1
|
Li HY, Liu DS, Li LB, Zhang YB, Dong HY, Rong H, Zhang JY, Wang JP, Jin M, Luo N, Zhang XJ. Total Glucosides of White Paeony Capsule ameliorates Parkinson's disease-like behavior in MPTP-induced mice model by regulating LRRK2/alpha-synuclein signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117319. [PMID: 37838295 DOI: 10.1016/j.jep.2023.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Total Glucosides of White Paeony Capsule (TGPC), one of the traditional Chinese patent medicines, has been used for the treatment of autoimmune diseases such as rheumatoid arthritis (RA) in clinical practice. Besides, the components of TGPC are extracted from Radix Paeoniae Alba (RPA) and have displayed neuroprotective properties. AIM OF THE STUDY The present study was designed to evaluate the anti-PD-like effects of TGPC on a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mice model and explore its potential molecular mechanisms. MATERIALS AND METHODS Behavioral tests, hematoxylin and eosin (HE) staining, Nissl staining, immunohistochemistry (IHC), western blotting (WB) and Enzyme-Linked Immunosorbent Assay (ELISA) were performed in this study. RESULTS It was observed that TGPC treatment (150, 300 mg/kg) significantly reversed MPTPinduced PD-like behaviors, such as reduced locomotive activity in the open field test, prolonged time to turn downward on the ball (T-turn) and to climb down the whole pole (T-descend) in the pole test, decreased movement scores in the traction test and extended the latency to fall in the hanging wire test. In addition, TGPC improved neurodegeneration, inhibited the excessive activation of microglia and suppressed the overproduction of proinflammatory cytokines induced by MPTP, partially by restoring leucine-rich repeat kinase 2 (LRRK2) activity and inhibiting alpha-synuclein (α-syn) mediated neuroinflammation signaling. CONCLUSION Taken together, TGPC exhibited neuroprotective effects on MPTP-induced mice model of PD, which was associated with the prevention of neuroinflammation and neurodegeneration modulated by LRRK2/α-syn pathway.
Collapse
MESH Headings
- Mice
- Animals
- Parkinson Disease/drug therapy
- alpha-Synuclein/metabolism
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Glucosides/metabolism
- Paeonia
- Neuroinflammatory Diseases
- Mice, Inbred C57BL
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- Neuroprotective Agents/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/therapeutic use
- Dopaminergic Neurons
- Disease Models, Animal
Collapse
Affiliation(s)
- Hong-Yan Li
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, PR China
| | - De-Shui Liu
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Li-Bo Li
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Ying-Bo Zhang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Hai-Ying Dong
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Hua Rong
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Jing-Yan Zhang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Jun-Ping Wang
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Ming Jin
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Nan Luo
- Department of Pathology, Qiqihaer Medical University, Qiqihar, 161006, PR China
| | - Xiao-Jie Zhang
- Department of Basic Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, PR China; Heilongjiang Nursing College, Haerbin, 150000, PR China.
| |
Collapse
|
2
|
García-Beltrán O, Urrutia PJ, Núñez MT. On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson's Disease. Antioxidants (Basel) 2023; 12:214. [PMID: 36829773 PMCID: PMC9952574 DOI: 10.3390/antiox12020214] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Protein aggregation, mitochondrial dysfunction, iron dyshomeostasis, increased oxidative damage and inflammation are pathognomonic features of Parkinson's disease (PD) and other neurodegenerative disorders characterized by abnormal iron accumulation. Moreover, the existence of positive feed-back loops between these pathological components, which accelerate, and sometimes make irreversible, the neurodegenerative process, is apparent. At present, the available treatments for PD aim to relieve the symptoms, thus improving quality of life, but no treatments to stop the progression of the disease are available. Recently, the use of multifunctional compounds with the capacity to attack several of the key components of neurodegenerative processes has been proposed as a strategy to slow down the progression of neurodegenerative processes. For the treatment of PD specifically, the necessary properties of new-generation drugs should include mitochondrial destination, the center of iron-reactive oxygen species interaction, iron chelation capacity to decrease iron-mediated oxidative damage, the capacity to quench free radicals to decrease the risk of ferroptotic neuronal death, the capacity to disrupt α-synuclein aggregates and the capacity to decrease inflammatory conditions. Desirable additional characteristics are dopaminergic neurons to lessen unwanted secondary effects during long-term treatment, and the inhibition of the MAO-B and COMPT activities to increase intraneuronal dopamine content. On the basis of the published evidence, in this work, we review the molecular basis underlying the pathological events associated with PD and the clinical trials that have used single-target drugs to stop the progress of the disease. We also review the current information on multifunctional compounds that may be used for the treatment of PD and discuss the chemical characteristics that underlie their functionality. As a projection, some of these compounds or modifications could be used to treat diseases that share common pathology features with PD, such as Friedreich's ataxia, Multiple sclerosis, Huntington disease and Alzheimer's disease.
