1
|
Exertier C, Antonelli L, Fiorillo A, Bernardini R, Colotti B, Ilari A, Colotti G. Sorcin in Cancer Development and Chemotherapeutic Drug Resistance. Cancers (Basel) 2024; 16:2810. [PMID: 39199583 PMCID: PMC11352664 DOI: 10.3390/cancers16162810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
SOluble Resistance-related Calcium-binding proteIN (sorcin) earned its name due to its co-amplification with ABCB1 in multidrug-resistant cells. Initially thought to be an accidental consequence of this co-amplification, recent research indicates that sorcin plays a more active role as an oncoprotein, significantly impacting multidrug resistance (MDR). Sorcin is a highly expressed calcium-binding protein, often overproduced in human tumors and multidrug-resistant cancers, and is a promising novel MDR marker. In tumors, sorcin levels inversely correlate with both patient response to chemotherapy and overall prognosis. Multidrug-resistant cell lines consistently exhibit higher sorcin expression compared to their parental counterparts. Furthermore, sorcin overexpression via gene transfection enhances drug resistance to various chemotherapeutic drugs across numerous cancer lines. Conversely, silencing sorcin expression reverses drug resistance in many cell lines. Sorcin participates in several mechanisms of MDR, including drug efflux, drug sequestering, cell death inhibition, gene amplification, epithelial-to-mesenchymal transition, angiogenesis, and metastasis. The present review focuses on the structure and function of sorcin, on sorcin's role in cancer and drug resistance, and on the approaches aimed at targeting sorcin.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Lorenzo Antonelli
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Annarita Fiorillo
- Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (L.A.); (A.F.)
| | - Roberta Bernardini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Beatrice Colotti
- Child Neuropsychiatry Unit, Child Neuropsychiatry School, University Hospital of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department Biochemical Sciences, Sapienza University of Rome, Ed. CU027, P.le A.Moro 5, 00185 Rome, Italy; (C.E.); (A.I.)
| |
Collapse
|
2
|
Li Y, Tian M, Pires Sanches JG, Zhang Q, Hou L, Zhang J. Sorcin Inhibits Mitochondrial Apoptosis by Interacting with STAT3 via NF-κB Pathway. Int J Mol Sci 2024; 25:7206. [PMID: 39000312 PMCID: PMC11241191 DOI: 10.3390/ijms25137206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a common tumor. Our group has previously reported that sorcin (SRI) plays an important role in the progression and prognosis of HCC. This study aims to explore the mechanism of SRI inhibiting the mitochondrial apoptosis. Bioinformatics analysis, co-IP and immunofluorescence were used to analyze the relationship between SRI and STAT3. MMP and Hoechst staining were performed to detect the effect of SRI on cell apoptosis. The expression of apoptosis-related proteins and NF-κB signaling pathway were examined by Western blot and immunohistochemistry when SRI overexpression or underexpression in vivo and in vitro were found. Moreover, inhibitors were used to further explore the molecular mechanism. Overexpression of SRI inhibited cell apoptosis, which was attenuated by SRI knockdown in vitro and in vivo. Moreover, we identified that STAT3 is an SRI-interacting protein. Mechanistically, SRI interacts with STAT3 and then activates the NF-κB signaling pathway in vitro and in vivo. SRI interacting with STAT3 inhibits apoptosis by the NF-κB pathway and further contributes to the proliferation in HCC, which offers a novel clue and a new potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yizi Li
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Manlin Tian
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jaceline Gislaine Pires Sanches
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qingqing Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Li Hou
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Zhang
- Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Saravanan V, Ahammed I, Bhattacharya A, Bhattacharya S. Uncovering allostery and regulation in SORCIN through molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:1812-1825. [PMID: 37098805 DOI: 10.1080/07391102.2023.2202772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/08/2023] [Indexed: 04/27/2023]
Abstract
Soluble resistance-related calcium-binding protein or Sorcin is an allosteric, calcium-binding Penta-EF hand (PEF) family protein implicated in multi-drug resistant cancers. Sorcin is known to bind chemotherapeutic molecules such as Doxorubicin. This study uses in-silico molecular dynamics simulations to explore the dynamics and allosteric behavior of Sorcin in the context of Ca2+ uptake and Doxorubicin binding. The results show that Ca2+ binding induces large, but reversible conformational changes in the Sorcin structure which manifest as rigid body reorientations that preserve the local secondary structure. A reciprocal allosteric handshake centered around the EF5 hand is found to be key in Sorcin dimer formation and stabilization. Binding of Doxorubicin results in rearrangement of allosteric communities which disrupts long-range allosteric information transfer from the N-terminal domain to the middle lobe. However, this binding does not result in secondary structure destabilization. Sorcin does not appear to have a distinct Ca2+ activated mode of Doxorubicin binding.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vinnarasi Saravanan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ijas Ahammed
