protection of cerebral ischemia and associated molecular network mechanism. Chem Biol Drug Des 2024; 103:e14475. [PMID: 38433560 DOI: 10.1111/cbdd.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
To explore the of Qufeng Tongqiao Prescription in the treatment of cerebral ischemia-reperfusion (CIR) and associated molecular network mechanism. Venny diagram, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis, protein-protein interaction (PPI), hub genes mining, molecular docking, combined with animal experiments and Nissl stain were performed to determine the molecular network mechanism of Qufeng Tongqiao Prescription for CIR treatment. Fifty three intersecting genes between Qufeng Tongqiao Prescription and cerebral ischemia reperfusion were acquired from Venny analysis. GO analysis showed that the main biological process (BP) was response to lipopolysaccharide, and the main cell localization (CC) process was membrane raft, while the most important molecular function (MF) process is Cytokine receptor binding. Moreover, AGE-RAGE signaling pathway in diabetic complications is the most important signaling pathway in KEGG pathway. Through molecular docking, it was found that Astragalus membranaceus was docked with MAPK14, IL4, FOS, IL6, and JUN; pueraria membranaceus was directly docked with JUN and IL4; Acorus acorus was linked to JUN and MAPK14; Ganoderma ganoderma and human were involved in JUN docking, and Ligusticum chuanqi and pueraria could not be docked with MAPK14, respectively. The results of animal experiments showed that Qufeng Tongqiao Prescription significantly improved behavioral performance and reduced the number of neuronal deaths in rats subjected to CIR, and molecular mechanisms are associated with FOS, IL-6, IL4, JUN, and MAPK14, of there, IL-6, as a vital candidator, which has been confirmed by immunostaining detection. Together, Qufeng Tongqiao Prescription has positive therapeutic effect on CIR, and the underlying mechanism is involved MAPK14, FOS, IL4, and JUN network, while IL-6 may be as a vital target.
Collapse
Affiliation(s)
- Xue Bai
- Department of Encephalopathy, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Shen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Na Li
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Min Xu
- Department of Anatomy, College of basic medicine, Jinzhou Medical University, Jinzhou, China
| | - Ji-Lin Chen
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| | - Yan-Ping Qian
- Department of Gynecology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Ting-Hua Wang
- Animal Center, Institute of Neuroscience, Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Braun DJ, Frazier HN, Davis VA, Coleman MJ, Rogers CB, Van Eldik LJ. Early chronic suppression of microglial p38α in a model of Alzheimer's disease does not significantly alter amyloid-associated neuropathology. PLoS One 2023; 18:e0286495. [PMID: 37256881 PMCID: PMC10231773 DOI: 10.1371/journal.pone.0286495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
The p38 alpha mitogen-activated protein kinase (p38α) is linked to both innate and adaptive immune responses and is under investigation as a target for drug development in the context of Alzheimer's disease (AD) and other conditions with neuroinflammatory dysfunction. While preclinical data has shown that p38α inhibition can protect against AD-associated neuropathology, the underlying mechanisms are not fully elucidated. Inhibitors of p38α may provide benefit via modulation of microglial-associated neuroinflammatory responses that contribute to AD pathology. The present study tests this hypothesis by knocking out microglial p38α and assessing early-stage pathological changes. Conditional knockout of microglial p38α was accomplished in 5-month-old C57BL/6J wild-type and amyloidogenic AD model (APPswe/PS1dE9) mice using a tamoxifen-inducible Cre/loxP system under control of the Cx3cr1 promoter. Beginning at 7.5 months of age, animals underwent behavioral assessment on the open field, followed by a later radial arm water maze test and collection of cortical and hippocampal tissues at 11 months. Additional endpoint measures included quantification of proinflammatory cytokines, assessment of amyloid burden and plaque deposition, and characterization of microglia-plaque dynamics. Loss of microglial p38α did not alter behavioral outcomes, proinflammatory cytokine levels, or overall amyloid plaque burden. However, this manipulation did significantly increase hippocampal levels of soluble Aβ42 and reduce colocalization of Iba1 and 6E10 in a subset of microglia in close proximity to plaques. The data presented here suggest that rather than reducing inflammation per se, the net effect of microglial p38α inhibition in the context of early AD-type amyloid pathology is a subtle alteration of microglia-plaque interactions. Encouragingly from a therapeutic standpoint, these data suggest no detrimental effect of even substantial decreases in microglial p38α in this context. Additionally, these results support future investigations of microglial p38α signaling at different stages of disease, as well as its relationship to phagocytic processes in this particular cell-type.
Collapse
Affiliation(s)
- David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
5
|
Chen X, Xu L, Chen Q, Su S, Zhuang J, Qiao D. Polystyrene micro- and nanoparticles exposure induced anxiety-like behaviors, gut microbiota dysbiosis and metabolism disorder in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115000. [PMID: 37210994 DOI: 10.1016/j.ecoenv.2023.115000] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
Plastics have been proven to be a potential threat to the ecosystem, and their toxicity mechanism is still uncertain. In the ecological environment, plastics can be degraded into microplastics (MPs) and nanoplastics (NPs), which can be contaminated and ingested through the food chain. MPs and NPs are associated with severe intestinal injury, intestinal microbiota disorder, and neurotoxicity, but it is still unclear whether MPs- and NPs-induced intestinal microbiota dysbiosis will affect the brain through the gut-brain axis. In the current study, we determined the effects of exposure to polystyrene (PS)-MPs and PS-NPs on anxiety-like behaviors and explored the underlying mechanisms. This study explored the behavioral effects of 30-day and 60-day exposure to PS-NPs and PS-MPs using the open field test (OFT) and elevated plus maze (EPM) test. Behavioral tests showed PS-NPs and PS-MPs treatment remarkedly induced anxiety-like behaviors compared with the control group. Using 16 S rRNA gene sequencing and untargeted metabolomics analyses, we observed that PS-MPs and PS-NPs exposure reduced the beneficial gut microbiota expression level, such as Lachnoclostridium and Lactobacillus, and increased the conditionally pathogenic bacteria expressions level, such as Proteobacteria, Actinobacteria, and Desulfovibrio. In addition, PS-NPs and PS-MPs reduce intestinal mucus secretion and increase intestinal permeability. The results of serum metabonomics suggested that the metabolic pathways, such as ABC transporter pathways, aminoacyl-tRNA biosynthesis, biosynthesis of amino acids, and bile secretion were enriched after PS-NPs and PS-MPs treatment. Besides, neurotransmitter metabolites were also altered by PS-NPs and PS-MPs. It is noteworthy that the correlation analysis showed that the disorder of intestinal microbiota was related to anxiety-like behaviors and neurotransmitter metabolites disorder. The regulation of intestinal microbiota may be a promising treatment strategy for PS-MPs- and PS-NPs-induced anxiety disorder.
