1
|
Guo YB, Jiao Q, Zhang XT, Xiao Q, Wu Z, Cao WF, Cui D, Yu GH, Dou RH, Su LY, Lu GM. Increased regional Hurst exponent reflects response inhibition related neural complexity alterations in pediatric bipolar disorder patients during an emotional Go-Nogo task. Cereb Cortex 2024; 34:bhad442. [PMID: 38031362 PMCID: PMC10793568 DOI: 10.1093/cercor/bhad442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Fractal patterns have been shown to change in resting- and task-state blood oxygen level-dependent signals in bipolar disorder patients. However, fractal characteristics of brain blood oxygen level-dependent signals when responding to external emotional stimuli in pediatric bipolar disorder remain unclear. Blood oxygen level-dependent signals of 20 PBD-I patients and 17 age- and sex-matched healthy controls were extracted while performing an emotional Go-Nogo task. Neural responses relevant to the task and Hurst exponent of the blood oxygen level-dependent signals were assessed. Correlations between clinical indices and Hurst exponent were estimated. Significantly increased activations were found in regions covering the frontal lobe, parietal lobe, temporal lobe, insula, and subcortical nuclei in PBD-I patients compared to healthy controls in contrast of emotional versus neutral distractors. PBD-I patients exhibited higher Hurst exponent in regions that involved in action control, such as superior frontal gyrus, inferior frontal gyrus, inferior temporal gyrus, and insula, with Hurst exponent of frontal orbital gyrus correlated with onset age. The present study exhibited overactivation, increased self-similarity and decreased complexity in cortical regions during emotional Go-Nogo task in patients relative to healthy controls, which provides evidence of an altered emotional modulation of cognitive control in pediatric bipolar disorder patients. Hurst exponent may be a fractal biomarker of neural activity in pediatric bipolar disorder.
Collapse
Affiliation(s)
- Yi-Bing Guo
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271000, China
- Brain and Mind Center, The University of Sydney, Sydney, NSW 2008, Australia
| | - Qing Jiao
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Xiao-Tong Zhang
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Qian Xiao
- Mental Health Centre of Xiangya Hospital, Central South University, Changsha 410083, China
| | - Zhou Wu
- School of Psychology, Nanjing Normal University, Nanjing 210097, China
| | - Wei-Fang Cao
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Dong Cui
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Guang-Hui Yu
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Ru-Hai Dou
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an 271000, China
| | - Lin-Yan Su
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha 410083, China
| | - Guang-Ming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Doganci N, Iannotti GR, Ptak R. Task-based functional connectivity identifies two segregated networks underlying intentional action. Neuroimage 2023; 268:119866. [PMID: 36610680 DOI: 10.1016/j.neuroimage.2023.119866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
While much of motor behavior is automatic, intentional action is necessary for the selection and initiation of controlled motor acts and is thus an essential part of goal-directed behavior. Neuroimaging studies have shown that self-generated action implicates several dorsal and ventral frontoparietal areas. However, knowledge of the functional coupling between these brain regions during intentional action remains limited. We here studied brain activations and functional connectivity (FC) of thirty right-handed healthy participants performing a finger pressing task instructed to use a specific finger (externally-triggered action) or to select one of four fingers randomly (internally-generated action). Participants performed the task in alternating order either with their dominant right hand or the left hand. Consistent with previous studies, we observed stronger involvement of posterior parietal cortex and premotor regions when contrasting internally-generated with externally-triggered action. Interestingly, this contrast also revealed significant engagement of medial occipitotemporal regions including the left lingual and right fusiform gyrus. Task-based FC analysis identified increased functional coupling among frontoparietal regions as well as increased and decreased coupling between occipitotemporal regions, thus differentiating between two segregated networks. When comparing results of the dominant and nondominant hand we found less activation, but stronger connectivity for the former, suggesting increased neural efficiency when participants use their dominant hand. Taken together, our results reveal that two segregated networks that encompass the frontoparietal and occipitotemporal cortex contribute independently to intentional action.