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Akash Bhattacharya
- Visiting Assistant Professor of Physics, St. Mary's University, San Antonio, Texas, USA
| | - Swati Bhattacharya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
4
|
Pasternack H, Polzer M, Gemoll T, Kümpers C, Sauer T, Lazar-Karsten P, Hinrichs S, Bohnet S, Perner S, Dressler FF, Kirfel J. Proteomic analyses identify HK1 and ATP5A to be overexpressed in distant metastases of lung adenocarcinomas compared to matched primary tumors. Sci Rep 2023; 13:20948. [PMID: 38016997 PMCID: PMC10684588 DOI: 10.1038/s41598-023-47767-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with lung adenocarcinoma (LUAD) being the most common type. Genomic studies of LUAD have advanced our understanding of its tumor biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD are still insufficiently explored. The prognosis for lung cancer patients is still mostly determined by the stage of disease at the time of diagnosis. Focusing on late-stage metastatic LUAD with poor prognosis, we compared the proteomic profiles of primary tumors and matched distant metastases to identify relevant and potentially druggable differences. We performed high-performance liquid chromatography (HPLC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) on a total of 38 FFPE (formalin-fixed and paraffin-embedded) samples. Using differential expression analysis and unsupervised clustering we identified several proteins that were differentially regulated in metastases compared to matched primary tumors. Selected proteins (HK1, ATP5A, SRI and ARHGDIB) were subjected to validation by immunoblotting. Thereby, significant differential expression could be confirmed for HK1 and ATP5A, both upregulated in metastases compared to matched primary tumors. Our findings give a better understanding of tumor progression and metastatic spreads in LUAD but also demonstrate considerable inter-individual heterogeneity on the proteomic level.
Collapse
Affiliation(s)
- Helen Pasternack
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Mirjam Polzer
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
- Institute of Legal Medicine, University Hospital Münster, Münster, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Christiane Kümpers
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Thorben Sauer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Pamela Lazar-Karsten
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sofie Hinrichs
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sabine Bohnet
- Department of Pulmonology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
- Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- Institute of Pathology and Hematopathology, Hamburg, Germany
| | - Franz Friedrich Dressler
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany
- Institute of Pathology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jutta Kirfel
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.
| |
Collapse
|
5
|
Tito C, Genovese I, Giamogante F, Benedetti A, Miglietta S, Barazzuol L, Cristiano L, Iaiza A, Carolini S, De Angelis L, Masciarelli S, Nottola SA, Familiari G, Petrozza V, Lauriola M, Tamagnone L, Ilari A, Calì T, Valdivia HH, Valdivia CR, Colotti G, Fazi F. Sorcin promotes migration in cancer and regulates the EGF-dependent EGFR signaling pathways. Cell Mol Life Sci 2023; 80:202. [PMID: 37442828 PMCID: PMC10345051 DOI: 10.1007/s00018-023-04850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
The epidermal growth factor receptor (EGFR) is one of the main tumor drivers and is an important therapeutic target for many cancers. Calcium is important in EGFR signaling pathways. Sorcin is one of the most important calcium sensor proteins, overexpressed in many tumors, that promotes cell proliferation, migration, invasion, epithelial-to-mesenchymal transition, malignant progression and resistance to chemotherapeutic drugs. The present work elucidates a functional mechanism that links calcium homeostasis to EGFR signaling in cancer. Sorcin and EGFR expression are significantly correlated and associated with reduced overall survival in cancer patients. Mechanistically, Sorcin directly binds EGFR protein in a calcium-dependent fashion and regulates calcium (dys)homeostasis linked to EGF-dependent EGFR signaling. Moreover, Sorcin controls EGFR proteostasis and signaling and increases its phosphorylation, leading to increased EGF-dependent migration and invasion. Of note, silencing of Sorcin cooperates with EGFR inhibitors in the regulation of migration, highlighting calcium signaling pathway as an exploitable target to enhance the effectiveness of EGFR-targeting therapies.