Collapse
Affiliation(s)
- Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identiffcation, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identiffcation, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identiffcation, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Shuying Su
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identiffcation, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jingshen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identiffcation, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
6
|
Gu J, Zhu Y, Guo M, Yin X, Liang M, Lou X, Chen J, Zhou L, Fan D, Shi L, Hu G, Ji G. The potential mechanism of BPF-induced neurotoxicity in adult zebrafish: Correlation between untargeted metabolomics and gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156221. [PMID: 35623532 DOI: 10.1016/j.scitotenv.2022.156221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol F (BPF) is becoming the main substitute for bisphenol A (BPA) in plastics for food and beverage applications. Previous studies have demonstrated the neurotoxicity of BPF; however, its lifecycle toxicity and the underlying mechanisms remain poorly understood. In the current study, zebrafish were continuously exposed to BPF for four months from the embryo to adult stages in order to assess its neurotoxicity. Locomotor behaviors significantly decreased after BPF exposure, which was accompanied by a decrease in body weight, length, and hatching rate. Additionally, BPF increased the expression of inflammatory genes in the brain and destroyed the zebrafishes' intestinal integrity. Meanwhile, the 16S rRNA gene sequence results showed a significantly decreased microbiota abundance and diversity following BPF treatment. Neurotransmitter metabolites were also altered by BPF. Notably, the correlation analysis between microbiota and neurotransmitter metabolism verified that gut microbiota dysbiosis was closely related to the disturbance of neurotransmitter metabolites. Therefore, the present study evaluated the neurotoxicity of lifecycle exposure to BPF and unraveled a novel mechanism involving disturbance of neurotransmitter metabolism and gut dysbiosis, which may provide potential targets for BPF-mediated neurotoxicity.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanhui Zhu
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Lou
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jingrong Chen
- Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Deling Fan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Center for Environmental Health Research, South China Institute of Environmental Sciences,Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
7
|
Wang S, Wu P, Wang K, Ji X, Chen D, Liu Y, Ding J, Xu X, Tang G. Comparative metabolome profiling of serum and urine from sows with a high prevalence of piglet mummification and normal sows at different stages of pregnancy. Theriogenology 2022; 183:10-25. [DOI: 10.1016/j.theriogenology.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/25/2022]
|
8
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
9
|
Lopachev AV, Lagarkova MA, Lebedeva OS, Ezhova MA, Kazanskaya RB, Timoshina YA, Khutorova AV, Akkuratov EE, Fedorova TN, Gainetdinov RR. Ouabain-Induced Gene Expression Changes in Human iPSC-Derived Neuron Culture Expressing Dopamine and cAMP-Regulated Phosphoprotein 32 and GABA Receptors. Brain Sci 2021; 11:brainsci11020203. [PMID: 33562186 PMCID: PMC7915459 DOI: 10.3390/brainsci11020203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/22/2022] Open
Abstract
Cardiotonic steroids (CTS) are specific inhibitors and endogenous ligands of a key enzyme in the CNS-the Na+, K+-ATPase, which maintains and creates an ion gradient on the plasma membrane of neurons. CTS cause the activation of various signaling cascades and changes in gene expression in neurons and other cell types. It is known that intracerebroventricular injection of cardiotonic steroid ouabain causes mania-like behavior in rodents, in part due to activation of dopamine-related signaling cascades in the dopamine and cAMP-regulated phosphoprotein 32 (DARPP-32) expressing medium spiny neurons in the striatum. Dopaminergic projections in the striatum innervate these GABAergic medium spiny neurons. The objective of this study was to assess changes in the expression of all genes in human iPSC-derived expressing DARPP-32 and GABA receptors neurons under the influence of ouabain. We noted a large number of statistically significant upregulated and downregulated genes after a 16-h incubation with non-toxic concentration (30 nM) of ouabain. These changes in the transcriptional activity were accomplished with activation of MAP-kinase ERK1/2 and transcriptional factor cAMP response element-binding protein (CREB). Thus, it can be concluded that 30 nM ouabain incubated for 16 h with human iPSC-derived expressing DARPP-32 and GABA receptors neurons activates genes associated with neuronal maturation and synapse formation, by increasing the expression of genes associated with translation, vesicular transport, and increased electron transport chain function. At the same time, the expression of genes associated with proliferation, migration, and early development of neurons decreases. These data indicate that non-toxic concentrations of ouabain may induce neuronal maturation, neurite growth, and increased synaptogenesis in dopamine-receptive GABAergic neurons, suggesting formation of plasticity and the establishment of new neuronal junctions.
Collapse
Affiliation(s)
- Alexander V. Lopachev
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Correspondence:
| | - Maria A. Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Olga S. Lebedeva
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine Federal Medical Biological Agency, 119435 Moscow, Russia; (M.A.L.); (O.S.L.)
| | - Margarita A. Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia;
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Yulia A. Timoshina
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasiya V. Khutorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
- Biological Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeny E. Akkuratov
- Department of Applied Physics, Royal Institute of Technology, Science for Life Laboratory, 171 65 Stockholm, Sweden;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental Neurochemistry, Research Center of Neurology, 125367 Moscow, Russia; (Y.A.T.); (A.V.K.); (T.N.F.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine and Saint Petersburg University Hospital, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
10
|
Asih PR, Prikas E, Stefanoska K, Tan ARP, Ahel HI, Ittner A. Functions of p38 MAP Kinases in the Central Nervous System. Front Mol Neurosci 2020; 13:570586. [PMID: 33013322 PMCID: PMC7509416 DOI: 10.3389/fnmol.2020.570586] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein (MAP) kinases are a central component in signaling networks in a multitude of mammalian cell types. This review covers recent advances on specific functions of p38 MAP kinases in cells of the central nervous system. Unique and specific functions of the four mammalian p38 kinases are found in all major cell types in the brain. Mechanisms of p38 activation and downstream phosphorylation substrates in these different contexts are outlined and how they contribute to functions of p38 in physiological and under disease conditions. Results in different model organisms demonstrated that p38 kinases are involved in cognitive functions, including functions related to anxiety, addiction behavior, neurotoxicity, neurodegeneration, and decision making. Finally, the role of p38 kinases in psychiatric and neurological conditions and the current progress on therapeutic inhibitors targeting p38 kinases are covered and implicate p38 kinases in a multitude of CNS-related physiological and disease states.
