1
|
Eteleeb AM, Santos Alves S, Buss S, Shafi M, Press D, Garcia-Cairasco N, Benitez BA. Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.02.25319900. [PMID: 39974070 PMCID: PMC11838929 DOI: 10.1101/2025.01.02.25319900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background & Objective Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we leveraged high-throughput transcriptomic data from sporadic AD cases at different stages of cognitive impairment across multiple independent cohorts and brain regions to examine the role of epilepsy-causing genes. Methods Epilepsy-causing genes were manually curated, and their expression levels were analyzed across bulk transcriptomic data from three AD cohorts and three brain regions. RNA-seq data from sporadic AD and control cases from the Knight ADRC, MSBB, and ROSMAP cohorts were processed and analyzed under the same analytical pipeline. An integrative clustering approach employing machine learning and multi-omics data was employed to identify molecularly defined profiles with different cognitive scores. Results We found several epilepsy-associated genes/pathways significantly dysregulated in a group of AD patients with more severe cognitive impairment. We observed 15 genes consistently downregulated across the three cohorts, including sodium and potassium channels, suggesting that these genes play fundamental roles in cognitive function or AD progression. Notably, we found 25 of these genes dysregulated in earlier stages of AD and become worse with AD progression. Conclusion Our findings showed that epilepsy-causing genes showed changes in the early and late stages of AD progression, suggesting that they might be playing a role in AD progression. We can not establish directionality or cause-effect with our findings. However, changes in the epilepsy-causing genes might underlie the presence of seizures in AD patients, which might be present before or concurrently with the initial stages of AD.
Collapse
|
2
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A cryptic microdeletion del(12)(p11.21p11.23) within an unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. Sci Rep 2023; 13:12984. [PMID: 37563198 PMCID: PMC10415337 DOI: 10.1038/s41598-023-40037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023] Open
Abstract
In a patient diagnosed with both Kallmann syndrome (KS) and intellectual disability (ID), who carried an apparently balanced translocation t(7;12)(q22;q24)dn, array comparative genomic hybridization (aCGH) disclosed a cryptic heterozygous 4.7 Mb deletion del(12)(p11.21p11.23), unrelated to the translocation breakpoint. This novel discovery prompted us to consider the possibility that the combination of KS and neurological disorder in this patient could be attributed to gene(s) within this specific deletion at 12p11.21-12p11.23, rather than disrupted or dysregulated genes at the translocation breakpoints. To further support this hypothesis, we expanded our study by screening five candidate genes at both breakpoints of the chromosomal translocation in a cohort of 48 KS patients. However, no mutations were found, thus reinforcing our supposition. In order to delve deeper into the characterization of the 12p11.21-12p11.23 region, we enlisted six additional patients with small copy number variations (CNVs) and analyzed eight individuals carrying small CNVs in this region from the DECIPHER database. Our investigation utilized a combination of complementary approaches. Firstly, we conducted a comprehensive phenotypic-genotypic comparison of reported CNV cases. Additionally, we reviewed knockout animal models that exhibit phenotypic similarities to human conditions. Moreover, we analyzed reported variants in candidate genes and explored their association with corresponding phenotypes. Lastly, we examined the interacting genes associated with these phenotypes to gain further insights. As a result, we identified a dozen candidate genes: TSPAN11 as a potential KS candidate gene, TM7SF3, STK38L, ARNTL2, ERGIC2, TMTC1, DENND5B, and ETFBKMT as candidate genes for the neurodevelopmental disorder, and INTS13, REP15, PPFIBP1, and FAR2 as candidate genes for KS with ID. Notably, the high-level expression pattern of these genes in relevant human tissues further supported their candidacy. Based on our findings, we propose that dosage alterations of these candidate genes may contribute to sexual and/or cognitive impairments observed in patients with KS and/or ID. However, the confirmation of their causal roles necessitates further identification of point mutations in these candidate genes through next-generation sequencing.