Collapse
Affiliation(s)
- Claudia Tito
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Ilaria Genovese
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Anna Benedetti
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Selenia Miglietta
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Loredana Cristiano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessia Iaiza
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Sabatino Carolini
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Luciana De Angelis
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Silvia Masciarelli
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| | - Stefania Annarita Nottola
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Familiari
- Section of Human Anatomy, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Petrozza
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Mattia Lauriola
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Tamagnone
- Department of Life Science and Public Health, Histology and Embryology Unit - Catholic University of the Sacred Hearth, Fondazione Policlinico Gemelli - IRCCS, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Tito Calì
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Hector H. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Carmen R. Valdivia
- Department of Medicine, Cardiovascular Research Center, University of Wisconsin, Madison, WI USA
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, IBPM-CNR, P.le A. Moro 5, 00185 Rome, Italy
| | - Francesco Fazi
- Section of Histology and Medical Embryology, Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Sapienza University of Rome, Via A. Scarpa, 14-16, 00161 Rome, Italy
| |
Collapse
|
6
|
Structural insight into the binding pattern and interaction mechanism of chemotherapeutic agents with Sorcin by docking and molecular dynamic simulation. Colloids Surf B Biointerfaces 2021; 208:112098. [PMID: 34509085 DOI: 10.1016/j.colsurfb.2021.112098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Sorcin (SOluble Resistance-related Calcium bInding proteiN) is a calcium binding protein that plays a key role in multidrug resistance (MDR) in human cancers. This study aimed at understanding the binding mechanism and structural basis for the interaction of structurally and functionally unrelated chemotherapeutic agent, namely doxorubicin, etoposide, omacetaxine mepesuccinate and paclitaxel with Sorcin by utilizing docking and molecular dynamic simulation approaches. The docking evaluation of etoposide, omacetaxine mepesuccinate and paclitaxel have shown a high affinity binding with Sorcin at the Ca2+-binding C-terminal domain (SCBD) in a comparable mode and affinity of binding to doxorubicin. Moreover, all of the docked compounds were shown to interact both hydrophilically and hydrophobically with the same residues within the active pocket which is located at interface of the Sorcin and collectively formed by EF5 loop, G helix and EF4 loop. However, the MD simulations revealed that the dynamics of Sorcin structure is different in the presence of the compounds when compared and contrasted to the Apo Sorcin, particularly in the first 25 ns, after which each system gained considerable structure stability. The difference in dynamics might be the outcome of high N and C-terminal flexibility that seem not to disturb compounds binding conformation but more likely is affecting chemical interaction network by breaking and establishing old and new hydrogen bonds, respectively. This detailed mechanistic understanding of different chemotherapeutic agents binding to Sorcin might be useful to open windows for designing and developing new inhibitors that are potentially capable of reversing the MDR in human cancers.
Collapse
|
7
|
Wang Y, Zhu Y, Pu Z, Li Z, Deng Y, Li N, Peng F. Soluble resistance-related calcium-binding protein participates in multiple diseases via protein-protein interactions. Biochimie 2021; 189:76-86. [PMID: 34153376 DOI: 10.1016/j.biochi.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
Soluble resistance-related calcium-binding protein (sorcin), a 22 kDa penta-EF-hand protein, has been intensively studied in cancers and multidrug resistance over a prolonged period. Sorcin is widely distributed in tissues and participates in the regulation of Ca2+ homeostasis and Ca2+-dependent signaling. Protein-protein interactions (PPIs) are essential for regulating protein functions in almost all biological processes. Sorcin interaction partners tend to vary in type, including Ca2+ receptors, Ca2+ transporters, endoplasmic reticulum stress markers, transcriptional regulatory elements, immunomodulation-related factors, and viral proteins. Recent studies have shown that sorcin is involved in a broad range of pathological conditions, such as cardiomyopathy, type 2 diabetes mellitus, neurodegenerative diseases, liver diseases, and viral infections. As a multifunctional cellular protein, in these diseases, sorcin has a role by interacting with or regulating the expression of other proteins, such as sarcoplasmic reticulum/endoplasmic reticulum Ca2+ ATPase, ryanodine receptors, presenilin 2, L-type Ca2+ channels, carbohydrate-responsive element-binding protein, tau, α-synuclein, signal transducer and activator of transcription 3, HCV nonstructural 5A protein, and viral capsid protein 1. This review summarizes the roles that sorcin plays in various diseases, mainly via different PPIs, and focuses principally on non-neoplastic diseases to help acquire a more comprehensive understanding of sorcin's multifunctional characteristics.