Collapse
Affiliation(s)
- Prita R Asih
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emmanuel Prikas
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Kristie Stefanoska
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Amanda R P Tan
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Holly I Ahel
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Arne Ittner
- Dementia Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
11
|
Yang T, Xu Z, Liu W, Xu B, Deng Y. Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury-induced neuronal apoptosis in rat cerebral cortex. ENVIRONMENTAL TOXICOLOGY 2020; 35:683-696. [PMID: 32061141 DOI: 10.1002/tox.22904] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin,which leads to a wide range of intracellular effects. The molecular mechanismsassociated to MeHg-induced neurotoxicity have not been fully understood.Oxidative stress, as well as synaptic glutamate (Glu) dyshomeostasis have beenidentified as two critical mechanisms during MeHg-mediated cytotoxicity. Here,we developed a rat model of MeHg poisoning to evaluate its neurotoxic effectsby focusing on cellular oxidative stress and synaptic Glu disruption. Inaddition, we investigated the neuroprotective role of alpha-lipoic acid (α-LA), a natural antioxidant, todeeply explore the underlying interaction between them. Fifty-six rats wererandomly divided into four groups: saline control, MeHg treatment (4 or 12μmol/kg MeHg), and α-LApre-treatment (35 μmol/kg α-LA+12μmol/kg MeHg). Rats exposed to 12 μmol/kg MeHg induced neuronal oxidativestress, with ROS accumulation and cellular antioxidant system impairment. Nrf2 andxCT pathways were activated with MeHg treatment. The enzymatic or non-enzymaticof cellular GSH synthesis were also disrupted by MeHg. On the other hand, the abnormalactivities of GS and PAG disturbed the "Glu-Gln cycle", leading to NMDARsover-activation, Ca2+ overload, and the calpain activation, which acceleratedNMDARs degradation. Meanwhile, the high expressions of phospho-p44/42 MAPK,phospho-p38 MAPK, phospho-CREB, and the high levels of caspase 3 and Bax/Bcl-2 finallyindicated the neuronal apoptosis after MeHg exposure. Pre-treatment with α-LA significantly preventedMeHg-induced neurotoxicity. In conclusion, the oxidative stress and synapticGlu dyshomeostasis contributed to MeHg-induced neuronal apoptosis. Alpha-LAattenuated these toxic effects through mechanisms of anti-oxidation andindirect Glu dyshomeostasis prevention.
Collapse
Affiliation(s)
- Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
12
|
Iba M, Kim C, Florio J, Mante M, Adame A, Rockenstein E, Kwon S, Rissman R, Masliah E. Role of Alterations in Protein Kinase p38γ in the Pathogenesis of the Synaptic Pathology in Dementia With Lewy Bodies and α-Synuclein Transgenic Models. Front Neurosci 2020; 14:286. [PMID: 32296304 PMCID: PMC7138105 DOI: 10.3389/fnins.2020.00286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Progressive accumulation of the pre-synaptic protein α-synuclein (α-syn) has been strongly associated with the pathogenesis of neurodegenerative disorders of the aging population such as Alzheimer's disease (AD), Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. While the precise mechanisms are not fully understood, alterations in kinase pathways including that of mitogen activated protein kinase (MAPK) p38 have been proposed to play a role. In AD, p38α activation has been linked to neuro-inflammation while alterations in p38γ have been associated with tau phosphorylation. Although p38 has been studied in AD, less is known about its role in DLB/PD and other α-synucleinopathies. For this purpose, we investigated the expression of the p38 family in brains from α-syn overexpressing transgenic mice (α-syn Tg: Line 61) and patients with DLB/PD. Immunohistochemical analysis revealed that in healthy human controls and non-Tg mice, p38α associated with neurons and astroglial cells and p38γ localized to pre-synaptic terminals. In DLB and α-syn Tg brains, however, p38α levels were increased in astroglial cells while p38γ immunostaining was redistributed from the synaptic terminals to the neuronal cell bodies. Double immunolabeling further showed that p38γ colocalized with α-syn aggregates in DLB patients, and immunoblot and qPCR analysis confirmed the increased levels of p38α and p38γ. α1-syntrophin, a synaptic target of p38γ, was present in the neuropil and some neuronal cell bodies in human controls and non-Tg mice. In DLB and and Tg mice, however, α1-syntrophin was decreased in the neuropil and instead colocalized with α-syn in intra-neuronal inclusions. In agreement with these findings, in vitro studies showed that α-syn co-immunoprecipitates with p38γ, but not p38α. These results suggest that α-syn might interfere with the p38γ pathway and play a role in the mechanisms of synaptic dysfunction in DLB/PD.
Collapse
Affiliation(s)
- Michiyo Iba
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Changyoun Kim
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Anthony Adame
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Edward Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Somin Kwon
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Robert Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Eliezer Masliah
- Laboratory of Neurogenetics, Molecular Neuropathology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
- Division of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Moreno‐Cugnon L, Revuelta M, Arrizabalaga O, Colie S, Moreno‐Valladares M, Jimenez‐Blasco D, Gil‐Bea F, Llarena I, Bolaños JP, Nebreda AR, Matheu A. Neuronal p38α mediates age-associated neural stem cell exhaustion and cognitive decline. Aging Cell 2019; 18:e13044. [PMID: 31560167 PMCID: PMC6826142 DOI: 10.1111/acel.13044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Accepted: 08/17/2019] [Indexed: 11/29/2022] Open
Abstract
Neuronal activity regulates cognition and neural stem cell (NSC) function. The molecular pathways limiting neuronal activity during aging remain largely unknown. In this work, we show that p38MAPK activity increases in neurons with age. By using mice expressing p38α-lox and CamkII-Cre alleles (p38α∆-N), we demonstrate that genetic deletion of p38α in neurons suffices to reduce age-associated elevation of p38MAPK activity, neuronal loss and cognitive decline. Moreover, aged p38α∆-N mice present elevated numbers of NSCs in the hippocampus and the subventricular zone. These results reveal novel roles for neuronal p38MAPK in age-associated NSC exhaustion and cognitive decline.