Collapse
Affiliation(s)
- Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Shotaro Kishikawa
- Gene Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Vijay Gupta
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Natalia T Leach
- Integrated Genetics, Laboratory Corporation of America Holdings, 3400 Computer Drive, Westborough, MA, 01581, USA
| | - Yiping Shen
- Division of Genetics and Genomics at Boston Children's Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Oana Moldovan
- Medical Genetics Service, Pediatric Department, Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Himanshu Goel
- Hunter Genetics, Waratah, NSW, 2298, Australia
- University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District, Forster, NSW, 2428, Australia
| | - Kara Ranguin
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Nicolas Gruchy
- Department of Genetics, Reference Center for Rare Diseases of Developmental anomalies and polymalformative syndrome, CHU de Caen Normandie, Caen, France
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Reproduction and Development Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Yves Lacassie
- Division of Genetics, Department of Pediatrics, Louisiana State University, New Orleans, LA, 70118, USA
| | - Soo-Hyun Kim
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH, 44242, USA
| | - Bradley J Quade
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cynthia C Morton
- Departments of Obstetrics and Gynecology and of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Manchester Centre for Audiology and Deafness, School of Health Sciences, University of Manchester, Manchester, UK
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Lawrence C Layman
- Section of Reproductive Endocrinology, Infertility and Genetics, Department of Obstetrics and Gynecology, Augusta University, Augusta, GA, USA
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|
3
|
Mao R, Xu S, Sun G, Yu Y, Zuo Z, Wang Y, Yang K, Zhang Z, Yang W. Triptolide injection reduces Alzheimer's disease-like pathology in mice. Synapse 2023; 77:e22261. [PMID: 36633502 DOI: 10.1002/syn.22261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Triptolide is an epoxidized diterpene lactone isolated from Tripterygium wilfordii. Studies have shown that triptolide exerts organ-protective effects. However, it remains unknown whether triptolide improves Alzheimer's disease (AD)-like presentations. Thirty healthy 8-week-old male C57BL/6J mice were randomly divided into control (n = 10), model (n = 10), and triptolide (n = 10) groups. Amyloid-β (Aβ)42 was injected bilaterally into the ventricles of mice in the model group. Triptolide was injected intraperitoneally daily after injecting Aβ42 (a total of 30 days) in the triptolide group. Learning and memory were tested using the Morris water maze test. The deposition of Aβ42 in the hippocampus was detected using immunohistochemical staining. In the hippocampus, three synaptic-associated proteins-gephyrin, collybistin, and GABRA1 -were detected by western blotting. Furthermore, we used ELISA to detect proinflammatory cytokines, including TNF-α and IL-1β, in the blood and hippocampus. Moreover, superoxide dismutase (SOD), malondialdehyde (MDA), and GSH levels were measured using the corresponding kits. We found that triptolide improved spatial learning and memory in AD-like mice. Additionally, triptolide maintained the expression of gephyrin, collybistin, and GABRA1 and reduced Aβ in these mice. Additionally, triptolide reduced the expression of inflammatory cytokines and decreased oxidative damage in AD-like mice. Our study suggests that triptolide attenuates AD-like changes in the mouse brain.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shihao Xu
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Guangwen Sun
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Neurology, Sinopharm Dongfeng General Hospital, Jinzhou Medical University Union Training Base, Jinzhou, China
| | - Yingying Yu
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Neurology, Sinopharm Dongfeng General Hospital, Jinzhou Medical University Union Training Base, Jinzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yuanyuan Wang
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kun Yang
- Department of Anesthesiology, Sinopharm Dongfeng General Hospital, Jinzhou Medical University Union Training Base, Jinzhou, China
| | - Zhen Zhang
- Department of Orthopedics, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenqiong Yang
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
4
|