Collapse
Affiliation(s)
- Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730002, Colombia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Pamela J. Urrutia
- Faculty of Medicine and Science, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | - Marco T. Núñez
- Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago 7800024, Chile
| |
Collapse
|
3
|
8- Hydroxyquinolylnitrones as multifunctional ligands for the therapy of neurodegenerative diseases. Acta Pharm Sin B 2023; 13:2152-2175. [DOI: 10.1016/j.apsb.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
|
4
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
5
|
Polyfunctionalized α-Phenyl-tert-butyl(benzyl)nitrones: Multifunctional Antioxidants for Stroke Treatment. Antioxidants (Basel) 2022; 11:antiox11091735. [PMID: 36139811 PMCID: PMC9495348 DOI: 10.3390/antiox11091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, most stroke patients are treated exclusively with recombinant tissue plasminogen activator, a drug with serious side effects and limited therapeutic window. For this reason, and because of the known effects of oxidative stress on stroke, a more tolerable and efficient therapy for stroke is being sought that focuses on the control and scavenging of highly toxic reactive oxygen species by appropriate small molecules, such as nitrones with antioxidant properties. In this context, herein we report here the synthesis, antioxidant, and neuroprotective properties of twelve novel polyfunctionalized α-phenyl-tert-butyl(benzyl)nitrones. The antioxidant capacity of these nitrones was investigated by various assays, including the inhibition of lipid peroxidation induced by AAPH, hydroxyl radical scavenging assay, ABTS+-decoloration assay, DPPH scavenging assay, and inhibition of soybean lipoxygenase. The inhibitory effect on monoamine oxidases and cholinesterases and inhibition of β-amyloid aggregation were also investigated. As a result, (Z)-N-benzyl-1-(2-(3-(piperidin-1-yl)propoxy)phenyl)methanimine oxide (5) was found to be one of the most potent antioxidants, with high ABTS+ scavenging activity (19%), and potent lipoxygenase inhibitory capacity (IC50 = 10 µM), selectively inhibiting butyrylcholinesterase (IC50 = 3.46 ± 0.27 µM), and exhibited neuroprotective profile against the neurotoxicant okadaic acid in a neuronal damage model. Overall, these results pave the way for the further in-depth analysis of the neuroprotection of nitrone 5 in in vitro and in vivo models of stroke and possibly other neurodegenerative diseases in which oxidative stress is identified as a critical player.
Collapse
|
6
|
Ontario ML, Siracusa R, Modafferi S, Scuto M, Sciuto S, Greco V, Bertuccio MP, Salinaro AT, Crea R, Calabrese EJ, Di Paola R, Calabrese V. POTENTIAL PREVENTION AND TREATMENT OF NEURODEGENERATIVE DISORDERS BY OLIVE POLYPHENOLS AND HYDROX. Mech Ageing Dev 2022; 203:111637. [DOI: 10.1016/j.mad.2022.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
7
|
Wang Y, Gao L, Chen J, Li Q, Huo L, Wang Y, Wang H, Du J. Pharmacological Modulation of Nrf2/HO-1 Signaling Pathway as a Therapeutic Target of Parkinson's Disease. Front Pharmacol 2021; 12:757161. [PMID: 34887759 PMCID: PMC8650509 DOI: 10.3389/fphar.2021.757161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022] Open
Abstract
Parkinson’s disease (PD) is a complex neurodegenerative disorder featuring both motor and nonmotor symptoms associated with a progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress (OS) has been implicated in the pathogenesis of PD. Genetic and environmental factors can produce OS, which has been implicated as a core contributor to the initiation and progression of PD through the degeneration of dopaminergic neurons. