1
|
Kawahata T, Tanaka K, Oyama K, Ueda J, Okamoto K, Makino Y. HIF3A gene disruption causes abnormal alveoli structure and early neonatal death. PLoS One 2024; 19:e0300751. [PMID: 38717999 PMCID: PMC11078382 DOI: 10.1371/journal.pone.0300751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 05/12/2024] Open
Abstract
Transcriptional response to changes in oxygen concentration is mainly controlled by hypoxia-inducible transcription factors (HIFs). Besides regulation of hypoxia-responsible gene expression, HIF-3α has recently been shown to be involved in lung development and in the metabolic process of fat tissue. However, the precise mechanism for such properties of HIF-3α is still largely unknown. To this end, we generated HIF3A gene-disrupted mice by means of genome editing technology to explore the pleiotropic role of HIF-3α in development and physiology. We obtained adult mice carrying homozygous HIF3A gene mutations with comparable body weight and height to wild-type mice. However, the number of litters and ratio of homozygous mutation carriers born from the mating between homozygous mutant mice was lower than expected due to sporadic deaths on postnatal day 1. HIF3A gene-disrupted mice exhibited abnormal configuration of the lung such as a reduced number of alveoli and thickened alveolar walls. Transcriptome analysis showed, as well as genes associated with lung development, an upregulation of stearoyl-Coenzyme A desaturase 1, a pivotal enzyme for fatty acid metabolism. Analysis of fatty acid composition in the lung employing gas chromatography indicated an elevation in palmitoleic acid and a reduction in oleic acid, suggesting an imbalance in distribution of fatty acid, a constituent of lung surfactant. Accordingly, administration of glucocorticoid injections during pregnancy resulted in a restoration of normal alveolar counts and a decrease in neonatal mortality. In conclusion, these observations provide novel insights into a pivotal role of HIF-3α in the preservation of critically important structure and function of alveoli beyond the regulation of hypoxia-mediated gene expression.
Collapse
Affiliation(s)
- Tomoki Kawahata
- Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kitaru Tanaka
- Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kyohei Oyama
- Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Jun Ueda
- Department of Advanced Medical Science, Asahikawa Medical University, Asahikawa, Japan
| | - Kensaku Okamoto
- Division of Endocrinology, Metabolism, and Rheumatology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yuichi Makino
- Center for Integrated Medical Education and Regional Symbiosis, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
2
|
van Noorden CJ, Yetkin-Arik B, Serrano Martinez P, Bakker N, van Breest Smallenburg ME, Schlingemann RO, Klaassen I, Majc B, Habic A, Bogataj U, Galun SK, Vittori M, Erdani Kreft M, Novak M, Breznik B, Hira VV. New Insights in ATP Synthesis as Therapeutic Target in Cancer and Angiogenic Ocular Diseases. J Histochem Cytochem 2024; 72:329-352. [PMID: 38733294 PMCID: PMC11107438 DOI: 10.1369/00221554241249515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/01/2024] [Indexed: 05/13/2024] Open
Abstract
Lactate and ATP formation by aerobic glycolysis, the Warburg effect, is considered a hallmark of cancer. During angiogenesis in non-cancerous tissue, proliferating stalk endothelial cells (ECs) also produce lactate and ATP by aerobic glycolysis. In fact, all proliferating cells, both non-cancer and cancer cells, need lactate for the biosynthesis of building blocks for cell growth and tissue expansion. Moreover, both non-proliferating cancer stem cells in tumors and leader tip ECs during angiogenesis rely on glycolysis for pyruvate production, which is used for ATP synthesis in mitochondria through oxidative phosphorylation (OXPHOS). Therefore, aerobic glycolysis is not a specific hallmark of cancer but rather a hallmark of proliferating cells and limits its utility in cancer therapy. However, local treatment of angiogenic eye conditions with inhibitors of glycolysis may be a safe therapeutic option that warrants experimental investigation. Most types of cells in the eye such as photoreceptors and pericytes use OXPHOS for ATP production, whereas proliferating angiogenic stalk ECs rely on glycolysis for lactate and ATP production. (J Histochem Cytochem XX.XXX-XXX, XXXX).