Collapse
Affiliation(s)
| | - Miren Revuelta
- Cellular oncology group Biodonostia Institute San Sebastian Spain
| | | | - Sandra Colie
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
| | | | - Daniel Jimenez‐Blasco
- Institute of Functional Biology and Genomics (IBFG) Universidad de Salamanca CSIC Salamanca Spain
| | - Francisco Gil‐Bea
- Neurosciences Area Biodonostia Institute San Sebastián Spain
- CIBERNED Madrid Spain
| | - Irantzu Llarena
- Optical Spectroscopy Platform CIC biomaGUNE San Sebastian Spain
| | - Juan Pedro Bolaños
- Institute of Functional Biology and Genomics (IBFG) Universidad de Salamanca CSIC Salamanca Spain
- CIBERfes Madrid Spain
| | - Angel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona) Barcelona Institute of Science and Technology Barcelona Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona Spain
| | - Ander Matheu
- Cellular oncology group Biodonostia Institute San Sebastian Spain
- CIBERfes Madrid Spain
- IKERBASQUE Basque Foundation for Science Bilbao Spain
| |
Collapse
|
14
|
Muraleva N, Kolosova N, Stefanova N. p38 MAPK–dependent alphaB-crystallin phosphorylation in Alzheimer's disease–like pathology in OXYS rats. Exp Gerontol 2019; 119:45-52. [DOI: 10.1016/j.exger.2019.01.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/24/2018] [Accepted: 01/15/2019] [Indexed: 11/15/2022]
|
15
|
p38α MAPK signaling drives pharmacologically reversible brain and gastrointestinal phenotypes in the SERT Ala56 mouse. Proc Natl Acad Sci U S A 2018; 115:E10245-E10254. [PMID: 30297392 PMCID: PMC6205438 DOI: 10.1073/pnas.1809137115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a common neurobehavioral disorder with limited treatment options. Activation of p38 MAPK signaling networks has been identified in ASD, and p38 MAPK signaling elevates serotonin (5-HT) transporter (SERT) activity, effects mimicked by multiple, hyperfunctional SERT coding variants identified in ASD subjects. Mice expressing the most common of these variants (SERT Ala56) exhibit hyperserotonemia, a biomarker observed in ASD subjects, as well as p38 MAPK-dependent SERT hyperphosphorylation, elevated hippocampal 5-HT clearance, hypersensitivity of CNS 5-HT1A and 5-HT2A/2C receptors, and behavioral and gastrointestinal perturbations reminiscent of ASD. As the α-isoform of p38 MAPK drives SERT activation, we tested the hypothesis that CNS-penetrant, α-isoform-specific p38 MAPK inhibitors might normalize SERT Ala56 phenotypes. Strikingly, 1-week treatment of adult SERT Ala56 mice with MW150, a selective p38α MAPK inhibitor, normalized hippocampal 5-HT clearance, CNS 5-HT1A and 5-HT2A/2C receptor sensitivities, social interactions, and colonic motility. Conditional elimination of p38α MAPK in 5-HT neurons of SERT Ala56 mice restored 5-HT1A and 5-HT2A/2C receptor sensitivities as well as social interactions, mirroring effects of MW150. Our findings support ongoing p38α MAPK activity as an important determinant of the physiological and behavioral perturbations of SERT Ala56 mice and, more broadly, supports consideration of p38α MAPK inhibition as a potential treatment for core and comorbid phenotypes present in ASD subjects.
Collapse
|
16
|
Fujimura M, Usuki F. Methylmercury induces oxidative stress and subsequent neural hyperactivity leading to cell death through the p38 MAPK-CREB pathway in differentiated SH-SY5Y cells. Neurotoxicology 2018; 67:226-233. [PMID: 29913201 DOI: 10.1016/j.neuro.2018.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/13/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022]
Abstract
Methylmercury (MeHg) induces site-specific cerebrocortical neuronal cell death. In our previous study using an in vivo mouse model, we reported that MeHg-induced cerebrocortical neuronal cell death may be due to neural hyperactivity triggered by activation of kinase pathways. However, the detailed molecular mechanism remained to be completely understood. In this study, we analyzed detailed signaling pathways for MeHg-induced neuronal cell death using all-trans-retinoic acid (RA) differentiated SH-SY5Y cells, which show neuron-like morphological changes and express neuron/synapse markers for cerebrocortical neurons. Time course studies revealed that MeHg-induced upregulation of c-fos, a marker of neural activation, preceded neuronal cell death. These results were similar to those observed in a MeHg-intoxicated mouse model. We observed early expression of the oxidative stress marker thymidine glycol followed by activation of p44/42 mitogen-activated protein kinase (MAPK) and p38 MAPK, and an increase in cAMP response element binding protein (CREB). Investigation of the effects of specific kinase inhibitors revealed that SB203580, a specific inhibitor for p38 MAPK, significantly blocked the upregulation of c-fos and the subsequent neuronal cell death. In contrast, PD98059 and U0126, specific inhibitors for p44/p42 MAPK, showed no effects on MeHg-induced neurotoxicity. Furthermore, the antioxidants Trolox and edaravone significantly suppressed MeHg-induced thymidine glycol expression, p38 MAPK-CREB pathway activation, and neurotoxicity. Altogether, these results suggest that MeHg-induced oxidative stress and subsequent activation of the p38 MAPK-CREB pathway contribute to cerebrocortical neuronal hyperactivity and subsequent neuronal cell death.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan.
| | - Fusako Usuki
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
17
|
Rutigliano G, Stazi M, Arancio O, Watterson DM, Origlia N. An isoform-selective p38α mitogen-activated protein kinase inhibitor rescues early entorhinal cortex dysfunctions in a mouse model of Alzheimer's disease. Neurobiol Aging 2018; 70:86-91. [PMID: 30007168 DOI: 10.1016/j.neurobiolaging.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/24/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Neuroinflammation is a fundamental mechanism in Alzheimer's disease (AD) progression. The stress-induced activation of the p38α mitogen-activated protein kinase (MAPK) leads to increased production of proinflammatory cytokines and neurodegeneration. We investigated the effects of an isoform selective p38α MAPK inhibitor, MW01-18-150SRM (MW150), administered at 2.5 mg/kg/d (i.p.; 14 days) on early entorhinal cortex (EC) alterations in an AD mouse model carrying human mutations of the amyloid precursor protein (mhAPP). We used electrophysiological analyses with long-term potentiation induction in EC-containing brain slices and EC-relevant associative memory tasks. We found that MW150 was capable of rescuing long-term potentiation in 2-month old mhAPP mice. Acute delivery of MW150 to brain slices was similarly effective in rescuing long-term potentiation, with a comparable efficacy to that of the widely used multikinase inhibitor SB203580. MW150-treated mhAPP mice demonstrated improved ability to discriminate novel associations between objects and their position/context. Our findings suggest that the selective inhibition of the stress-activated p38α MAPK with MW150 can attenuate the EC dysfunctions associated with neuroinflammation in an early stage of AD progression.