Collapse
Affiliation(s)
- Yinmiao Wang
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Yuanyuan Zhu
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhangya Pu
- Department of Infectious Diseases and Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Zhenfen Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Ying Deng
- People's Hospital of Ningxiang, Changsha, Hunan Province 410600, China
| | - Ning Li
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China
| | - Fang Peng
- Department of Blood Transfusion, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China; NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, China.
| |
Collapse
|
8
|
Wang D, Shi S, Hsieh YL, Wang J, Wang H, Wang W. Knockdown of sorcin increases HEI-OC1 cell damage induced by cisplatin in vitro. Arch Biochem Biophys 2021; 701:108752. [PMID: 33675811 DOI: 10.1016/j.abb.2021.108752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/27/2020] [Accepted: 01/01/2021] [Indexed: 12/29/2022]
Abstract
Hearing loss caused by ototoxic drugs is a kind of acquired hearing loss. Cisplatin is one of the most commonly used drugs and its main action sites are hair cells (HCs). Sorcin is a drug-resistant calcium-binding protein belonging to the small penta-EF-hand protein family. Sorcin is highly expressed in many tissues, including bone, heart, brain, lung, and skin tissues. Single-cell RNA sequencing showed that sorcin was expressed in the outer HCs of mice, but its role remained unknown. We also found that sorcin was highly expressed in the cytoplasm of cochlear HCs and HEI-OC1 cells. After cisplatin injury, the expression of sorcin in HCs and HEI-OC1 cells decreased significantly. SiRNA transfection technology was used to knock down the expression of sorcin. The results showed that the number of apoptotic cells, the expression of cleaved caspased-3, and the expression of Bax increased while the anti-apoptotic factor Bcl-2 decreased in the siRNA-Sorcin + CIS group. The observed increase in apoptosis was related to the increase of reactive oxygen species (ROS) and the destruction of the mitochondrial membrane potential (MMP). Finally, we found that the downregulated sorcin worked by activating the P-ERK1/2 signaling pathway. Overall, this study showed that sorcin can be used as a new target to prevent the ototoxicity of platinum drugs.
Collapse
Affiliation(s)
- Dan Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Suming Shi
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Yue-Lin Hsieh
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Jiali Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Hui Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China
| | - Wuqing Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, Fudan University and Key Laboratory of Hearing Medicine of National Health and Family Planning Commission (NHFPC), Shanghai, 200031, China.
| |
Collapse
|
9
|
Mechanisms of resistance to chemotherapy in non-small cell lung cancer. Arch Pharm Res 2021; 44:146-164. [PMID: 33608812 DOI: 10.1007/s12272-021-01312-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Non-small cell lung cancer (NSCLC), which represents 80-85% of lung cancer cases, is one of the leading causes of human death worldwide. The majority of patients undergo an intensive and invasive treatment regimen, which may include radiotherapy, chemotherapy, targeted therapy, immunotherapy, or a combination of these, depending on disease stage and performance status. Despite advances in therapeutic regimens, the 5-year survival of NSCLC is approximately 20-30%, largely due to diagnosis at advanced stages. Conventional chemotherapy is still the standard treatment option for patients with NSCLC, especially those with advanced disease. However, the emergence of resistance to chemotherapeutic agents (chemoresistance) poses a significant obstacle to the management of patients with NSCLC. Therefore, to develop efficacious chemotherapeutic approaches for NSCLC, it is necessary to understand the mechanisms underlying chemoresistance. Several mechanisms are known to mediate chemoresistance. These include altered cellular targets for chemotherapy, decreased cellular drug concentrations, blockade of chemotherapy-induced cell cycle arrest and apoptosis, acquisition of epithelial-mesenchymal transition and cancer stem cell-like phenotypes, deregulated expression of microRNAs, epigenetic modulation, and the interaction with tumor microenvironments. In this review, we summarize the mechanisms underlying chemoresistance and tumor recurrence in NSCLC and discuss potential strategies to avoid or overcome chemoresistance.
Collapse
|
10
|
Abstract
Multidrug resistance (MDR) is a vital issue in cancer treatment. Drug resistance can be developed through a variety of mechanisms, including increased drug efflux, activation of detoxifying systems and DNA repair mechanisms, and escape of drug-induced apoptosis. Identifying the exact mechanism related in a particular case is a difficult task. Proteomics is the large-scale study of proteins, particularly their expression, structures and functions. In recent years, comparative proteomic methods have been performed to analyze MDR mechanisms in drug-selected model cancer cell lines. In this paper, we review the recent developments and progresses by comparative proteomic approaches to identify potential MDR mechanisms in drug-selected model cancer cell lines, which may help understand and design chemical sensitizers.
