1
|
Yang J, Tian M, Zhang L, Xin C, Huo J, Liu Q, Dong H, Li R, Liu Y. Assessment of Rab geranylgeranyltransferase subunit beta in amyotrophic lateral sclerosis. Front Neurol 2024; 15:1447461. [PMID: 39224887 PMCID: PMC11366579 DOI: 10.3389/fneur.2024.1447461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Geranylgeranyltransferase Subunit Beta (RABGGTB) was expressed at higher levels in patients with Amyotrophic lateral sclerosis (ALS) compared with healthy controls. This study aims to observe the expression of RABGGTB in different cells from patients with ALS and different diseases. Methods In this case-control study, we collected peripheral blood from patients with ALS and healthy controls, and compared the expression of RABGGTB in natural killer cells (NK), T cells and B cells between patients with ALS and healthy controls by flow cytometry. And compared the expression of RABGGTB in monocytes and monocyte-derived macrophages from patients with ALS, Parkinson's disease (PD), acute cerebrovascular disease (ACVD), and healthy controls by flow cytometry and immunofluorescence. Then flow cytometry was used to detect the expression of RABGGTB in monocytes from SOD1G93A mice and WT mice. Results The expression of RABGGTB was not significantly changed in NK cells, cytotoxic T cells (CTL), helper T cells (Th), regulatory T cells (Treg), and B cells from patients with ALS compared to healthy controls. And the expression of RABGGTB in monocytes and monocyte-derived macrophages was higher in the ALS group than in the PD, ACVD and control group. The expression of RABGGTB was significantly higher in monocytes of SOD1G93A mice compared to WT mice. Conclusion These findings suggest that RABGGTB expression was increased in monocytes and monocyte-derived macrophages from patients with ALS, not in NK, CTL, Th, Treg, and B cells. Future studies are needed to find the clinical implication of RABGGTB in ALS.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Mei Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Lei Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Yang J, Xin C, Huo J, Li X, Dong H, Liu Q, Li R, Liu Y. Rab Geranylgeranyltransferase Subunit Beta as a Potential Indicator to Assess the Progression of Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:1531. [PMID: 38002490 PMCID: PMC10670085 DOI: 10.3390/brainsci13111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Currently, there is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disorder. Many biomarkers have been proposed, but because ALS is a clinically heterogeneous disease with an unclear etiology, biomarker discovery for ALS has been challenging due to the lack of specificity of these biomarkers. In recent years, the role of autophagy in the development and treatment of ALS has become a research hotspot. In our previous studies, we found that the expression of RabGGTase (low RABGGTB expression and no change in RABGGTA) is lower in the lumbar and thoracic regions of spinal cord motoneurons in SOD1G93A mice compared with WT (wild-type) mice groups, and upregulation of RABGGTB promoted prenylation modification of Rab7, which promoted autophagy to protect neurons by degrading SOD1. Given that RabGGTase is associated with autophagy and autophagy is associated with inflammation, and based on the above findings, since peripheral blood mononuclear cells are readily available from patients with ALS, we proposed to investigate the expression of RabGGTase in peripheral inflammatory cells. METHODS Information and venous blood were collected from 86 patients diagnosed with ALS between January 2021 and August 2023. Flow cytometry was used to detect the expression of RABGGTB in monocytes from peripheral blood samples collected from patients with ALS and healthy controls. Extracted peripheral blood mononuclear cells (PBMCs) were differentiated in vitro into macrophages, and then the expression of RABGGTB was detected by immunofluorescence. RABGGTB levels in patients with ALS were analyzed to determine their impact on disease progression. RESULTS Using flow cytometry in monocytes and immunofluorescence in macrophages, we found that RABGGTB expression in the ALS group was significantly higher than in the control group. Age, sex, original location, disease course, C-reactive protein (CRP), and interleukin-6 (IL-6) did not correlate with the ALS functional rating scale-revised (ALSFRS-R), whereas the RABGGTB level was significantly correlated with the ALSFRS-R. In addition, multivariate analysis revealed a significant correlation between RABGGTB and ALSFRS-R score. Further analysis revealed a significant correlation between RABGGTB expression levels and disease progression levels (ΔFS). CONCLUSIONS The RABGGTB level was significantly increased in patients with ALS compared with healthy controls. An elevated RABGGTB level in patients with ALS is associated with the rate of progression in ALS, suggesting that elevated RABGGTB levels in patients with ALS may serve as an indicator for tracking ALS progression.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China; (J.Y.); (C.X.); (J.H.); (X.L.); (H.D.); (Q.L.); (R.L.)