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) orchestrates activation of multiple protective genes, including heme oxygenase-1 (HO-1), which protects cells from OS. Nrf2 has also been shown to exert anti-inflammatory effects and modulate both mitochondrial function and biogenesis. Recently, a series of studies have reported that different bioactive compounds were shown to be able to activate Nrf2/antioxidant response element (ARE) and can ameliorate PD-associated neurotoxin, both in animal models and in tissue culture. In this review, we briefly overview the sources of OS and the association between OS and the pathogenesis of PD. Then, we provided a concise overview of Nrf2/ARE pathway and delineated the role played by activation of Nrf2/HO-1 in PD. At last, we expand our discussion to the neuroprotective effects of pharmacological modulation of Nrf2/HO-1 by bioactive compounds and the potential application of Nrf2 activators for the treatment of PD. This review suggests that pharmacological modulation of Nrf2/HO-1 signaling pathway by bioactive compounds is a therapeutic target of PD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Luyan Gao
- Department of Neurology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Qiang Li
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Liang Huo
- Department of Pediatric Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanchao Wang
- Department of Neurology, The Affiliated Hospital of Chifeng University, Chifeng, China
| | - Hongquan Wang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichen Du
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
8
|
Alonso JM, Escobar-Peso A, Palomino-Antolín A, Diez-Iriepa D, Chioua M, Martínez-Alonso E, Iriepa I, Egea J, Alcázar A, Marco-Contelles J. Privileged Quinolylnitrones for the Combined Therapy of Ischemic Stroke and Alzheimer's Disease. Pharmaceuticals (Basel) 2021; 14:ph14090861. [PMID: 34577561 PMCID: PMC8465398 DOI: 10.3390/ph14090861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cerebrovascular diseases such as ischemic stroke are known to exacerbate dementia caused by neurodegenerative pathologies such as Alzheimer’s disease (AD). Besides, the increasing number of patients surviving stroke makes it necessary to treat the co-occurrence of these two diseases with a single and combined therapy. For the development of new dual therapeutic agents, eight hybrid quinolylnitrones have been designed and synthesized by the juxtaposition of selected pharmacophores from our most advanced lead-compounds for ischemic stroke and AD treatment. Biological analyses looking for efficient neuroprotective effects in suitable phenotypic assays led us to identify MC903 as a new small quinolylnitrone for the potential dual therapy of stroke and AD, showing strong neuroprotection on (i) primary cortical neurons under oxygen–glucose deprivation/normoglycemic reoxygenation as an experimental ischemia model; (ii), neuronal line cells treated with rotenone/oligomycin A, okadaic acid or β-amyloid peptide Aβ25–35, modeling toxic insults found among the effects of AD.
Collapse
Affiliation(s)
- José M. Alonso
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
| | - Alejandro Escobar-Peso
- Department of Research, IRYCIS, Hospital Ramón y Cajal, Ctra. Colmenar Km 9.1, 28034 Madrid, Spain; (A.E.-P.); (E.M.-A.)
| | - Alejandra Palomino-Antolín
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain;
| | - Daniel Diez-Iriepa
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33.6, 28871 Alcalá de Henares, Spain;
| | - Mourad Chioua
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
| | - Emma Martínez-Alonso
- Department of Research, IRYCIS, Hospital Ramón y Cajal, Ctra. Colmenar Km 9.1, 28034 Madrid, Spain; (A.E.-P.); (E.M.-A.)
| | - Isabel Iriepa
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Ctra. Madrid-Barcelona Km 33.6, 28871 Alcalá de Henares, Spain;
- Institute of Chemical Research Andrés M. del Río, Alcalá University, 28805 Alcalá de Henares, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28009 Madrid, Spain;
- Correspondence: (J.E.); (A.A.); (J.M.-C.)
| | - Alberto Alcázar
- Department of Research, IRYCIS, Hospital Ramón y Cajal, Ctra. Colmenar Km 9.1, 28034 Madrid, Spain; (A.E.-P.); (E.M.-A.)
- Correspondence: (J.E.); (A.A.); (J.M.-C.)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (J.M.A.); (D.D.-I.); (M.C.)