Ben-Mahmoud A, Kishikawa S, Gupta V, Leach NT, Shen Y, Moldovan O, Goel H, Hopper B, Ranguin K, Gruchy N, Maas SM, Lacassie Y, Kim SH, Kim WY, Quade BJ, Morton CC, Kim CH, Layman LC, Kim HG. A microdeletion del(12)(p11.21p11.23) with a cryptic unbalanced translocation t(7;12)(q21.13;q23.1) implicates new candidate loci for intellectual disability and Kallmann syndrome. RESEARCH SQUARE 2023:rs.3.rs-2572736. [PMID: 37034680 PMCID: PMC10081357 DOI: 10.21203/rs.3.rs-2572736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
In an apparently balanced translocation t(7;12)(q22;q24)dn exhibiting both Kallmann syndrome (KS) and intellectual disability (ID), we detected a cryptic heterozygous 4.7 Mb del(12)(p11.21p11.23) unrelated to the translocation breakpoint. This new finding raised the possibility that KS combined with neurological disorder in this patient could be caused by gene(s) within this deletion at 12p11.21-12p11.23 instead of disrupted or dysregulated genes at the genomic breakpoints. Screening of five candidate genes at both breakpoints in 48 KS patients we recruited found no mutation, corroborating our supposition. To substantiate this hypothesis further, we recruited six additional subjects with small CNVs and analyzed eight individuals carrying small CNVs in this region from DECIPHER to dissect 12p11.21-12p11.23. We used multiple complementary approaches including a phenotypic-genotypic comparison of reported cases, a review of knockout animal models recapitulating the human phenotypes, and analyses of reported variants in the interacting genes with corresponding phenotypes. The results identified one potential KS candidate gene ( TSPAN11 ), seven candidate genes for the neurodevelopmental disorder ( TM7SF3 , STK38L , ARNTL2 , ERGIC2 , TMTC1 , DENND5B , and ETFBKMT ), and four candidate genes for KS with ID ( INTS13 , REP15 , PPFIBP1 , and FAR2 ). The high-level expression pattern in the relevant human tissues further suggested the candidacy of these genes. We propose that the dosage alterations of the candidate genes may contribute to sexual and/or cognitive impairment in patients with KS and/or ID. Further identification of point mutations through next generation sequencing will be necessary to confirm their causal roles.
Collapse
Affiliation(s)
| | | | | | | | | | - Oana Moldovan
- Hospital Santa Maria, Centro Hospitalar Universitário Lisboa Norte
| | | | - Bruce Hopper
- Forster Genetics-Hunter New England Local Health District
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Yang H, Liao H, Gan S, Xiao T, Wu L. ARHGEF9 gene variant leads to developmental and epileptic encephalopathy: Genotypic phenotype analysis and treatment exploration. Mol Genet Genomic Med 2022; 10:e1967. [PMID: 35638461 PMCID: PMC9266599 DOI: 10.1002/mgg3.1967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background The ARHGEF9 gene variants have phenotypic heterogeneity, the number of reported clinical cases are limited and the genotype–phenotype relationship is still unpredictable. Methods Clinical data of the patients and their family members were gathered in a retrospective study. The exome sequencing that was performed on peripheral blood samples was applied for genetic analysis. We used the ARHGEF9 gene as a key word to search the PubMed database for cases of ARHGEF9 gene variants that have previously been reported and summarized the reported ARHGEF9 gene variant sites, their corresponding clinical phenotypes, and effective treatment. Results We described five patients with developmental and epileptic encephalopathy caused by ARHGEF9 gene variants. Among them, the antiepileptic treatment of valproic acid and levetiracetam was effective in two cases individually. The exome sequencing results showed five children with point mutations in the ARHGEF9 gene: p.R365H, p.M388V, p.D213E, and p.R63H. So far, a total of 40 children with ARHGEF9 gene variants have been reported. Their main clinical phenotypes include developmental delay, epilepsy, epileptic encephalopathy, and autism spectrum disorders. The variants reported in the literature, including 22 de novo variants, nine maternal variants, and one unknown variant. There were 20 variants associated with epileptic phenotypes, of which six variants are effective for valproic acid treatment. Conclusion The genotypes and phenotypes of ARHGEF9 gene variants represent a wide spectrum, and the clinical phenotype of epilepsy is often refractory and the prognosis is poor. The p.R365H, p.M388V, p.D213E, and p.R63H variants have not been reported in the current literature, and our study has expanded the genotype spectrum of ARHGEF9 gene. Our findings indicate that levetiracetam and valproic acid can effectively control seizures in children with epileptic phenotype caused by ARGHEF9 gene variations. These findings will help clinicians improve the level of diagnosis and treatment of the genetic disease.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Siyi Gan
