1
|
Zhang B, Zhu G, Wu J, Xie H, Cui J, Qian W, Yi Q, Pan F, Fang F, Ling Y, Zhang Y, Li Y, Liu Y. Transcriptome and DNA methylation analysis of the goat pineal gland during puberty. Sci Rep 2025; 15:2269. [PMID: 39824948 PMCID: PMC11742059 DOI: 10.1038/s41598-024-84559-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/24/2024] [Indexed: 01/20/2025] Open
Abstract
Previous studies have confirmed that methylation regulates gene transcription in the hypothalamus-pituitary-gonadal axis during puberty initiation, but little is known about the regulation of DNA methylation on gene expression in the pineal gland. To screen pineal gland candidate genes related to the onset of goat puberty and regulated by genome methylation, we collected pineal glands from prepubertal and pubertal female goats, then, determined the DNA methylation profile by whole genome bisulfite sequencing and the transcriptome by RNA sequencing on Illumina HiSeqTM2500. We analyzed differentially expressed genes between the Pre group and Pub group using the DESeq2 software (version 1.20.0), and applied the Benjamini and Hochberg method for adjusting P-values. Genes with a P-value less than 0.05 and an absolute log2 fold change greater than 0 were considered differentially expressed genes. Results showed that there was no significant difference in the whole-genome methylation level of the pineal gland between prepubertal and pubertal goats, but the methylation pattern changed significantly, indicating that genomic DNA methylation of the pineal gland might play a role in regulating the initiation of goat puberty. Changes in DNA methylation patterns affected some pineal gland transcriptomes, while the transcriptional level of most genes remained unaffected by DNA methylation differences. Genes regulated by DNA methylation regulates genes primarily involved in metabolic processes, oxidative phosphorylation, and signaling pathways related to thermogenesis. Methylation significantly regulated the expression of genes such as ATP5F1D, CACNB2, and PTEN, while genes like LIN28B, GIP, OPN1SW, and DCC showed the most notable fold changes, which may indicate their involvement in the onset of puberty.
Collapse
Affiliation(s)
- Bochao Zhang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
| | - Genbao Zhu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
- AnhuiWanbei Electricity Group General Hospital, Suzhou, Anhui, China
| | - Jianling Wu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
- HefeiTiangang Immune Medicine Co., Ltd, Hefei, Anhui, China
| | - Huihui Xie
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
| | - Jiankun Cui
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
| | - Wei Qian
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
| | - Qing Yi
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
| | - Fuqiang Pan
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Fugui Fang
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Linquan, Anhui, China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Linquan, Anhui, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
- Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Linquan, Anhui, China
| | - Yunsheng Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.
- Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Linquan, Anhui, China.
| | - Ya Liu
- College of Veterinary Medicine, Anhui Agricultural University, Hefei, Anhui, China.
- College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Anhui Provincial Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.
- Linquan County Modern Agriculture Technology Cooperation and Extension Service Center, Linquan, Anhui, China.
| |
Collapse
|
2
|
Zhang P, Lu Y, Li Y, Wang K, An H, Tan Y. Genome-wide DNA methylation analysis in schizophrenia with tardive dyskinesia: a preliminary study. Genes Genomics 2023; 45:1317-1328. [PMID: 37414911 DOI: 10.1007/s13258-023-01414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Tardive dyskinesia (TD) develops in 20-30% of schizophrenia patients and up to 50% in patients > 50 years old. DNA methylation may play an important role in the development of TD. OBJECTIVE DNA methylation analyses in schizophrenia with TD. METHODS We conducted a genome-wide DNA methylation analysis in schizophrenia with TD using methylated DNA immunoprecipitation coupled with next-generation sequencing (MeDIP-Seq) in a Chinese sample including five schizophrenia patients with TD and five without TD (NTD), and five healthy controls. The results were expressed as the log2FC, fold change of normalized tags between two groups within the differentially methylated region (DMR). For validation, the pyrosequencing was used to quantify DNA methylation levels of several methylated genes in an independent sample (n = 30). RESULTS Through genome-wide MeDIP-Seq analysis, we identified 116 genes that were significantly differentially methylated in promotor regions in comparison of TD group with NTD group including 66 hypermethylated genes (top 4 genes are GABRR1, VANGL2, ZNF534, and ZNF746) and 50 hypomethylated genes (top 4 genes are DERL3, GSTA4, KNCN, and LRRK1). Part of these genes (such as DERL3, DLGAP2, GABRR1, KLRG2, LRRK1, VANGL2, and ZP3) were previously reported to be associated with methylation in schizophrenia. Gene Ontology enrichment and KEGG pathway analyses identified several pathways. So far, we have confirmed the methylation of 3 genes (ARMC6, WDR75, and ZP3) in schizophrenia with TD using pyrosequencing. CONCLUSIONS This study identified number of methylated genes and pathways for TD and will provide potential biomarkers for TD and serve as a resource for replication in other populations.