Collapse
Affiliation(s)
- Grazia Rutigliano
- Scuola Superiore Sant'Anna, Pisa, Italy; National Research Council (CNR), Institute of Neuroscience, Pisa, Italy
| | - Martina Stazi
- National Research Council (CNR), Institute of Neuroscience, Pisa, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | | | - Nicola Origlia
- National Research Council (CNR), Institute of Neuroscience, Pisa, Italy.
| |
Collapse
|
18
|
Li J, Ma X, Wang Y, Chen C, Hu M, Wang L, Fu J, Shi G, Zhang D, Zhang T. Methyl Salicylate Lactoside Protects Neurons Ameliorating Cognitive Disorder Through Inhibiting Amyloid Beta-Induced Neuroinflammatory Response in Alzheimer's Disease. Front Aging Neurosci 2018; 10:85. [PMID: 29636677 PMCID: PMC5880880 DOI: 10.3389/fnagi.2018.00085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/13/2018] [Indexed: 01/16/2023] Open
Abstract
Neuroinflammatory reactions mediated by microglia and astrocytes have been shown to play a key role in early progression of Alzheimer’s disease (AD). Increased evidences have demonstrated that neurons exacerbate local inflammatory reactions by producing inflammatory mediators and act as an important participant in the pathogenesis of AD. Methyl salicylate lactoside (MSL) is an isolated natural product that is part of a class of novel non-steroidal anti-inflammatory drugs (NSAID). In our previous studies, we demonstrated that MSL exhibited therapeutic effects on arthritis-induced mice and suppressed the activation of glial cells. In the current study, we investigated the effects of MSL on cognitive function and neuronal protection induced by amyloid-beta peptides (Aβ) and explored potential underlying mechanisms involved. Amyloid precursor protein (APP) and presenilin 1 (PS1) double transgenic mice were used to evaluate the effects of MSL through behavioral testing and neuronal degenerative changes. In addition, copper-injured APP Swedish mutation overexpressing SH-SY5Y cells were used to determine the transduction of cyclooxygenase (COX) and mitogen-activated protein kinase (MAPK) pathways. Our results indicated that at an early stage, MSL treatment ameliorated cognitive impairment and neurodegeneration in APP/PS1 mice. Moreover, in an in vitro AD model, MSL treatment protected injured cells by increasing cell viability, improving mitochondrial dysfunction, and decreasing oxidative damage. In addition, MSL inhibited the phosphorylated level of c-Jun N-terminal kinase (JNK) and p38 MAPK, and suppressed the expression of COX-1/2. As a novel NSAIDs and used for the treatment in early stage of AD, MSL clearly demonstrated cognitive preservation by protecting neurons via a pleiotropic anti-inflammatory effect in the context of AD-associated deficits. Therefore, early treatment of anti-inflammatory therapy may be an effective strategy for treating AD.
Collapse
Affiliation(s)
- Jinze Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaowei Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yu Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Hu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linlin Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Junmin Fu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Gaona Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Lachén-Montes M, González-Morales A, Zelaya MV, Pérez-Valderrama E, Ausín K, Ferrer I, Fernández-Irigoyen J, Santamaría E. Olfactory bulb neuroproteomics reveals a chronological perturbation of survival routes and a disruption of prohibitin complex during Alzheimer's disease progression. Sci Rep 2017; 7:9115. [PMID: 28831118 PMCID: PMC5567385 DOI: 10.1038/s41598-017-09481-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/26/2017] [Indexed: 12/31/2022] Open
Abstract
Olfactory dysfunction is among the earliest features of Alzheimer’s disease (AD). Although neuropathological abnormalities have been detected in the olfactory bulb (OB), little is known about its dynamic biology. Here, OB- proteome analysis showed a stage-dependent synaptic proteostasis impairment during AD evolution. In addition to progressive modulation of tau and amyloid precursor protein (APP) interactomes, network-driven proteomics revealed an early disruption of upstream and downstream p38 MAPK pathway and a subsequent impairment of Phosphoinositide-dependent protein kinase 1 (PDK1)/Protein kinase C (PKC) signaling axis in the OB from AD subjects. Moreover, a mitochondrial imbalance was evidenced by a depletion of Prohibitin-2 (Phb2) levels and a specific decrease in the phosphorylated isoforms of Phb1 in intermediate and advanced AD stages. Interestingly, olfactory Phb subunits were also deregulated across different types of dementia. Phb2 showed a specific up-regulation in mixed dementia, while Phb1 isoforms were down-regulated in frontotemporal lobar degeneration (FTLD). However, no differences were observed in the olfactory expression of Phb subunits in progressive supranuclear palsy (PSP). To sum up, our data reflect, in part, the missing links in the biochemical understanding of olfactory dysfunction in AD, unveiling Phb complex as a differential driver of neurodegeneration at olfactory level.
Collapse
Affiliation(s)
- Mercedes Lachén-Montes
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Andrea González-Morales
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - María Victoria Zelaya
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Pathological Anatomy Department, Navarra Hospital Complex, Pamplona, Spain
| | - Estela Pérez-Valderrama
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Karina Ausín
- Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Isidro Ferrer
- Institut de Neuropatologia, IDIBELL-Hospital Universitari de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.,IDISNA, Navarra Institute for Health Research, Pamplona, Spain.,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Group, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain. .,IDISNA, Navarra Institute for Health Research, Pamplona, Spain. .,Proteored-ISCIII. Proteomics Unit, Navarrabiomed, Departamento de Salud, Universidad Pública de Navarra, Pamplona, Spain.
| |
Collapse
|
20
|
Ryou MG, Mallet RT, Metzger DB, Jung ME. Intermittent hypoxia training blunts cerebrocortical presenilin 1 overexpression and amyloid-β accumulation in ethanol-withdrawn rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R10-R18. [PMID: 28490448 DOI: 10.1152/ajpregu.00050.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023]
Abstract
Abrupt cessation of chronic alcohol consumption triggers signaling cascades that harm vulnerable brain regions and produce neurobehavioral deficits. We have demonstrated that a program of intermittent, normobaric hypoxia training (IHT) in rats prevents brain damage and neurobehavioral impairment resulting from abrupt ethanol withdrawal (EW). Moreover, EW induced expression of stress-activated protein kinase p38 and presenilin 1 (PS1), the catalytic subunit of γ-secretase that produces the neurotoxic amyloid-β (Aβ) peptides Aβ40 and Aβ42. We tested the hypotheses that 1) IHT limits EW-induced activation of the p38-PS1 axis, thereby attenuating γ-secretase activation and Aβ accumulation, and 2) EW disables heat shock protein 25 (HSP25), a p38 substrate, molecular chaperone, and antioxidant, and provokes protein carbonylation in a manner suppressed by IHT. Adult male rats completed two cycles of a 4-wk ethanol diet (6.5% wt/vol) and a 3-wk EW or an isocaloric, dextrin-based control diet. A 20-day IHT program (5-8 daily cycles of 5-10 min of 9.5-10% fractional inspired O2 + 4 min of 21% fractional inspired O2) was administered during the first EW phase. After the second EW phase, the brain was excised and the prefrontal cortex extracted. PS1, phosphorylated p38 (p-p38), and HSP25 were analyzed by immunoblot, PS1 messenger RNA by quantitative polymerase chain reaction, protein carbonyl content by spectrometry, and Aβ40 and Aβ42 contents by enzyme-linked immunosorbent assay. IHT attenuated the EW-associated increases in PS1, p-p38, Aβ40, Aβ42, and protein carbonyl contents, but not that of PS1 messenger RNA, while preserving functionally competent HSP25 dimers in EW rats. Collectively, these findings suggest that IHT may attenuate EW-induced γ-secretase overactivation by suppressing activation of the p38-PS1 axis and by preventing oxidative protein damage.