Collapse
Affiliation(s)
- Naz Doganci
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland
| | - Giannina Rita Iannotti
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Department of Radiology and Medical Informatics, University Hospitals of Geneva, Switzerland; Department of Neurosurgery, University Hospitals of Geneva, Switzerland
| | - Radek Ptak
- Department of Clinical Neurosciences, Laboratory of Cognitive Neurorehabilitation, Faculty of Medicine, University of Geneva, Geneva 1206, Switzerland; Division of Neurorehabilitation, University Hospitals of Geneva, Switzerland.
| |
Collapse
|
3
|
Melloni EMT, Bravi B, Poletti S, Dallaspezia S, Barbini B, Zanardi R, Benedetti F. Antidepressant chronotherapeutics normalizes prefrontal 1H-MRS glutamate in bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110606. [PMID: 35843368 DOI: 10.1016/j.pnpbp.2022.110606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/02/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Dysfunctional glutamatergic neurotransmission has been proposed both, as a biological underpinning of mood disorder and as a target for rapid-acting antidepressant treatments. Total sleep deprivation and light therapy (TSD + LT) can prompt antidepressant response in drug-resistant bipolar depression. Here we explored the effects of TSD + LT on dorsolateral prefrontal cortex (DLPFC) glutamate and/or glutamine+glutamate (Glx) levels. METHODS We studied single voxel 1H-MRS measures of DLPFC Glu and Glx levels of 48 healthy participants and 55 inpatients with a major depressive episode in course of Bipolar Disorder, a subset of which (N = 23) underwent three cycles of repeated TSD + LT and were evaluated before and after treatment. Treatment effects of mood and on Glu and Glx concentrations were analyzed in the context of the Generalized Linear Model (GLM), correcting for age, sex and ongoing lithium treatment. RESULTS Higher concentration of Glu (adjusted Z = -2189, p = 0,0285) and Glx (adjusted Z = -3,13, p = 0,0017) were observed in BD patients compared to HC. Treatment caused a significant rapid reduction of depressive symptom severity over time (F = 63.98, p < 0.01). Change in depression levels after TSD + LT treatment was significantly influenced by delta change in Glu levels (LR χ2 = 4.619, p = 0.0316) and in Glx levels (LR χ2 = 4.486, p = 0.0341). CONCLUSION A reduction in Glu and Glx levels associated with depression could contribute to the mechanism of action of TSD + LT, directly acting on glutamatergic neurons, or to the interaction between the glutamatergic system and dopamine (DA) and serotonin (5-HT) levels, known to be targeted by TSD. This is in line with several studies showing a glutamatergic modulation effects of antidepressants and mood stabilizing agents. This finding deepens our understanding of antidepressant effect of chronoterapeutics.
Collapse
Affiliation(s)
- Elisa M T Melloni
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy.