Collapse
|
11
|
Battista T, Fiorillo A, Chiarini V, Genovese I, Ilari A, Colotti G. Roles of Sorcin in Drug Resistance in Cancer: One Protein, Many Mechanisms, for a Novel Potential Anticancer Drug Target. Cancers (Basel) 2020; 12:cancers12040887. [PMID: 32268494 PMCID: PMC7226229 DOI: 10.3390/cancers12040887] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
The development of drug resistance is one of the main causes of failure in anti-cancer treatments. Tumor cells adopt many strategies to counteract the action of chemotherapeutic agents, e.g., enhanced DNA damage repair, inactivation of apoptotic pathways, alteration of drug targets, drug inactivation, and overexpression of ABC (Adenosine triphosphate-binding cassette, or ATP-binding cassette) transporters. These are broad substrate-specificity ATP-dependent efflux pumps able to export toxins or drugs out of cells; for instance, ABCB1 (MDR1, or P-glycoprotein 1), overexpressed in most cancer cells, confers them multidrug resistance (MDR). The gene coding for sorcin (SOluble Resistance-related Calcium-binding proteIN) is highly conserved among mammals and is located in the same chromosomal locus and amplicon as the ABC transporters ABCB1 and ABCB4, both in human and rodent genomes (two variants of ABCB1, i.e., ABCB1a and ABCB1b, are in rodent amplicon). Sorcin was initially characterized as a soluble protein overexpressed in multidrug (MD) resistant cells and named "resistance-related" because of its co-amplification with ABCB1. Although for years sorcin overexpression was thought to be only a by-product of the co-amplification with ABC transporter genes, many papers have recently demonstrated that sorcin plays an important part in MDR, indicating a possible role of sorcin as an oncoprotein. The present review illustrates sorcin roles in the generation of MDR via many mechanisms and points to sorcin as a novel potential target of different anticancer molecules.
Collapse
Affiliation(s)
- Theo Battista
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Annarita Fiorillo
- Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy; (T.B.); (A.F.)
| | - Valerio Chiarini
- Doctoral Programme in Integrative Life Science, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland;
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies, University of Ferrara, 44121 Ferrara, Italy;
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche (IBPM-CNR), c/o Department of Biochemical Sciences, Sapienza University, P.le A.Moro 5, 00185 Rome, Italy
- Correspondence: (A.I.); (G.C.)
| |
Collapse
|
12
|
Zhou X, Wu X, Chen B. Sorcin: a novel potential target in therapies of cancers. Cancer Manag Res 2019; 11:7327-7336. [PMID: 31496794 PMCID: PMC6689139 DOI: 10.2147/cmar.s208677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Soluble resistance-related calcium-binding protein (sorcin) is a member of the penta-EF-hand protein family. Sorcin is widely distributed in normal human tissues, such as the brain, heart, lymphocytes, kidneys, breast and skin. Findings suggest that sorcin is associated with the regulation of calcium homeostasis, cell cycle and vesicle trafficking. It has been reported that many types of non-neoplastic diseases such as diabetes, viral infection, infertility, and nervous system diseases were affected by the expression of sorcin. One of the main issues is the role of sorcin in neoplastic diseases. Research proved that sorcin can be found to overexpress in cells of several cancers, particularly in the case of multidrug-resistant cancers. Additionally, the researchers proposed that the expression of sorcin was significantly associated with the foundation of multidrug resistance (MDR). All the findings mentioned above emphasized the importance of studying sorcin. This review mainly includes the following aspects: functions of sorcin, role in non-neoplastic and neoplastic diseases, and research related to drugs. To sum up, sorcin is a potential novel target to be studied to deal with MDR.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Hematology and Oncology, Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xue Wu
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Liang AL, Du SL, Zhang B, Zhang J, Ma X, Wu CY, Liu YJ. Screening miRNAs associated with resistance gemcitabine from exosomes in A549 lung cancer cells. Cancer Manag Res 2019; 11:6311-6321. [PMID: 31372037 PMCID: PMC6626902 DOI: 10.2147/cmar.s209149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Purpose To establish a gemcitabine-resistant lung adenocarcinoma cell line, A549/G+, and to screen the differences of miRNA expression in exosomes from A549 and A549/G+ cells. Methods A549 cells were exposed in gemcitabine until they were resistant to gemcitabine, and extracted exosomes from A549 and A549/G+. The RNAs from exosomes were subjected to miRNA expression microarray experiments. Results After 39 weeks of continuous induction, we induced drug resistance in A549 cells. The resistance index was 6. Via GeneChip miRNA 4.0 analysis, there were 446 differential miRNAs between A549 and A549/G+. Target gene prediction and pathway analysis discovered the microRNAs in the intersections may participate in drug resistance. Conclusion These differential miRNAs help to do in-depth research to elucidate the mechanism of resistance to gemcitabine in non-small cell lung cancer.