Collapse
Affiliation(s)
- Ping Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yongke Lu
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Yanli Li
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Office 6419, Post Office Box 9600, Morgantown, WV, 26506, USA.
| | - Huimei An
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096, China.
| |
Collapse
|
3
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
4
|
Helaly AMN, Ghorab DSED. Schizophrenia as metabolic disease. What are the causes? Metab Brain Dis 2023; 38:795-804. [PMID: 36656396 PMCID: PMC9849842 DOI: 10.1007/s11011-022-01147-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
Schizophrenia (SZ) is a devastating neurodevelopmental disease with an accelerated ageing feature. The criteria of metabolic disease firmly fit with those of schizophrenia. Disturbances in energy and mitochondria are at the core of complex pathology. Genetic and environmental interaction creates changes in redox, inflammation, and apoptosis. All the factors behind schizophrenia interact in a cycle where it is difficult to discriminate between the cause and the effect. New technology and advances in the multi-dispensary fields could break this cycle in the future.
Collapse
Affiliation(s)
- Ahmed Mohamed Nabil Helaly
- Clinical Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan.
- Forensic Medicine and Toxicology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Doaa Shame El Din Ghorab
- Basic Science, Faculty of Medicine, Yarmouk University, Irbid, Jordan
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Anastasiadi D, Piferrer F, Wellenreuther M, Benítez Burraco A. Fish as Model Systems to Study Epigenetic Drivers in Human Self-Domestication and Neurodevelopmental Cognitive Disorders. Genes (Basel) 2022; 13:genes13060987. [PMID: 35741749 PMCID: PMC9222608 DOI: 10.3390/genes13060987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
Modern humans exhibit phenotypic traits and molecular events shared with other domesticates that are thought to be by-products of selection for reduced aggression. This is the human self-domestication hypothesis. As one of the first types of responses to a novel environment, epigenetic changes may have also facilitated early self-domestication in humans. Here, we argue that fish species, which have been recently domesticated, can provide model systems to study epigenetic drivers in human self-domestication. To test this, we used in silico approaches to compare genes with epigenetic changes in early domesticates of European sea bass with genes exhibiting methylation changes in anatomically modern humans (comparison 1), and neurodevelopmental cognitive disorders considered to exhibit abnormal self-domestication traits, i.e., schizophrenia, Williams syndrome, and autism spectrum disorders (comparison 2). Overlapping genes in comparison 1 were involved in processes like limb morphogenesis and phenotypes like abnormal jaw morphology and hypopigmentation. Overlapping genes in comparison 2 affected paralogue genes involved in processes such as neural crest differentiation and ectoderm differentiation. These findings pave the way for future studies using fish species as models to investigate epigenetic changes as drivers of human self-domestication and as triggers of cognitive disorders.