| | - Beatrice Bravi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Poletti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| | - Sara Dallaspezia
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Barbara Barbini
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Raffaella Zanardi
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milano, Italy; University Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
4
|
Sanders AR, Beecham GW, Guo S, Dawood K, Rieger G, Krishnappa RS, Kolundzija AB, Bailey JM, Martin ER. Genome-Wide Linkage and Association Study of Childhood Gender Nonconformity in Males. ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:3377-3383. [PMID: 34518958 PMCID: PMC8604823 DOI: 10.1007/s10508-021-02146-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/21/2020] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Male sexual orientation is influenced by environmental and complex genetic factors. Childhood gender nonconformity (CGN) is one of the strongest correlates of homosexuality with substantial familiality. We studied brothers in families with two or more homosexual brothers (409 concordant sibling pairs in 384 families, as well as their heterosexual brothers), who self-recalled their CGN. To map loci for CGN, we conducted a genome-wide linkage scan (GWLS) using SNP genotypes. The strongest linkage peaks, each with significant or suggestive two-point LOD scores and multipoint LOD score support, were on chromosomes 5q31 (maximum two-point LOD = 4.45), 6q12 (maximum two-point LOD = 3.64), 7q33 (maximum two-point LOD = 3.09), and 8q24 (maximum two-point LOD = 3.67), with the latter not overlapping with previously reported strongest linkage region for male sexual orientation on pericentromeric chromosome 8. Family-based association analyses were used to identify associated variants in the linkage regions, with a cluster of SNPs (minimum association p = 1.3 × 10-8) found at the 5q31 linkage peak. Genome-wide, clusters of multiple SNPs in the 10-6 to 10-8 p-value range were found at chromosomes 5p13, 5q31, 7q32, 8p22, and 10q23, highlighting glutamate-related genes. This is the first reported GWLS and genome-wide association study on CGN. Further increasing genetic knowledge about CGN and its relationships to male sexual orientation should help advance our understanding of the biology of these associated traits.
Collapse
Affiliation(s)
- Alan R Sanders
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem Research Institute, 1001 University Place, Evanston, IL, 60201, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| | - Gary W Beecham
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Khytam Dawood
- Department of Psychology, Pennsylvania State University, University Park, PA, USA
| | - Gerulf Rieger
- Department of Psychology, University of Essex, Colchester, UK
| | - Ritesha S Krishnappa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Elmhurst, NY, USA
| | | | - J Michael Bailey
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Eden R Martin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Sequeira SL, Rosen DK, Silk JS, Hutchinson E, Allen KB, Jones NP, Price RB, Ladouceur CD. "Don't judge me!": Links between in vivo attention bias toward a potentially critical judge and fronto-amygdala functional connectivity during rejection in adolescent girls. Dev Cogn Neurosci 2021; 49:100960. [PMID: 33975229 PMCID: PMC8120940 DOI: 10.1016/j.dcn.2021.100960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/19/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 11/17/2022] Open
Abstract
We used innovative, ecologically valid eye-tracking and fMRI measures to examine social threat sensitivity in adolescent girls. Findings support the reliability of a novel in vivo attention bias task. Real-world attentional biases toward social threat correlated with amygdala-anterior PFC functional connectivity during social evaluation. Greater positive amygdala-anterior PFC connectivity during social evaluation could suggest disrupted prefrontal regulation of the amygdala. Disrupted prefrontal regulation of the amygdala could contribute to deployment of attention to social evaluative threat in daily life.
During adolescence, increases in social sensitivity, such as heightened attentional processing of social feedback, may be supported by developmental changes in neural circuitry involved in emotion regulation and cognitive control, including fronto-amygdala circuitry. Less negative fronto-amygdala circuitry during social threat processing may contribute to heightened attention to social threat in the environment. However, “real-world” implications of altered fronto-amygdala circuitry remain largely unknown. In this study, we used multiple novel methods, including an in vivo attention bias task implemented using mobile eye-tracking glasses and socially interactive fMRI task, to examine how functional connectivity between the amygdala and prefrontal cortex (PFC) during rejection and acceptance feedback from peers is associated with heightened attention towards potentially critical social evaluation in a real-world environment. Participants were 77 early adolescent girls (ages 11–13) oversampled for shy/fearful temperament. Results support the reliability of this in vivo attention task. Further, girls with more positive functional connectivity between the right amygdala and anterior PFC during both rejection and acceptance feedback attended more to potentially critical social evaluation during the attention task. Findings could suggest that dysfunction in prefrontal regulation of the amygdala’s response to salient social feedback supports heightened sensitivity to socially evaluative threat during adolescence.