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang 050000, China
- Neurological Laboratory of Hebei Province, Shijiazhuang 050000, China
| |
Collapse
|
3
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1671-1682. [PMID: 37160526 DOI: 10.1007/s10787-023-01240-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic progressive disabling disease of the central nervous system (CNS) characterized by demyelination and neuronal injury. Dyslipidemia is observed as one of the imperative risk factors involved in MS neuropathology. Also, chronic inflammation in MS predisposes to the progress of dyslipidemia. Therefore, treatment of dyslipidemia in MS by statins may attenuate dyslipidemia-induced MS and avert MS-induced metabolic changes. Therefore, the present review aimed to elucidate the possible effects of statins on the pathogenesis and outcomes of MS. Statins adversely affect the cognitive function in MS by decreasing brain cholesterol CoQ10, which is necessary for the regulation of neuronal mitochondrial function. However, statins could be beneficial in MS by shifting the immune response from pro-inflammatory Th17 to an anti-inflammatory regulatory T cell (Treg). The protective effect of statins against MS is related to anti-inflammatory and immunomodulatory effects with modulation of fibrinogen and growth factors. In conclusion, the effects of statins on MS neuropathology seem to be conflicting, as statins seem to be protective in the acute phase of MS through anti-inflammatory and antioxidant effects. However, statins lead to detrimental effects in the chronic phase of MS by reducing brain cholesterol and inhibiting the remyelination process.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
4
|
Petenkova A, Auger SA, Lamb J, Quellier D, Carter C, To OT, Milosevic J, Barghout R, Kugadas A, Lu X, Geddes-McAlister J, Fichorova R, Sykes DB, Distefano MD, Gadjeva M. Prenylcysteine oxidase 1 like protein is required for neutrophil bactericidal activities. Nat Commun 2023; 14:2761. [PMID: 37179332 PMCID: PMC10182992 DOI: 10.1038/s41467-023-38447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The bactericidal function of neutrophils is dependent on a myriad of intrinsic and extrinsic stimuli. Using systems immunology approaches we identify microbiome- and infection-induced changes in neutrophils. We focus on investigating the Prenylcysteine oxidase 1 like (Pcyox1l) protein function. Murine and human Pcyox1l proteins share ninety four percent aminoacid homology revealing significant evolutionary conservation and implicating Pcyox1l in mediating important biological functions. Here we show that the loss of Pcyox1l protein results in significant reductions in the mevalonate pathway impacting autophagy and cellular viability under homeostatic conditions. Concurrently, Pcyox1l CRISPRed-out neutrophils exhibit deficient bactericidal properties. Pcyox1l knock-out mice demonstrate significant susceptibility to infection with the gram-negative pathogen Psuedomonas aeruginosa exemplified through increased neutrophil infiltrates, hemorrhaging, and reduced bactericidal functionality. Cumulatively, we ascribe a function to Pcyox1l protein in modulation of the prenylation pathway and suggest connections beween metabolic responses and neutrophil functionality.