Collapse
Affiliation(s)
- Cornelis J.F. van Noorden
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bahar Yetkin-Arik
- Department of Pediatric Pulmonology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paola Serrano Martinez
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Noëlle Bakker
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | | | - Reinier O. Schlingemann
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Amsterdam University Medical Center Location University of Amsterdam, Amsterdam, The Netherlands
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Anamarija Habic
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
- Jozef Stefan Postgraduate School, Ljubljana, Slovenia
| | - Urban Bogataj
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - S. Katrin Galun
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Milos Vittori
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Vashendriya V.V. Hira
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
3
|
Shen H, Yang J, Chen X, Gao Y, He B. Role of hypoxia-inducible factor in postoperative delirium of aged patients: A review. Medicine (Baltimore) 2023; 102:e35441. [PMID: 37773821 PMCID: PMC10545271 DOI: 10.1097/md.0000000000035441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Postoperative delirium is common, especially in older patients. Delirium is associated with prolonged hospitalization, an increased risk of postoperative complications, and significant mortality. The mechanism of postoperative delirium is not yet clear. Cerebral desaturation occurred during the maintenance period of general anesthesia and was one of the independent risk factors for postoperative delirium, especially in the elderly. Hypoxia stimulates the expression of hypoxia-inducible factor-1 (HIF-1), which controls the hypoxic response. HIF-1 may have a protective role in regulating neuron apoptosis in neonatal hypoxia-ischemia brain damage and may promote the repair and rebuilding process in the brain that was damaged by hypoxia and ischemia. HIF-1 has a neuroprotective effect during cerebral hypoxia and controls the hypoxic response by regulating multiple pathways, such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. On the other hand, anesthetics have been reported to inhibit HIF activity in older patients. So, we speculate that HIF plays an important role in the pathophysiology of postoperative delirium in the elderly. The activity of HIF is reduced by anesthetics, leading to the inhibition of brain protection in a hypoxic state. This review summarizes the possible mechanism of HIF participating in postoperative delirium in elderly patients and provides ideas for finding targets to prevent or treat postoperative delirium in elderly patients.
Collapse
Affiliation(s)
- Hu Shen
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyin Yang
- Department of ICU, Chengdu Xinjin District Hospital of Traditional Chinese Medicine, Chengdu, China
| | - Xu Chen
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Gao
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Baoming He
- Department of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
4
|
Liu C, Luo YP, Chen J, Weng YH, Lan Y, Liu HB. Functional polymorphism in miR-208 is associated with increased risk for ischemic stroke. BMC Med Genomics 2023; 16:176. [PMID: 37525251 PMCID: PMC10391967 DOI: 10.1186/s12920-023-01610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND The miR-208 gene is one of the microRNAs now under active studies, and has been found to play significant roles in an array of cardiovascular diseases. Nevertheless, until now, no studies have examined the relationship between the susceptibility to ischemic stroke (IS) and genetic variations in miR-208. This study explored the association between the miR-208 polymorphisms (rs178642, rs8022522, and rs12894524) and the risk of IS. METHODS A total of 205 cases of IS and 211 control subjects were included. The SNPscans genotyping test was employed to determine the genotypes of the three polymorphisms. RESULTS Significant correlation was observed between rs8022522 polymorphism and risk of IS on the basis of analyses of genotypes, models and alleles (GA vs. GG: adjusted OR = 2.159, 95% CI: 1.052-4.430, P = 0. 036; AA vs. GG: adjusted OR = 5.154, 95% CI: 1.123-23.660, P = 0.035; dominant model: adjusted OR = 1.746, 95% CI, 1.075-2.838, P = 0.025; G vs. A: adjusted OR = 2.451, 95% CI: 1.374-4.370, P = 0.002). CONCLUSIONS The rs8022522 polymorphism of the miR-208 gene is significantly associated with an elevated risk of ischemic stroke in Chinese.
Collapse
Affiliation(s)
- Chao Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Yan-Ping Luo
- Department of Clinical Laboratory, the Affiliated Hospital of Guilin Medical University, Guilin, 541001, China
| | - Jie Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Yin-Hua Weng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Yan Lan
- Department of Dermatology, Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, 533000, China
| | - Hong-Bo Liu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
- College of Medical Laboratory Science, Guilin Medical University, Guilin, 541004, China.