Collapse
Affiliation(s)
| | - Dana K Rosen
- University of Pittsburgh, Department of Psychology, United States
| | - Jennifer S Silk
- University of Pittsburgh, Department of Psychology, United States
| | - Emily Hutchinson
- University of Pittsburgh, Department of Psychology, United States
| | | | - Neil P Jones
- University of Pittsburgh, Department of Psychiatry, United States
| | - Rebecca B Price
- University of Pittsburgh, Department of Psychiatry, United States
| | | |
Collapse
|
6
|
Janiri D, Kotzalidis GD, di Luzio M, Giuseppin G, Simonetti A, Janiri L, Sani G. Genetic neuroimaging of bipolar disorder: a systematic 2017-2020 update. Psychiatr Genet 2021; 31:50-64. [PMID: 33492063 DOI: 10.1097/ypg.0000000000000274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
There is evidence of genetic polymorphism influences on brain structure and function, genetic risk in bipolar disorder (BD), and neuroimaging correlates of BD. How genetic influences related to BD could be reflected on brain changes in BD has been efficiently reviewed in a 2017 systematic review. We aimed to confirm and extend these findings through a Preferred Reporting Items for Systematic reviews and Meta-Analyses-based systematic review. Our study allowed us to conclude that there is no replicated finding in the timeframe considered. We were also unable to further confirm prior results of the BDNF gene polymorphisms to affect brain structure and function in BD. The most consistent finding is an influence of the CACNA1C rs1006737 polymorphism in brain connectivity and grey matter structure and function. There was a tendency of undersized studies to obtain positive results and large, genome-wide polygenic risk studies to find negative results in BD. The neuroimaging genetics in BD field is rapidly expanding.
Collapse
Affiliation(s)
- Delfina Janiri
- Department of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS
- Department of Psychiatry and Neurology, Sapienza University of Rome
| | - Georgios D Kotzalidis
- NESMOS Department, Sant'Andrea University Hospital, School of Medicine and Psychology, Sapienza University
| | - Michelangelo di Luzio
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giulia Giuseppin
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessio Simonetti
- Department of Psychiatry and Neurology, Sapienza University of Rome
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Luigi Janiri
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gabriele Sani
- Department of Neuroscience, Section of Psychiatry, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Psychiatry, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
7
|
Rurak GM, Woodside B, Aguilar-Valles A, Salmaso N. Astroglial cells as neuroendocrine targets in forebrain development: Implications for sex differences in psychiatric disease. Front Neuroendocrinol 2021; 60:100897. [PMID: 33359797 DOI: 10.1016/j.yfrne.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Astroglial cells are the most abundant cell type in the mammalian brain. They are implicated in almost every aspect of brain physiology, including maintaining homeostasis, building and maintaining the blood brain barrier, and the development and maturation of neuronal networks. Critically, astroglia also express receptors for gonadal sex hormones, respond rapidly to gonadal hormones, and are able to synthesize hormones. Thus, they are positioned to guide and mediate sexual differentiation of the brain, particularly neuronal networks in typical and pathological conditions. In this review, we describe astroglial involvement in the organization and development of the brain, and consider known sex differences in astroglial responses to understand how astroglial cell-mediated organization may play a role in forebrain sexual dimorphisms in human populations. Finally, we consider how sexually dimorphic astroglial responses and functions in development may lead to sex differences in vulnerability for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gareth M Rurak
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Concordia University, Montreal, Quebec, Canada
| | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy. CNS Drugs 2020; 34:1089-1103. [PMID: 32926322 DOI: 10.1007/s40263-020-00764-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is one of the most prevalent and devastating neurological disorders characterized by episodes of unusual sensations, loss of awareness, and reoccurring seizures. The frequency and intensity of epileptic fits can vary to a great degree, with almost a third of all cases resistant to available therapies. At present, there is a major unmet need for effective and specific therapeutic intervention. Impairments of the exquisite balance between excitatory and inhibitory synaptic processes in the brain are considered key in the onset and pathophysiology of the disease. As the primary excitatory neurotransmitter in the