- Correspondence: (J.E.); (A.A.); (J.M.-C.)
| |
Collapse
|
9
|
Rutamarin: Efficient Liquid-Liquid Chromatographic Isolation from Ruta graveolens L. and Evaluation of Its In Vitro and In Silico MAO-B Inhibitory Activity. Molecules 2020; 25:molecules25112678. [PMID: 32527030 PMCID: PMC7321355 DOI: 10.3390/molecules25112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/30/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Naturally occurring coumarins are a group of compounds with many documented central nervous system (CNS) activities. However, dihydrofuranocoumarins have been infrequently investigated for their bioactivities at CNS level. Within the frame of this study, an efficient liquid–liquid chromatography method was developed to rapidly isolate rutamarin from Ruta graveolens L. (Rutaceae) dichloromethane extract (DCM). The crude DCM (9.78 mg/mL) and rutamarin (6.17 µM) were found to be effective inhibitors of human monoamine oxidase B (hMAO-B) with inhibition percentages of 89.98% and 95.26%, respectively. The inhibitory activity against human monoamine oxidase A (hMAO-A) for the DCM extract was almost the same (88.22%). However, for rutamarin, it significantly dropped to 25.15%. To examine the molecular interaction of rutamarin with hMAO- B, an in silico evaluation was implemented. A docking study was performed for the two enantiomers (R)-rutamarin and (S)-rutamarin. The (S)-rutamarin was found to bind stronger to the hMAO-B binging cavity.
Collapse
|
10
|
Parambi DGT. Treatment of Parkinson's Disease by MAO-B Inhibitors, New Therapies and Future Challenges - A Mini-Review. Comb Chem High Throughput Screen 2020; 23:847-861. [PMID: 32238135 DOI: 10.2174/1386207323666200402090557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND One of the most prevalent neurodegenerative diseases with increasing age is Parkinson's disease (PD). Its pathogenesis is unclear and mainly confined to glutamate toxicity and oxidative stress. The dyskinesia and motor fluctuations and neuroprotective potential are the major concerns which are still unmet in PD therapy. OBJECTIVE This article is a capsulization of the role of MAO-B in the treatment of PD, pharmacological properties, safety and efficiency, clinical evidence through random trials, future therapies and challenges. CONCLUSION MAO-B inhibitors are well tolerated for the treatment of PD because of their pharmacokinetic properties and neuroprotective action. Rasagiline and selegiline were recommended molecules for early PD and proven safe and provide a modest to significant rise in motor function, delay the use of levodopa and used in early PD. Moreover, safinamide is antiglutamatergic in action. When added to Levodopa, these molecules significantly reduce the offtime with a considerable improvement of non-motor symptoms. This review also discusses the new approaches in therapy like the use of biomarkers, neurorestorative growth factors, gene therapy, neuroimaging, neural transplantation, and nanotechnology. Clinical evidence illustrated that MAOB inhibitors are recommended as monotherapy and added on therapy to levodopa. A large study and further evidence are required in the field of future therapies to unwind the complexity of the disease.
Collapse
Affiliation(s)
- Della G T Parambi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jouf University, Sakaka, Jouf, Saudi Arabia
| |
Collapse
|
11
|
Recent advances in dopaminergic strategies for the treatment of Parkinson's disease. Acta Pharmacol Sin 2020; 41:471-482. [PMID: 32112042 PMCID: PMC7471472 DOI: 10.1038/s41401-020-0365-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease worldwide. However, there is no available therapy reversing the neurodegenerative process of PD. Based on the loss of dopamine or dopaminergic dysfunction in PD patients, most of the current therapies focus on symptomatic relief to improve patient quality of life. As dopamine replacement treatment remains the most effective symptomatic pharmacotherapy for PD, herein we provide an overview of the current pharmacotherapies, summarize the clinical development status of novel dopaminergic agents, and highlight the challenge and opportunity of emerging preclinical dopaminergic approaches aimed at managing the features and progression of PD.
Collapse
|
12
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
13
|
Cheong SL, Federico S, Spalluto G, Klotz KN, Pastorin G. The current status of pharmacotherapy for the treatment of Parkinson's disease: transition from single-target to multitarget therapy. Drug Discov Today 2019; 24:1769-1783. [PMID: 31102728 DOI: 10.1016/j.drudis.2019.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/02/2019] [Accepted: 05/10/2019] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by degeneration of dopaminergic neurons. Motor features such as tremor, rigidity, bradykinesia and postural instability are common traits of PD. Current treatment options provide symptomatic relief to the condition but are unable to reverse disease progression. The conventional single-target therapeutic approach might not always induce the desired effect owing to the multifactorial nature of PD. Hence, multitarget strategies have been proposed to simultaneously target multiple proteins involved in the development of PD. Herein, we provide an overview of the pathogenesis of PD and the current pharmacotherapies. Furthermore, rationales and examples of multitarget approaches that have been tested in preclinical trials for the treatment of PD are also discussed.