Collapse
Affiliation(s)
- Myoung-Gwi Ryou
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Medical Laboratory Science and Public Health, Tarleton State University, Fort Worth, Texas
| | - Robert T Mallet
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Daniel B Metzger
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas; and
| | - Marianna E Jung
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, Texas; and
| |
Collapse
|
21
|
Zhou Z, Bachstetter AD, Späni CB, Roy SM, Watterson DM, Van Eldik LJ. Retention of normal glia function by an isoform-selective protein kinase inhibitor drug candidate that modulates cytokine production and cognitive outcomes. J Neuroinflammation 2017; 14:75. [PMID: 28381303 PMCID: PMC5382362 DOI: 10.1186/s12974-017-0845-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Brain p38α mitogen-activated protein kinase (MAPK), a potential therapeutic target for cognitive dysfunction based on the neuroinflammation-synaptic dysfunction cycle of pathophysiology progression, offers an innovative pharmacological strategy via inhibiting the same activated target in both glia and neurons, thereby enhancing the possibility for efficacy. The highly selective, brain-penetrant p38αMAPK inhibitor MW150 attenuates cognitive dysfunction in two distinct Alzheimer's disease (AD)-relevant models and avoids the problems encountered with previous mixed-kinase inhibitor drug candidates. Therefore, it is essential that the glial effects of this CNS-active kinase inhibitor be addressed in order to anticipate future use in clinical investigations. METHODS We explored the effects of MW150 on glial biology in the AD-relevant APP/PS1 knock-in (KI) mouse model where we previously showed efficacy in suppression of hippocampal-dependent associative and spatial memory deficits. MW150 (2.5 mg/kg/day) was administered daily to 11-12-month-old KI mice for 14 days, and levels of proinflammatory cytokines IL-1β, TNFα, and IL-6 measured in homogenates of mouse cortex using ELISA. Glial markers IBA1, CD45, CD68, and GFAP were assessed by immunohistochemistry. Microglia and amyloid plaques were quantified by immunofluorescence staining followed by confocal imaging. Levels of soluble and insoluble of Aβ40 and Aβ42 were measured by ELISA. The studies of in vivo pharmacodynamic effects on markers of neuroinflammation were complemented by mechanistic studies in the murine microglia BV2 cell line, using live cell imaging techniques to monitor proliferation, migration, and phagocytosis activities. RESULTS Intervention with MW150 in KI mice during the established therapeutic time window attenuated the increased levels of IL-1β and TNFα but not IL-6. MW150 treatment also increased the IBA1+ microglia within a 15 μm radius of the amyloid plaques, without significantly affecting overall microglia or plaque volume. Levels of IBA1, CD45, CD68, GFAP, and Aβ40 and Aβ42 were not affected by MW150 treatment. MW150 did not significantly alter microglial migration, proliferation, or phagocytosis in BV2 cells. CONCLUSIONS Our results demonstrate that MW150 at an efficacious dose can selectively modulate neuroinflammatory responses associated with pathology progression without pan-suppression of normal physiological functions of microglia.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Street, Lexington, KY, USA
| | - Adam D Bachstetter
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Street, Lexington, KY, USA.,Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone Street, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky, 800 Rose Street, Lexington, KY, USA
| | - Claudia B Späni
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Street, Lexington, KY, USA
| | - Saktimayee M Roy
- Department of Pharmacology, Northwestern University, 303 E Chicago Ave, Chicago, IL, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University, 303 E Chicago Ave, Chicago, IL, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Street, Lexington, KY, USA. .,Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone Street, Lexington, KY, USA. .,Department of Neuroscience, University of Kentucky, 800 Rose Street, Lexington, KY, USA.
| |
Collapse
|
22
|
Neuronal p38α mediates synaptic and cognitive dysfunction in an Alzheimer's mouse model by controlling β-amyloid production. Sci Rep 2017; 7:45306. [PMID: 28361984 PMCID: PMC5374488 DOI: 10.1038/srep45306] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by a severe and progressive neuronal loss leading to cognitive dysfunctions. Previous reports, based on the use of chemical inhibitors, have connected the stress kinase p38α to neuroinflammation, neuronal death and synaptic dysfunction. To explore the specific role of neuronal p38α signalling in the appearance of pathological symptoms, we have generated mice that combine expression of the 5XFAD transgenes to induce AD symptoms with the downregulation of p38α only in neurons (5XFAD/p38α∆-N). We found that the neuronal-specific deletion of p38α improves the memory loss and long-term potentiation impairment induced by 5XFAD transgenes. Furthermore, 5XFAD/p38α∆-N mice display reduced amyloid-β accumulation, improved neurogenesis, and important changes in brain cytokine expression compared with 5XFAD mice. Our results implicate neuronal p38α signalling in the synaptic plasticity dysfunction and memory impairment observed in 5XFAD mice, by regulating both amyloid-β deposition in the brain and the relay of this accumulation to mount an inflammatory response, which leads to the cognitive deficits.
Collapse
|
23
|
Li TF, Wu HY, Wang YR, Li XY, Wang YX. Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin. Sci Rep 2017; 7:45056. [PMID: 28327597 PMCID: PMC5361206 DOI: 10.1038/srep45056] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/30/2022] Open
Abstract
Bulleyaconitine (BAA) has been shown to possess antinociceptive activities by stimulation of dynorphin A release from spinal microglia. This study investigated its underlying signal transduction mechanisms. The data showed that (1) BAA treatment induced phosphorylation of CREB (rather than NF-κB) and prodynorphin expression in cultured primary microglia, and antiallodynia in neuropathy, which were totally inhibited by the CREB inhibitor KG-501; (2) BAA upregulated phosphorylation of p38 (but not ERK or JNK), and the p38 inhibitor SB203580 (but not ERK or JNK inhibitor) and p38β gene silencer siRNA/p38β (but not siRNA/p38α) completely blocked BAA-induced p38 phosphorylation and/or prodynorphin expression, and antiallodynia; (3) BAA stimulated cAMP production and PKA phosphorylation, and the adenylate cyclase inhibitor DDA and PKA inhibitor H-89 entirely antagonized BAA-induced prodynorphin expression and antiallodynia; (4) The Gs-protein inhibitor NF449 completely inhibited BAA-increased cAMP level, prodynorphin expression and antiallodynia, whereas the antagonists of noradrenergic, corticotrophin-releasing factor, A1 adenosine, formyl peptide, D1/D2 dopamine, and glucagon like-peptide-1 receptors failed to block BAA-induced antiallodynia. The data indicate that BAA-induced microglial expression of prodynorphin is mediated by activation of the cAMP-PKA-p38β-CREB signaling pathway, suggesting that its possible target is a Gs-protein-coupled receptor - "aconitine receptor", although the chemical identity is not illustrated.