Collapse
Affiliation(s)
- Ai-Ling Liang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Shen-Lin Du
- Department of Blood Transfusion, Dongguan Tung Wah Hospital, Dongguan, Guangdong 523210, People's Republic of China
| | - Bin Zhang
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Jing Zhang
- The Clinical Laboratory of Shunde Hospital, Southern Medical University, Shunde 528300, People's Republic of China
| | - Xuan Ma
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| | - Cui-Yun Wu
- The Clinical Laboratory of Shunde Hospital, Southern Medical University, Shunde 528300, People's Republic of China
| | - Yong-Jun Liu
- Medical Molecular Diagnostics Key Laboratory of Guangdong, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China.,Department of Clinical Biochemistry, Guangdong Medical University, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
14
|
Cao Y, Li Z, Mao L, Cao H, Kong J, Yu B, Yu C, Liao W. The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer. Eur J Med Chem 2019; 162:423-434. [DOI: 10.1016/j.ejmech.2018.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023]
|
15
|
Shabnam B, Padmavathi G, Banik K, Girisa S, Monisha J, Sethi G, Fan L, Wang L, Mao X, Kunnumakkara AB. Sorcin a Potential Molecular Target for Cancer Therapy. Transl Oncol 2018; 11:1379-1389. [PMID: 30216763 PMCID: PMC6134165 DOI: 10.1016/j.tranon.2018.08.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 01/05/2023] Open
Abstract
Sorcin (Soluble resistance related calcium binding protein) is a small soluble penta EF family (PEF) of calcium (Ca2+) binding protein (22,000 Da). It has been reported to play crucial roles in the regulation of calcium homeostasis, apoptosis, vesicle trafficking, cancer development, and multidrug resistance (MDR). Overexpression of sorcin has been reported to be associated with different cancers such as breast cancer, colorectal cancer, gastric cancer, leukemia, lung cancer, nasopharyngeal cancer, ovarian cancer, etc. Essentially, expression of sorcin has been found to be elevated in cancer cells as compared to normal cells, indicating that it has prominent role in cancer. Moreover, sorcin was found to be the regulator of various proteins that has an association with carcinogenesis including NF-κB, STAT3, Akt, ERK1/2, VEGF, MMPs, caspases, etc. Sorcin was also found to regulate apoptosis, as silencing of the same resulted in increased levels of proapoptotic genes and induced mitochondrial apoptotic pathway in cancer. Interestingly, mutations in the sorcin gene have been closely linked with poor overall survival in bladder cancer, brain lower-grade glioma, glioblastoma, glioblastoma multiforme, kidney renal clear cell carcinoma, and stomach adenocarcinoma. Additionally, overexpression of sorcin was also found to induce MDR against different chemotherapeutic drugs. All these findings mark the importance of sorcin in cancer development and MDR. Therefore, there is urgent need to explore the functional mechanism of sorcin and to analyze whether silencing of sorcin would able to chemosensitize MDR cells. The current review summarizes the structure, expression, and functions of sorcin and its importance in the regulation of various malignancies and MDR.
Collapse
Affiliation(s)
- Bano Shabnam
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Javadi Monisha
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India
| | - Gautam Sethi
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, 70000, Vietnam; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India.