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| |
Collapse
|
6
|
Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABA A receptor α2 subunit. Mol Psychiatry 2022; 27:1729-1741. [PMID: 35169261 PMCID: PMC9095487 DOI: 10.1038/s41380-022-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - April Contreras
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Betsua Garcia
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey S Barker
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Austin J Boren
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
7
|
Qiu T, Dai Q, Wang Q. A novel de novo hemizygous ARHGEF9 mutation associated with severe intellectual disability and epilepsy: a case report. J Int Med Res 2021; 49:3000605211058372. [PMID: 34851771 PMCID: PMC8647271 DOI: 10.1177/03000605211058372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
ARHGEF9 encodes collybistin, a brain-specific guanosine diphosphate-guanosine-5′-triphosphate exchange factor that plays an important role in clustering of gephyrin and γ-aminobutyric acid type A receptors in the postsynaptic membrane. Overwhelming evidence suggests that defects in this protein can cause X-linked intellectual disability, which comprises a series of clinical phenotypes, including autism spectrum disorder, behavior disorder, intellectual disability, and febrile seizures. Here, we report a boy with clinical symptoms of severe intellectual disability, epilepsy, and developmental delay and regression. Trio exome sequencing (trio-clinical exome sequencing) identified a novel hemizygous deletion, c.656_c.669delACTTCTTTGAGGCC (p. His219Leu fs*9), in exon 5 of ARHGEF9. This variant was not reported in either the Genome Aggregation Database or our database of 309 patients with neurodevelopmental disorders. Oxcarbazepine and levetiracetam reduced the frequency of the patient’s epileptic seizures to a certain extent, but psychomotor developmental delay and developmental regression became more obvious with age. This case study seeks to report a de novo loss-of-function mutation of ARHGEF9, aiming to emphasize the genetic diagnosis of X-linked intellectual disability and further improve knowledge of the ethnic distribution of ARHGEF9 mutations.
Collapse
Affiliation(s)
- Tong Qiu
- Division of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Qian Dai
- Division of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Qiu Wang
- Division of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Selective Overexpression of Collybistin in Mouse Hippocampal Pyramidal Cells Enhances GABAergic Neurotransmission and Protects against PTZ-Induced Seizures. eNeuro 2021; 8:ENEURO.0561-20.2021. [PMID: 34083383 PMCID: PMC8281261 DOI: 10.1523/eneuro.0561-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/02/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022] Open
Abstract
Collybistin (CB) is a rho guanine exchange factor found at GABAergic and glycinergic postsynapses that interacts with the inhibitory scaffold protein, gephyrin, and induces accumulation of gephyrin and GABA type-A receptors (GABAARs) to the postsynapse. We have previously reported that the isoform without the src homology 3 (SH3) domain, CBSH3-, is particularly active in enhancing the GABAergic postsynapse in both cultured hippocampal neurons as well as in cortical pyramidal neurons after chronic in vivo expression in in utero electroporated (IUE) rats. Deficiency of CB in knock-out (KO) mice results in absence of gephyrin and gephyrin-dependent GABAARs at postsynaptic sites in several brain regions, including hippocampus. In the present study, we have generated an adeno-associated virus (AAV) that expresses CBSH3- in a cre-dependent manner. Using male and female VGLUT1-IRES-cre or VGAT-IRES-cre mice, we explore the effect of overexpression of CBSH3- in hippocampal pyramidal cells or hippocampal interneurons. The results show that: (1) the accumulation of gephyrin and GABAARs at inhibitory postsynapses in hippocampal pyramidal neurons or interneurons can be enhanced by CBSH3- overexpression; (2) overexpression of CBSH3- in hippocampal pyramidal cells can enhance the strength of inhibitory neurotransmission; and (3) these enhanced inhibitory synapses provide protection against pentylenetetrazole (PTZ)-induced seizures. The results indicate that this AAV vector carrying CBSH3- can be used for in vivo enhancement of GABAergic synaptic transmission in selected target neurons in the brain.