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, Guilin, 541199, China.
| |
Collapse
|
5
|
李 家, 张 德, 谢 静, 周 学. [Co-Culturing of Osteoblasts and Chondrocytes Upregulates HIF-1 Pathway of Chondrocytes via MAPK Signaling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:92-97. [PMID: 35048606 PMCID: PMC10408868 DOI: 10.12182/20220160104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To study the effect of co-culturing chondrocytes with osteoblasts on hypoxia-inducible factor (HIF)-1 pathway of chondrocytes and its mechanism. METHODS Chondrocytes and osteoblasts were separately extracted from the knee joint and skull of newborn mice by trypsin digestion. The co-culturing system of osteoblasts and chondrocytes was constructed by using Transwell inserts to culture the osteoblasts and 6-well plate to culture the chondrocytes. We used qRT-PCR to examine changes in the mRNA expression of HIFs and its target gene pyruvate dehydrogenase kinase 1 ( PDK1) in chondrocytes co-cultured for 24 h. Western blot was used to analyze changes in the protein expression of HIFs and PDK1 and the changes in the activation of mitogen activated protein kinase (MAPK) signaling pathway after the cells were co-cultured for 48 h. Reactive oxygen species (ROS) staining was done to show the changes of ROS production in chondrocytes co-cultured for 48 h. RESULTS The results of qRT-PCR and Western blot showed upregulated levels of HIF-1α gene and protein expression ( P<0.05) in the chondrocytes after they were co-cultured with osteoblasts. The gene and protein expression levels of PDK1 , the target gene of HIF-1, were also upregulated ( P<0.05). ROS staining showed that co-culturing of chondrocytes with osteoblasts decreased ROS production in chondrocytes. Western blot revealed that extracellular signal-regulated kinase (ERK) 1/2 and p38 signaling of co-cultured chondrocytes were enhanced ( P<0.05). CONCLUSION Co-culturing with osteoblasts enhanced the ERK1/2 and p38 signaling of chondrocytes and upregulated the HIF-1 pathway of chondrocytes.
Collapse
Affiliation(s)
- 家驰 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 德茂 张
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 静 谢
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, and Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
van Noorden CJ, Breznik B, Novak M, van Dijck AJ, Tanan S, Vittori M, Bogataj U, Bakker N, Khoury JD, Molenaar RJ, Hira VV. Cell Biology Meets Cell Metabolism: Energy Production Is Similar in Stem Cells and in Cancer Stem Cells in Brain and Bone Marrow. J Histochem Cytochem 2022; 70:29-51. [PMID: 34714696 PMCID: PMC8721571 DOI: 10.1369/00221554211054585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Energy production by means of ATP synthesis in cancer cells has been investigated frequently as a potential therapeutic target in this century. Both (an)aerobic glycolysis and oxidative phosphorylation (OXPHOS) have been studied. Here, we review recent literature on energy production in glioblastoma stem cells (GSCs) and leukemic stem cells (LSCs) versus their normal counterparts, neural stem cells (NSCs) and hematopoietic stem cells (HSCs), respectively. These two cancer stem cell types were compared because their niches in glioblastoma tumors and in bone marrow are similar. In this study, it became apparent that (1) ATP is produced in NSCs and HSCs by anaerobic glycolysis, whereas fatty acid oxidation (FAO) is essential for their stem cell fate and (2) ATP is produced in GSCs and LSCs by OXPHOS despite the hypoxic conditions in their niches with FAO and amino acids providing its substrate. These metabolic processes appeared to be under tight control of cellular regulation mechanisms which are discussed in depth. However, our conclusion is that systemic therapeutic targeting of ATP production via glycolysis or OXPHOS is not an attractive option because of its unwanted side effects in cancer patients.
Collapse
Affiliation(s)
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | | | - Miloš Vittori
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Urban Bogataj
- Amsterdam UMC Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Joseph D. Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Remco J. Molenaar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia,Department of Medical Oncology
| | - Vashendriya V.V. Hira
- Vashendriya V.V. Hira, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia. E-mail:
| |
Collapse
|