central nervous system, glutamate has been implicated in the process, with the glutamatergic system holding center stage in the pathobiology as well as in developing disease-modifying therapies. Emerging data pinpoint impairments of glutamate clearance as one of the key causative factors in drug-resistant disease forms. Reinstatement of glutamate homeostasis using pharmacological and genetic modulation of glutamate clearance is therefore considered to be of major translational relevance. In this article, we review the neurobiological and clinical evidence suggesting complex aberrations in the activity and functions of excitatory amino acid transporters (EAATs) in epilepsy, with knock-on effects on glutamate homeostasis as a leading cause for the development of refractory forms. We consider the emerging data on pharmacological and genetic manipulations of EAATs, with reference to seizures and glutamate dyshomeostasis, and review their fundamental and translational relevance. We discuss the most recent advances in the EAATs research in human and animal models, along with numerous questions that remain open for debate and critical appraisal. Contrary to the widely held view on EAATs as a promising therapeutic target for management of refractory epilepsy as well as other neurological and psychiatric conditions related to glutamatergic hyperactivity and glutamate-induced cytotoxicity, we stress that the true relevance of EAAT2 as a target for medical intervention remains to be fully appreciated and verified. Despite decades of research, the emerging properties and functional characteristics of glutamate transporters and their relationship with neurophysiological and behavioral correlates of epilepsy challenge the current perception of this disease and fit unambiguously in neither EAATs functional deficit nor in reversal models. We stress the pressing need for new approaches and models for research and restoration of the physiological activity of glutamate transporters and synaptic transmission to achieve much needed therapeutic effects. The complex mechanism of EAATs regulation by multiple factors, including changes in the electrochemical environment and ionic gradients related to epileptic hyperactivity, impose major therapeutic challenges. As a final note, we consider the evolving views and present a cautious perspective on the key areas of future progress in the field towards better management and treatment of refractory disease forms.
Collapse
|
9
|
Amygdala functional connectivity in the acute aftermath of trauma prospectively predicts severity of posttraumatic stress symptoms. Neurobiol Stress 2020; 12:100217. [PMID: 32435666 PMCID: PMC7231977 DOI: 10.1016/j.ynstr.2020.100217] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/05/2019] [Revised: 02/20/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Understanding neural mechanisms that confer risk for posttraumatic stress disorder (PTSD) is critical for earlier intervention, yet longitudinal work has been sparse. The amygdala is part of a core network consistently implicated in PTSD symptomology. Most neural models of PTSD have focused on the amygdala's interactions with the dorsal anterior cingulate cortex, ventromedial prefrontal cortex, and hippocampus. However, an increasing number of studies have linked PTSD symptoms to aberrations in amygdala functional connections with other brain regions involved in emotional information processing, self-referential processing, somatosensory processing, visual processing, and motor control. In the current study, trauma-exposed individuals (N = 54) recruited from the emergency department completed a resting state fMRI scan as well as a script-driven trauma recall fMRI task scan two-weeks post-trauma along with demographic, PTSD, and other clinical symptom questionnaires two-weeks and six-months post-trauma. We examined whether amygdala-whole brain functional connectivity (FC) during rest and task could predict six-month post-trauma PTSD symptoms. More negative amygdala-cerebellum and amygdala-postcentral gyrus FC during rest as well as more negative amygdala-postcentral gyrus and amygdala-midcingulate cortex during recall of the trauma memory predicted six-month post-trauma PTSD after controlling for scanner type. Follow-up multiple regression sensitivity analyses controlling for several other relevant predictors of PTSD symptoms, revealed that amygdala-cerebellum FC during rest and amygdala-postcentral gyrus FC during trauma recall were particularly robust predictors of six-month PTSD symptoms. The results extend cross-sectional studies implicating abnormal FC of the amygdala with other brain regions involved in somatosensory processing, motor control, and emotional information processing in PTSD, to the prospective prediction of risk for chronic PTSD. This work may contribute to earlier identification of at-risk individuals and elucidate potential intervention targets.