Collapse
Affiliation(s)
- Teng-Fei Li
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Hai-Yun Wu
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi-Rui Wang
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin-Yan Li
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| | - Yong-Xiang Wang
- King’s Lab, Shanghai Jiao Tong University School of Pharmacy, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
24
|
Yang HJ, Ju F, Guo XX, Ma SP, Wang L, Cheng BF, Zhuang RJ, Zhang BB, Shi X, Feng ZW, Wang M. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep 2017; 7:41738. [PMID: 28134320 PMCID: PMC5278414 DOI: 10.1038/srep41738] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/28/2016] [Indexed: 01/25/2023] Open
Abstract
Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Key Lab of Biological Psychiatry, Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Xin-Xin Guo
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Rui-Juan Zhuang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Bin-Bin Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhi-Wei Feng
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
25
|
Kim TY, Niimi K, Takahashi E. Analysis of the protective effects of the α 2 /δ subunit of voltage-gated Ca 2+ channels in brain injury. Brain Res 2017; 1655:138-144. [DOI: 10.1016/j.brainres.2016.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022]
|
26
|
Mao G, Ren P, Wang G, Yan F, Zhang Y. MicroRNA-128-3p Protects Mouse Against Cerebral Ischemia Through Reducing p38α Mitogen-Activated Protein Kinase Activity. J Mol Neurosci 2016; 61:152-158. [DOI: 10.1007/s12031-016-0871-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 12/27/2022]
|
27
|
Alam JJ. Selective Brain-Targeted Antagonism of p38 MAPKα Reduces Hippocampal IL-1β Levels and Improves Morris Water Maze Performance in Aged Rats. J Alzheimers Dis 2016; 48:219-27. [PMID: 26401942 PMCID: PMC4923728 DOI: 10.3233/jad-150277] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: P38 mitogen activated protein kinase (MAPK) α modulates microglia-mediated inflammatory responses and a number of neuronal physiological processes. Objective: To evaluate pre-clinically the pharmacological effects in the brain of p38 MAPKα inhibition with a brain-penetrant specific chemical antagonist. Methods: VX-745, a blood-brain barrier penetrant, highly selective p38 MAPKα inhibitor, and clinical stage investigational drug, was utilized. Initially, a pilot study in 26-month-old Tg2576 mice was conducted. Subsequently, a definitive dose-response study was conducted in aged (20–22 months) rats with identified cognitive deficits; n = 15 per group: vehicle, 0.5, 1.5, and 4.5 mg/kg VX-745 by oral gavage twice daily for 3 weeks. Assessments in aged rats included IL-1β, PSD-95, TNFα protein levels in hippocampus; and Morris water maze (MWM) test for cognitive performance. Results: Drug effect could not be assessed in Tg2576 mice, as little inflammation was evident. In cognitively-impaired aged rats, VX-745 led to significantly improved performance in the MWM and significant reduction in hippocampal IL-1β protein levels, though the effects were dissociated as the MWM effect was evident at a lower dose level than that required to lower IL-1β. Drug concentration-effect relationships and predicted human doses were determined. Conclusions: Selective inhibition of p38 MAPKα with VX-745 in aged rats reduces hippocampal IL-1β levels and improves performance in the MWM. As the two effects occur at different dose levels, the behavioral effect appears to be via a mechanism that is independent of reducing cytokine production. The predicted human doses should minimize risks of systemic toxicity.
Collapse
Affiliation(s)
- John J. Alam
- Correspondence to: John J. Alam, MD, EIP Pharma, LLC, 11 Channing Street, Cambridge, MA 02138, USA. Tel.: +1 617 909 5737;
| |
Collapse
|
28
|
Jung ME, Metzger DB, Das HK. The Role of Presenilin-1 in the Excitotoxicity of Ethanol Withdrawal. J Pharmacol Exp Ther 2016; 358:516-26. [PMID: 27278235 DOI: 10.1124/jpet.116.233361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/27/2016] [Indexed: 01/02/2023] Open
Abstract
Presenilin-1 (PS1) is a core component of γ-secretase that is involved in neurodegeneration. We have previously shown that PS1 interacts with a mitogen-activated protein kinase [(MAPK) jun-NH2-terminal-kinase], and another MAPK (p38) is activated by ethanol withdrawal (EW), abrupt termination from chronic ethanol exposure. EW is excitotoxic in nature, induces glutamate upregulation, and provokes neuronal damage. Here, we explored a potential mechanistic pathway involving glutamate, p38 (p38α isozyme), and PS1 that may mediate EW-induced excitotoxic stress. We used the prefrontal cortex of male rats withdrawn from a chronic ethanol diet. Additionally, we used ethanol-withdrawn HT22 cells (mouse hippocampal) treated with the inhibitor of glutamate receptors [dizocilpine (MK-801)], p38α (SB203580; 4-[4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-1H-imidazol-5-yl]pyridine), or γ-secretase [N-[N- (3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT)] during EW. Separately, ethanol-free HT22 cells were exposed to glutamate with or without SB203580 or DAPT. Protein levels, mRNA levels, and cell viability were assessed using immunoblotting, qualitative polymerase chain reaction, and calcein assay, respectively. The prefrontal cortex of ethanol-withdrawn rats or HT22 cells showed an increase in PS1 and p38α, which was attenuated by MK-801 and SB203580, but mimicked by glutamate treatment to ethanol-free HT22 cells. DAPT attenuated the toxic effect of EW or glutamate on HT22 cells. These results suggest that PS1 expression is triggered by glutamate through p38α, contributing to the excitotoxic stimulus of EW.