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599
| | - Xinliang Mao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun District, Guangzhou 510405, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Assam-781039, India.
| |
Collapse
|
16
|
Yu X, Mao J, Mahmoud S, Huang H, Zhang Q, Zhang J. Soluble resistance-related calcium-binding protein in cancers. Clin Chim Acta 2018; 486:369-373. [PMID: 30144438 DOI: 10.1016/j.cca.2018.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/10/2023]
Abstract
Soluble resistance-related calcium binding protein (Sorcin) is an oncoprotein expressed at high levels in human cancers and confers multidrug resistance (MDR) in several tumors. Sorcin participates in a number of neoplastic processing including metastasis and apoptosis. In this review, we summarize and discuss the relationship of Sorcin with tumors as well as its regulatory mechanisms. Sorcin is increasingly considered as a potential molecular target for therapeutic intervention.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Jun Mao
- Teaching Laboratory of Morphology, Dalian Medical University, Dalian 116044, China
| | - Salma Mahmoud
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - He Huang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qingqing Zhang
- Key Laboratory of Tumor Metastasis of Liaoning Province University, Dalian 116044, China
| | - Jun Zhang
- Department of Pathology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
17
|
Sharpnack MF, Ranbaduge N, Srivastava A, Cerciello F, Codreanu SG, Liebler DC, Mascaux C, Miles WO, Morris R, McDermott JE, Sharpnack JL, Amann J, Maher CA, Machiraju R, Wysocki VH, Govindan R, Mallick P, Coombes KR, Huang K, Carbone DP. Proteogenomic Analysis of Surgically Resected Lung Adenocarcinoma. J Thorac Oncol 2018; 13:1519-1529. [PMID: 30017829 DOI: 10.1016/j.jtho.2018.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Despite apparently complete surgical resection, approximately half of resected early-stage lung cancer patients relapse and die of their disease. Adjuvant chemotherapy reduces this risk by only 5% to 8%. Thus, there is a need for better identifying who benefits from adjuvant therapy, the drivers of relapse, and novel targets in this setting. METHODS RNA sequencing and liquid chromatography/liquid chromatography-mass spectrometry proteomics data were generated from 51 surgically resected non-small cell lung tumors with known recurrence status. RESULTS We present a rationale and framework for the incorporation of high-content RNA and protein measurements into integrative biomarkers and show the potential of this approach for predicting risk of recurrence in a group of lung adenocarcinomas. In addition, we characterize the relationship between mRNA and protein measurements in lung adenocarcinoma and show that it is outcome specific. CONCLUSIONS Our results suggest that mRNA and protein data possess independent biological and clinical importance, which can be leveraged to create higher-powered expression biomarkers.
Collapse
Affiliation(s)
- Michael F Sharpnack
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Nilini Ranbaduge
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Arunima Srivastava
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | | | - Simona G Codreanu
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Daniel C Liebler
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Celine Mascaux
- Department of Multidisciplinary Oncology and Therapeutic Innovations, Assistance Publique des Hôpitaux de Marseille, France; Aix-Marseille University, Marseille, France
| | - Wayne O Miles
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert Morris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jason E McDermott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA
| | - James L Sharpnack
- Department of Statistics, University of California, Davis, California
| | - Joseph Amann
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Christopher A Maher
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Raghu Machiraju
- Department of Computer Science and Engineering, The Ohio State University, Columbus, Ohio
| | - Vicki H Wysocki
- Department of Chemistry, The Ohio State University, Columbus, Ohio
| | - Ramaswami Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Parag Mallick
- Department of Radiology, Stanford University, Palo Alto, California
| | - Kevin R Coombes
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - David P Carbone
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
18
|
Sun Y, Wang C, Meng Q, Liu Z, Huo X, Sun P, Sun H, Ma X, Peng J, Liu K. Targeting P-glycoprotein and SORCIN: Dihydromyricetin strengthens anti-proliferative efficiency of adriamycin via MAPK/ERK and Ca 2+ -mediated apoptosis pathways in MCF-7/ADR and K562/ADR. J Cell Physiol 2017; 233:3066-3079. [PMID: 28681913 DOI: 10.1002/jcp.26087] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
Abstract
Recently, a new target Ca2+ -binding protein SORCIN was reported to participate in multidrug resistance (MDR) in cancer. Here we aim to investigate whether dihydromyricetin (DMY), a dihydroflavonol compound with anti-inflamatory, anti-oxidant, anti-bacterial and anti-tumor actions, reverses MDR in MCF-7/ADR and K562/ADR and to elucidate its potential molecular mechanism. DMY enhanced cytotoxicity of adriamycin (ADR) by downregulating MDR1 mRNA and P-gp expression through MAPK/ERK pathway and also inhibiting the function of P-gp significantly. Meanwhile, DMY decreased mRNA and protein expression of SORCIN, which resulted in elevating intracellular free Ca2+ . Finally, we investigated co-administration ADR with DMY remarkably increased ADR-induced apoptosis. Further study showed DMY elevated ROS levels and caspase-12 protein expression, which signal apoptosis in endoplasmic reticulum. At the same time, proteins related to mitochondrial apoptosis were also changed such as Bcl-2, Bax, caspase-3, caspase-9, and PARP. Finally, nude mice model also demonstrated that DMY strengthened anti-tumor activity of ADR in vivo. In conclusion, DMY reverses MDR by downregulating P-gp, SORCIN expression and increasing free Ca2+ , as well as, inducing apoptosis in MCF-7/ADR and K562/ADR. These fundamental findings provide evidence for further clinical research in application of DMY as an assistant agent in the treatment of cancer.