Collapse
|
9
|
Liaci C, Camera M, Caslini G, Rando S, Contino S, Romano V, Merlo GR. Neuronal Cytoskeleton in Intellectual Disability: From Systems Biology and Modeling to Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22116167. [PMID: 34200511 PMCID: PMC8201358 DOI: 10.3390/ijms22116167] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Intellectual disability (ID) is a pathological condition characterized by limited intellectual functioning and adaptive behaviors. It affects 1–3% of the worldwide population, and no pharmacological therapies are currently available. More than 1000 genes have been found mutated in ID patients pointing out that, despite the common phenotype, the genetic bases are highly heterogeneous and apparently unrelated. Bibliomic analysis reveals that ID genes converge onto a few biological modules, including cytoskeleton dynamics, whose regulation depends on Rho GTPases transduction. Genetic variants exert their effects at different levels in a hierarchical arrangement, starting from the molecular level and moving toward higher levels of organization, i.e., cell compartment and functions, circuits, cognition, and behavior. Thus, cytoskeleton alterations that have an impact on cell processes such as neuronal migration, neuritogenesis, and synaptic plasticity rebound on the overall establishment of an effective network and consequently on the cognitive phenotype. Systems biology (SB) approaches are more focused on the overall interconnected network rather than on individual genes, thus encouraging the design of therapies that aim to correct common dysregulated biological processes. This review summarizes current knowledge about cytoskeleton control in neurons and its relevance for the ID pathogenesis, exploiting in silico modeling and translating the implications of those findings into biomedical research.
Collapse
Affiliation(s)
- Carla Liaci
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Mattia Camera
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Giovanni Caslini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Simona Rando
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
| | - Salvatore Contino
- Department of Engineering, University of Palermo, Viale delle Scienze Ed. 8, 90128 Palermo, Italy;
| | - Valentino Romano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Giorgio R. Merlo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (C.L.); (M.C.); (G.C.); (S.R.)
- Correspondence: ; Tel.: +39-0116706449; Fax: +39-0116706432
| |
Collapse
|
10
|
Freri E, Castellotti B, Didato G, DiFrancesco JC, Granata T. Epilepsy and NREM-parasomnia caused by novel hemizygous ARHGEF9 mutation. Sleep Med 2020; 76:158-159. [PMID: 33220649 DOI: 10.1016/j.sleep.2020.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022]
Affiliation(s)
- Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Didato
- Clinical and Experimental Epileptology and Sleep Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Jacopo C DiFrancesco
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Neurology, Epilepsy Center, ASST San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
11
|
The New CIC Mutation Associates with Mental Retardation and Severity of Seizure in Turkish Child with a Rare Class I Glucose-6-Phosphate Dehydrogenase Deficiency. J Mol Neurosci 2020; 70:2077-2084. [PMID: 32535712 DOI: 10.1007/s12031-020-01614-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked recessive disease that causes acute or chronic hemolytic anemia and potentially leads to severe jaundice in response to oxidative agents. Capicua transcriptional repressor (CIC) is an important gene associated with mental retardation, autosomal dominant 45. Affiliated tissues including skin, brain, bone, and related phenotypes are intellectual disability and seizures. Clinical, biochemical, and whole exome analysis are carried out in a Turkish family. Mutation analysis of G6PD and CIC genes by Sanger sequencing in the whole family was carried out to reveal the effect of these mutations on the patient's clinical outcome. Here, we present the case of epilepsy in an 8-year-old child with a hemizygous variation in G6PD gene and heterozygous mutation in CIC gene, resulting in focal epileptiform activity and hypsarrhythmia in electroencephalography (EEG), seizures, psychomotor retardation, speech impairment, intellectual disability, developmental regression, and learning difficulties. Whole exome sequencing confirmed the diagnosis of X-linked increased susceptibility for hemolytic anemia due to G6PD deficiency and mental retardation type 45 due to CIC variant, which explained the development of epileptic seizures. Considering CIC variant and relevant relation with the severity and course of the disease, G6PD mutations sustained through the family are defined as hereditary. Our findings could represent the importance of variants found in G6PD as well as CIC genes linked to the severity of epilepsy, which was presumed based on the significant changes in protein configuration.
Collapse
|