Collapse
Affiliation(s)
- Marianna E Jung
- Institute for Health Aging, Center for Neuroscience Discovery (M.E.J., D.B.M., H.K.D.), and Institute of Cancer Research (H.K.D.), University of North Texas Health Science Center, Fort Worth, Texas
| | - Daniel B Metzger
- Institute for Health Aging, Center for Neuroscience Discovery (M.E.J., D.B.M., H.K.D.), and Institute of Cancer Research (H.K.D.), University of North Texas Health Science Center, Fort Worth, Texas
| | - Hriday K Das
- Institute for Health Aging, Center for Neuroscience Discovery (M.E.J., D.B.M., H.K.D.), and Institute of Cancer Research (H.K.D.), University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
29
|
Hydrogen sulfide prevents OGD/R-induced apoptosis by suppressing the phosphorylation of p38 and secretion of IL-6 in PC12 cells. Neuroreport 2016; 27:230-4. [DOI: 10.1097/wnr.0000000000000522] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Schnöder L, Hao W, Qin Y, Liu S, Tomic I, Liu X, Fassbender K, Liu Y. Deficiency of Neuronal p38α MAPK Attenuates Amyloid Pathology in Alzheimer Disease Mouse and Cell Models through Facilitating Lysosomal Degradation of BACE1. J Biol Chem 2015; 291:2067-79. [PMID: 26663083 DOI: 10.1074/jbc.m115.695916] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/20/2022] Open
Abstract
Amyloid β (Aβ) damages neurons and triggers microglial inflammatory activation in the Alzheimer disease (AD) brain. BACE1 is the primary enzyme in Aβ generation. Neuroinflammation potentially up-regulates BACE1 expression and increases Aβ production. In Alzheimer amyloid precursor protein-transgenic mice and SH-SY5Y cell models, we specifically knocked out or knocked down gene expression of mapk14, which encodes p38α MAPK, a kinase sensitive to inflammatory and oxidative stimuli. Using immunological and biochemical methods, we observed that reduction of p38α MAPK expression facilitated the lysosomal degradation of BACE1, decreased BACE1 protein and activity, and subsequently attenuated Aβ generation in the AD mouse brain. Inhibition of p38α MAPK also enhanced autophagy. Blocking autophagy by treating cells with 3-methyladenine or overexpressing dominant-negative ATG5 abolished the deficiency of the p38α MAPK-induced BACE1 protein reduction in cultured cells. Thus, our study demonstrates that p38α MAPK plays a critical role in the regulation of BACE1 degradation and Aβ generation in AD pathogenesis.
Collapse
Affiliation(s)
- Laura Schnöder
- From the Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany, the German Institute for Dementia Prevention (DIDP), Saarland University, 66421 Homburg/Saar, Germany, and
| | - Wenlin Hao
- From the Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany, the German Institute for Dementia Prevention (DIDP), Saarland University, 66421 Homburg/Saar, Germany, and
| | - Yiren Qin
- From the Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany, the German Institute for Dementia Prevention (DIDP), Saarland University, 66421 Homburg/Saar, Germany, and
| | - Shirong Liu
- the Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Institutes of Medicine, Boston, Massachusetts 02115
| | - Inge Tomic
- From the Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany, the German Institute for Dementia Prevention (DIDP), Saarland University, 66421 Homburg/Saar, Germany, and
| | - Xu Liu
- From the Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany, the German Institute for Dementia Prevention (DIDP), Saarland University, 66421 Homburg/Saar, Germany, and
| | - Klaus Fassbender
- From the Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany, the German Institute for Dementia Prevention (DIDP), Saarland University, 66421 Homburg/Saar, Germany, and
| | - Yang Liu
- From the Department of Neurology, Saarland University, 66421 Homburg/Saar, Germany, the German Institute for Dementia Prevention (DIDP), Saarland University, 66421 Homburg/Saar, Germany, and
| |
Collapse
|
31
|
Adams AC, Kyle M, Beaman-Hall CM, Monaco EA, Cullen M, Vallano ML. Microglia in Glia-Neuron Co-cultures Exhibit Robust Phagocytic Activity Without Concomitant Inflammation or Cytotoxicity. Cell Mol Neurobiol 2015; 35:961-75. [PMID: 25894384 DOI: 10.1007/s10571-015-0191-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/28/2015] [Indexed: 12/19/2022]
Abstract
A simple method to co-culture granule neurons and glia from a single brain region is described, and microglia activation profiles are assessed in response to naturally occurring neuronal apoptosis, excitotoxin-induced neuronal death, and lipopolysaccharide (LPS) addition. Using neonatal rat cerebellar cortex as a tissue source, glial proliferation is regulated by omission or addition of the mitotic inhibitor cytosine arabinoside (AraC). After 7-8 days in vitro, microglia in AraC(-) cultures are abundant and activated based on their amoeboid morphology, expressions of ED1 and Iba1, and ability to phagocytose polystyrene beads and the majority of neurons undergoing spontaneous apoptosis. Microglia and phagocytic activities are sparse in AraC(+) cultures. Following exposure to excitotoxic kainate concentrations, microglia in AraC(-) cultures phagocytose most dead neurons within 24 h without exacerbating neuronal loss or mounting a strong or sustained inflammatory response. LPS addition induces a robust inflammatory response, based on microglial expressions of TNF-α, COX-2 and iNOS proteins, and mRNAs, whereas these markers are essentially undetectable in control cultures. Thus, the functional effector state of microglia is primed for phagocytosis but not inflammation or cytotoxicity even after kainate exposure that triggers death in the majority of neurons. This model should prove useful in studying the progressive activation states of microglia and factors that promote their conversion to inflammatory and cytotoxic phenotypes.
Collapse
Affiliation(s)
- Alexandra C Adams
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Pulmonary and Critical Care, Mount Sinai Beth Israel Medical Center, New York, NY, 10003, USA
| | - Michele Kyle
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Carol M Beaman-Hall
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Edward A Monaco
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Matthew Cullen
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Anesthesiology, Phelps Memorial Hospital Center, Sleepy Hollow, NY, 10591, USA
| | - Mary Lou Vallano
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
32
|
Bachstetter AD, Xing B, Van Eldik LJ. The p38alpha mitogen-activated protein kinase limits the CNS proinflammatory cytokine response to systemic lipopolysaccharide, potentially through an IL-10 dependent mechanism. J Neuroinflammation 2014; 11:175. [PMID: 25297465 PMCID: PMC4193976 DOI: 10.1186/s12974-014-0175-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The p38α mitogen-activated protein kinase (MAPK) is a well-characterized intracellular kinase involved in the overproduction of proinflammatory cytokines from glia. As such, p38α appears to be a promising therapeutic target for neurodegenerative diseases associated with neuroinflammation. However, the in vivo role of p38α in cytokine production in the CNS is poorly defined, and prior work suggests that p38α may be affecting a yet to be identified negative feedback mechanism that limits the acute, injury-induced proinflammatory cytokine surge in the CNS. METHODS To attempt to define this negative feedback mechanism, we used two in vitro and two in vivo models of neuroinflammation in a mouse where p38α is deficient in cells of the myeloid lineage. RESULTS We found that p38α in myeloid cells has an important role in limiting amplitude of the acute proinflammatory cytokine response to a systemic inflammatory challenge. Moreover, we identified IL-10 as a potential negative feedback mechanism regulated by p38α. CONCLUSIONS Our data suggest that p38α regulates a proper balance between the pro- and anti-inflammatory cytokine responses to systemic inflammation, and that if circulating IL-10 levels are not elevated to counter-balance the increased systemic proinflammatory responses, the spread of the inflammatory response from the periphery to the CNS is exaggerated.
Collapse
Affiliation(s)
| | | | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, 800 S, Limestone Street, Lexington 40536, KY, USA.
| |
Collapse
|