Collapse
Affiliation(s)
- Anastasiia Petenkova
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Shelby A Auger
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffrey Lamb
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Daisy Quellier
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Cody Carter
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - On Tak To
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Rana Barghout
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Abirami Kugadas
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoxiao Lu
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Raina Fichorova
- Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Mass General Brigham, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard University, Faculty of Arts and Sciences, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Gao T, Huo J, Xin C, Yang J, Liu Q, Dong H, Li R, Liu Y. Protective effects of intrathecal injection of AAV9-RabGGTB-GFP+ in SOD1G93A mice. Front Aging Neurosci 2023; 15:1092607. [PMID: 36967828 PMCID: PMC10036913 DOI: 10.3389/fnagi.2023.1092607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
IntroductionAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that widely affects motor neurons of the CNS. About 20% of patients with ALS have familial ALS (fALS). One of the classic models of ALS are SOD1G93A mice. Misfolded SOD1 protein can be overexpressed in motor neurons, which results in progressive paralysis of the limbs of mice. There is still no effective treatment for ALS. In recent years, the treatment of ALS by regulating autophagy has become a research hotspot. Autophagy obstacles have been confirmed to be one of the early pathological events of ALS. Rab7 is a member of the Ras superfamily and plays a key role in the late stage of autophagy. In our previous studies, we found that prenoylation of Rab7 was inhibited in the ALS model. Prenylation is a post-translational modification in which farnesyl or geranylgeranyl groups are covalently linked to target proteins. Based on these findings, we proposed the novel idea that the regulation of RabGGTB (the β-subunit of RabGGTase) mediated prenylation modification of Rab7, and that this can be used as a prevention and treatment of ALS associated with abnormal protein accumulation.MethodsIn the present study, RabGGTB was overexpressed in mouse spinal cord motoneurons by using adeno-associated virus as vector. Then immunofluorescence quantitative analysis was used for pathological study. The body weight, footprint analysis, the accelerating rotarod test, and neurological deficits score were used to evaluate animal behavior.ResultsOur results show that the protein level of RabGGTB was significantly increased in the lumbar and thoracic regions of spinal cord motoneurons of injected mice. Furthermore, the onset time and survival time of SOD1G93A mice injected with AAV9-RabGGTB-GFP+ were delayed compared with those of mice without overexpression. At the same time, we also observed a decrease in SOD1 misfolded and glial overactivation in the lumbar spinal cord of these SOD1G93A mice.ConclusionThe findings reported here show that RabGGTB plays a significant role in the pathogenesis of SOD1G93A mice and with great therapeutic potential for reducing abnormal aggregation of SOD1 in ALS.
Collapse
Affiliation(s)
- Tianchu Gao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- *Correspondence: Rui Li, ; Yaling Liu,
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
- *Correspondence: Rui Li, ; Yaling Liu,
| |
Collapse
|
6
|
Yurduseven K, Babal YK, Celik E, Kerman BE, Kurnaz IA. Multiple Sclerosis Biomarker Candidates Revealed by Cell-Type-Specific Interactome Analysis. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:305-317. [PMID: 35483054 DOI: 10.1089/omi.2022.0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disorder that affects multiple regions of the central nervous system such as the brain, spinal cord, and optic nerves. Susceptibility to MS, as well as disease progression rates, displays marked patient-to-patient variability. To date, biomarkers that forecast differences in clinical phenotypes and outcomes have been limited. In this context, cell-type-specific interactome analyses offer important prospects and hope for novel diagnostics and therapeutics. We report here an original study using bioinformatic analysis of MS data sets that revealed interaction profiles as well as specific hub proteins in white matter (WM) and gray matter (GM) that appear critical for disease mechanisms. First, cell-type-specific interactome analyses suggested that while interactions within the WM were focused on oligodendrocytes, interactions within the GM were mostly neuron centric. Second, hub proteins such as APP, EGLN3, PTEN, and LRRK2 were identified to be differentially regulated in MS data sets. Lastly, a comparison of the brain and peripheral blood samples identified biomarker candidates such as NRGN, CRTC1, CDC42, and IFITM3 to be differentially expressed in different types of MS. These findings offer a unique cell-type-specific cell-to-cell interaction network in MS and identify potential biomarkers by comparative analysis of the brain and the blood transcriptomics. From a study design and methodology perspective, we suggest that the cell-type-specific interactome analysis is an important systems science frontier that might offer new insights on other neurodegenerative and brain disorders as well.