Collapse
|
10
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
11
|
Kaiser RH, Peterson E, Kang MS, Van Der Feen J, Aguirre B, Clegg R, Goer F, Esposito EC, Auerbach RP, Pizzagalli DA. Frontoinsular Network Markers of Current and Future Adolescent Mood Health. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:715-725. [PMID: 31155512 DOI: 10.1016/j.bpsc.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/31/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Adolescence is a developmental period in which depression and related mood syndromes often emerge, but few objective markers exist to guide diagnosis or predict symptoms. One potential mood marker is the functioning of frontoinsular networks, which undergo substantial development in adolescence and have been implicated in adult depression. To test this hypothesis, we used task-based neuroimaging to evaluate whether frontoinsular network dysfunction was linked to current and prospective mood health in adolescents. METHODS Adolescents (n = 40, 13-19 years of age) reporting varying levels of depressive symptom severity performed an emotional working memory task with neuroimaging. Next, teens completed a 2-week follow-up consisting of a daily diary report of negative affect and final report of depressive symptoms (n = 28 adherent). Analyses tested associations between task-related functional connectivity in frontoinsular networks and baseline or prospective measures of mood health over 2-week follow-up. RESULTS Frontoinsular task response was associated with higher current depression severity (p = .049, ηp2 = .12), increases in future depression severity (p = .018, ηp2 = .23), and more intense and labile negative affect in daily life (ps = .015 to .040, ηp2 = .22 to .30). In particular, hypoconnectivity between insula and lateral prefrontal regions of the frontoparietal network was related to both baseline and prospective mood health, and hyperconnectivity between insula and midline or temporal regions of the default network was related to prospective mood health. CONCLUSIONS These findings indicate that frontoinsular imbalances are related to both current depression and changes in mood health in the near future and suggest that frontoinsular markers may hold promise as translational tools for risk prediction.
Collapse
Affiliation(s)
- Roselinde H Kaiser
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado.
| | - Elena Peterson
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | - Min Su Kang
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Julie Van Der Feen
- Adolescent Partial Hospitalization Program, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Blaise Aguirre
- Three East Girls Intensive and Step-Down Program, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Rachel Clegg
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Franziska Goer
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Erika C Esposito
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts
| | - Randy P Auerbach
- Department of Psychiatry, Columbia University, New York, New York; Division of Clinical Developmental Neuroscience, Sackler Institute, New York, New York
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts; McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Vai B, Bertocchi C, Benedetti F. Cortico-limbic connectivity as a possible biomarker for bipolar disorder: where are we now? Expert Rev Neurother 2019; 19:159-172. [PMID: 30599797 DOI: 10.1080/14737175.2019.1562338] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The fronto-limbic network has been suggested as a key circuitry in the pathophysiology and maintenance of bipolar disorder. In the past decade, a disrupted connectivity within prefrontal-limbic structures was identified as a promising candidate biomarker for the disorder. Areas Covered: In this review, the authors examine current literature in terms of the structural, functional and effective connectivity in bipolar disorder, integrating recent findings of imaging genetics and machine learning. This paper profiles the current knowledge and identifies future perspectives to provide reliable and usable neuroimaging biomarkers for bipolar psychopathology in clinical practice. Expert Opinion: The replication and the translation of acquired knowledge into useful and usable tools represents one of the current greatest challenges in biomarker research applied to psychiatry.
Collapse
Affiliation(s)
- Benedetta Vai
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy.,b University Vita-Salute San Raffaele , Milano , Italy
| | - Carlotta Bertocchi
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy
| | - Francesco Benedetti
- a Psychiatry & Clinical Psychobiology , Division of Neuroscience, Scientific Institute Ospedale San Raffaele , Milano , Italy.,b University Vita-Salute San Raffaele , Milano , Italy
| |
Collapse
|