Collapse
Affiliation(s)
- Siew L Cheong
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Malaysia.
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
14
|
Huang J, Ren Y, Xu Y, Chen T, Xia TC, Li Z, Zhao J, Hua F, Sheng S, Xia Y. The delta-opioid receptor and Parkinson's disease. CNS Neurosci Ther 2018; 24:1089-1099. [PMID: 30076686 PMCID: PMC6489828 DOI: 10.1111/cns.13045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative neurological disease leading to a series of familial, medical, and social problems. Although it is known that the major characteristics of PD pathophysiology are the dysfunction of basal ganglia due to injury/loss of dopaminergic neurons in the substantia nigra pars compacta dopaminergic and exhaustion of corpus striatum dopamine, therapeutic modalities for PD are limited in clinical settings up to date. It is of utmost importance to better understand PD pathophysiology and explore new solutions for this serious neurodegenerative disorder. Our recent work and those of others suggest that the delta-opioid receptor (DOR) is neuroprotective and serves an antiparkinsonism role in the brain. This review summarizes recent progress in this field and explores potential mechanisms for DOR-mediated antiparkinsonism.
Collapse
Affiliation(s)
- Jin‐Zhong Huang
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yi Ren
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Yuan Xu
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Tao Chen
- Hainan General HospitalHaikouHainanChina
| | | | - Zhuo‐Ri Li
- Hainan General HospitalHaikouHainanChina
| | | | - Fei Hua
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Shi‐Ying Sheng
- The Third Affiliated Hospital of Soochow UniversityChangzhouJiangsuChina
| | - Ying Xia
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint FunctionFudan UniversityShanghaiChina
- Department of Aeronautics and AstronauticsFudan UniversityShanghaiChina
| |
Collapse
|
15
|
Mishra A, Chandravanshi LP, Trigun SK, Krishnamurthy S. Ambroxol modulates 6-Hydroxydopamine-induced temporal reduction in Glucocerebrosidase (GCase) enzymatic activity and Parkinson's disease symptoms. Biochem Pharmacol 2018; 155:479-493. [PMID: 30040928 DOI: 10.1016/j.bcp.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
Reduced glucocerebrosidase (GCase) enzymatic activity is found in sporadic cases of Parkinson's disease making GCase a serious risk factor for PD. GCase gene mutations constitute a major risk factor in early-onset PD but only account for 5-10% cases. Having enough evidence for construct and face validity, 6-OHDA-induced hemiparkinson's model may be useful to assess the GCase-targeting drugs in order to have new leads for treatment of PD. Ambroxol (AMB) is reported to increase GCase activity in different brain-regions. Therefore, we investigated anti-PD like effects of AMB as well as GCase activity in striatal and nigral tissues of rats in hemiparkinson's model. AMB was given a dose of 400 mg/kg per oral twice daily and SEL used as positive control was given in the dose of 10 mg/kg per oral daily from D-4 to D-27 after 6-OHDA administration. 6-OHDA reduced GCase activity in striatal and in a progressive manner in nigral tissues. AMB and SEL attenuated 6-OHDA-induced motor impairments, dopamine (DA) depletion and GCase deficiency. AMB and SEL also ameliorated 6-OHDA-induced mitochondrial dysfunction in terms of MTT reduction, α-synuclein pathology, loss of nigral cells, and intrinsic pathway of apoptosis by modulating cytochrome-C, caspase-9, and caspase-3 expressions. The results suggest that AMB attenuated 6-OHDA-induced GCase deficiency and PD symptoms. Therefore, the regenerative effects of AMB in dopamine toxicity may be due to its effects on GCase activity and mitochondrial function. Results indicate that SEL also has regenerative effect in the 6-OHDA model. Thus, GCase enzymatic activity is likely to be involved in the development of PD symptoms, and 6-OHDA-induced hemiparkinson's model may be used to evaluate compounds targeting GCase activity for management of PD symptoms.
Collapse
Affiliation(s)
- Akanksha Mishra
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India
| | - Lalit Pratap Chandravanshi
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, U.P., India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, U.P., India.
| |
Collapse
|