Collapse
Affiliation(s)
- Kübra Yurduseven
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Yigit Koray Babal
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| | - Esref Celik
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Bilal Ersen Kerman
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Işıl Aksan Kurnaz
- Institute of Biotechnology, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
7
|
Reddy JM, Raut NGR, Seifert JL, Hynds DL. Regulation of Small GTPase Prenylation in the Nervous System. Mol Neurobiol 2020; 57:2220-2231. [PMID: 31989383 DOI: 10.1007/s12035-020-01870-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022]
Abstract
Mevalonate pathway inhibitors have been extensively studied for their roles in cholesterol depletion and for inhibiting the prenylation and activation of various proteins. Inhibition of protein prenylation has potential therapeutic uses against neurological disorders, like neural cancers, neurodegeneration, and neurotramatic lesions. Protection against neurodegeneration and promotion of neuronal regeneration is regulated in large part by Ras superfamily small guanosine triphosphatases (GTPases), particularly the Ras, Rho, and Rab subfamilies. These proteins are prenylated to target them to cellular membranes. Prenylation can be specifically inhibited through altering the function of enzymes of the mevalonate pathway necessary for isoprenoid production and attachment to target proteins to elicit a variety of effects on neural cells. However, this approach does not address how prenylation affects a specific protein. This review focuses on the regulation of small GTPase prenylation, the different techniques to inhibit prenylation, and how this inhibition has affected neural cell processes.
Collapse
Affiliation(s)
| | | | | | - DiAnna L Hynds
- Texas Woman's University, Denton, TX, USA.
- Woodcock Institute for the Advancement of Neurocognitive Research and Applied Practice, Texas Woman's University, PO Box 4525799, Denton, TX, 76204-5799, USA.
| |
Collapse
|
8
|
Pars K, Gingele M, Kronenberg J, Prajeeth CK, Skripuletz T, Pul R, Jacobs R, Gudi V, Stangel M. Fumaric Acids Do Not Directly Influence Gene Expression of Neuroprotective Factors in Highly Purified Rodent Astrocytes. Brain Sci 2019; 9:brainsci9090241. [PMID: 31546798 PMCID: PMC6769695 DOI: 10.3390/brainsci9090241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Dimethylfumarate (DMF) has been approved for the treatment of relapsing remitting multiple sclerosis. However, the mode of action of DMF and its assumed active primary metabolite monomethylfumarate (MMF) is still not fully understood. Former reports suggest a neuroprotective effect of DMF mediated via astrocytes by reducing pro-inflammatory activation of these glial cells. We investigated potential direct effects of DMF and MMF on neuroprotective factors like neurotrophic factors and growth factors in astrocytes to elucidate further possible mechanisms of the mode of action of fumaric acids; (2) Methods: highly purified cultures of primary rat astrocytes were pre-treated in vitro with DMF or MMF and incubated with lipopolysaccharides (LPS) or a mixture of interferon gamma (IFN-γ) plus interleukin 1 beta (IL-1β) in order to simulate an inflammatory environment. The gene expression of neuroprotective factors such as neurotrophic factors (nuclear factor E2-related factor 2 (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF)) and growth factors (fibroblast growth factor 2 (FGF2), platelet-derived growth factor subunit A (PDGFa), ciliary neurotrophic factor (CNTF)) as well as cytokines (tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6), IL-1β, inducible nitric oxide synthase (iNOS)) was examined by determining the transcription level with real-time quantitative polymerase chain reaction (qPCR); (3) Results: The stimulation of highly purified astrocytes with either LPS or cytokines changed the expression profile of growth factors and pro- inflammatory factors. However, the expression was not altered by either DMF nor MMF in unstimulated or stimulated astrocytes; (4) Conclusions: There was no direct influence of fumaric acids on neuroprotective factors in highly purified primary rat astrocytes. This suggests that the proposed potential neuroprotective effect of fumaric acid is not mediated by direct stimulation of neurotrophic factors in astrocytes but is rather mediated by other pathways or indirect mechanisms via other glial cells like microglia as previously demonstrated.
Collapse
Affiliation(s)
- Kaweh Pars
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, European Medical School, University Oldenburg, 26129 Oldenburg, Germany.
| | - Marina Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Jessica Kronenberg
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - Chittappen K Prajeeth
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Thomas Skripuletz
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Refik Pul
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Department of Neurology, University Clinic Essen, 45147 Essen, Germany.
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, 30559 Hannover, Germany.
| | - Viktoria Gudi
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover, Medical School, 30559 Hannover, Germany.
- Center for Systems Neuroscience, University of Veterinary Medicine, 30559 Hannover, Germany.
| |
Collapse
|