Collapse
Affiliation(s)
- Dafni Anastasiadi
- Seafood Technologies, The New Zealand Institute for Plant and Food Research, Nelson 7010, New Zealand;
- Correspondence:
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council (CSIC), 08003 Barcelona, Spain;
| | - Maren Wellenreuther
- Seafood Technologies, The New Zealand Institute for Plant and Food Research, Nelson 7010, New Zealand;
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Antonio Benítez Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, 41004 Seville, Spain;
| |
Collapse
|
6
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
7
|
Chen Q, Li D, Jin W, Shi Y, Li Z, Ma P, Sun J, Chen S, Li P, Lin P. Research Progress on the Correlation Between Epigenetics and Schizophrenia. Front Neurosci 2021; 15:688727. [PMID: 34366776 PMCID: PMC8334178 DOI: 10.3389/fnins.2021.688727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose of the Review Nowadays, the incidence of schizophrenia is noticeably increased. If left undiagnosed and untreated, it will lead to impaired social functions, repeated hospital admissions, decline in quality of life and life expectancy. However, the diagnosis of schizophrenia is complicated and challenging. Both genetic and environmental factors are considered as important contributors to the development and progression of this disorder. The environmental factors have been linked to changes in gene expression through epigenetic modulations, which have raised more and more research interests in recent years. This review article is to summarize the current findings and understanding of epigenetic modulation associated with pathogenesis of schizophrenia, aiming to provide useful information for further research in developing biomarkers for schizophrenia. Recent Findings Three major types of epigenetic modulations have been described in this article. Firstly, both DNA hypermethylation and hypomethylated have been associated with schizophrenia via analyzing post-mortem brain tissues and peripheral blood of patients. Specific changes of non-coding RNAs, particularly microRNAs and long-chain non-coding RNAs, have been observed in central and peripheral samples of schizophrenia patients, indicating their significant diagnostic value for the disease, and may also potentially predict treatment response. The correlation between histone modification and schizophrenia, however, is largely unclear. Summary Epigenetic modulations, including DNA methylation, ncRNA transcriptional regulation and histone modification, play an important role in the pathogenesis of schizophrenia. Therefore, tests of these epigenetic alterations may be utilized to assist in the diagnosis and determination of strategies of individualized treatment in clinical practice.
Collapse
Affiliation(s)
- Qing Chen
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Jin
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Shi
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Li
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peijun Ma
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaqi Sun
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuzi Chen
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Li
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Lin
- Clinical Laboratory, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Gu S, Cui F, Yin J, Fang C, Liu L. Altered mRNA expression levels of autophagy- and apoptosis-related genes in the FOXO pathway in schizophrenia patients treated with olanzapine. Neurosci Lett 2021; 746:135669. [PMID: 33485989 DOI: 10.1016/j.neulet.2021.135669] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
This study attempted to analyze the alterations in the mRNA expression levels of autophagy- and apoptosis-related genes in the forkhead box transcription factor O (FOXO) pathway in schizophrenia patients before and after olanzapine treatment. For a total of 32 acute schizophrenic inpatients, clinical data with PANSS were obtained before and after four weeks of olanzapine treatment (mean dose 14.24 ± 4.35 mg/d) along with data from 32 healthy volunteers. The mRNA expression levels of the FOXO pathway genes were measured by real-time qPCR after fasting venous blood was collected and analyzed. The mRNA expression levels of FOXO1, FOXO3A, FASLG, and BCL2L11 were observed to be significantly decreased in acute schizophrenia patients. After four weeks of olanzapine treatment, the expression levels of the first three genes were further reduced, but BCL2L11 expression levels were not significantly changed. The pairwise correlations between the mRNA expression level of FASLG and those of the other three genes were not observed in acute schizophrenia patients, while these relationships were observed in healthy controls. After olanzapine treatment, the FASLG mRNA expression level was restored and exhibited a pairwise correlation with the FOXO3A and BCL2L11 mRNA expression levels but not with the FOXO1 mRNA expression level, and FASLG mRNA expression was also correlated with the duration of the disease. The statuses and correlations of the mRNA expression levels of FOXO pathway-related genes were altered in schizophrenia patients and were affected by olanzapine treatment and the duration of the disease.
Collapse
Affiliation(s)
- Shuguang Gu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Fengwei Cui
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Jiajun Yin
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China
| | - Chunxia Fang
- Combined TCM & Western Medicine Department, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China.
| | - Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, Jiangsu, 214151, China.
| |
Collapse
|