Collapse
Affiliation(s)
- Yaoting Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Zhihao Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Xiaodong Ma
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning, China.,Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
19
|
Lei X, Liang Y, Chen J, Xiao S, Lei J, Li J, Duanmu J, Jiang Q, Liu D, Tang C, Li T. Sorcin Predicts Poor Prognosis and Promotes Metastasis by Facilitating Epithelial-mesenchymal Transition in Hepatocellular Carcinoma. Sci Rep 2017; 7:10049. [PMID: 28855589 PMCID: PMC5577205 DOI: 10.1038/s41598-017-10365-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 08/09/2017] [Indexed: 01/27/2023] Open
Abstract
Metastasis-associated recurrence is the main cause for the poor prognosis of hepatocellular carcinoma (HCC). However, the detailed molecular mechanisms underlying HCC metastasis remain elusive. Though some data indicated the oncogenic role of Sorcin in tumors, the prognostic value and biological role of Sorcin in HCC is still unknown. In this study, it demonstrated that Sorcin expression levels were significantly upregulated in HCC tumor tissues compared with matched adjacent nontumorous liver tissues and normal liver tissues, and such expression level correlated with HCC metastasis. High Sorcin expression was significantly correlated with aggressive clinicopathological characteristics such as multiple tumor nodules, high Edmondson-Steiner grade, microvascular invasion, advanced TNM stage and advanced BCLC stage (all P < 0.05). HCC patients with high Sorcin expression had both shorter survival and higher recurrence than those with low Sorcin expression (all P < 0.05). Sorcin expression was an independent and significant risk factor for survival and recurrence of HCC patients. Results of functional experiments showed that Sorcin could promote HCC cell proliferation, migration, and invasion in vitro, and facilitate HCC growth and metastasis in vivo. Mechanistically, Sorcin exerted its role by activating extracellular signal-regulated kinase (ERK) pathway and promoted metastasis by facilitating epithelial-mesenchymal transition (EMT) in HCC.
Collapse
Affiliation(s)
- Xiong Lei
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yahang Liang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jian Chen
- Department of Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuai Xiao
- Liver Cancer Laboratory, Department of Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jian Lei
- Department of Pathology, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jianfeng Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Jinzhong Duanmu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qunguang Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Dongning Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Cheng Tang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Taiyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
20
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
21
|
Tong W, Sun D, Wang Q, Suo J. Sorcin Enhances Metastasis and Promotes Epithelial-to-Mesenchymal Transition of Colorectal Cancer. Cell Biochem Biophys 2017; 72:453-9. [PMID: 25567655 DOI: 10.1007/s12013-014-0486-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sorcin, a soluble resistance-related calcium-binding protein, belongs to the small penta-EF-hand family. Recent study reported that upregulation of sorcin correlated with metastasis and poor prognosis of colorectal cancer (CRC). In the present study, we explored the regulatory role of sorcin in CRC metastasis. To investigate the role of sorcin in CRC metastasis, sorcin overexpressed with empty vector as control in CRC cell line (HCT116). The effect of sorcin overexpression on cell migration and invasion was evaluated via wound healing and transwell assay, respectively. Sorcin-induced changes in EMT process were evaluated by estern blot. Furthermore, the role of PI3K/Akt in the regulatory effect of sorcin on cell migration and invasion, and EMT process was explored by suppressing Akt activity in sorcin-overexpressed HCT116 cells. Sorcin overexpression in HCT116 cells resulted in a significant increase in cell migration and invasion. Sorcin overexpression also markedly promoted the EMT process. More importantly, our results revealed that sorcin stimulated EMT process through activating PI3K/Akt signaling. In summary, this study indicated that the promoting effect of sorcin on CRC metastasis was, at least in part, through PI3K/Akt signaling. The findings in this study highlight the effectiveness and therapeutic potential to utilize sorcin-targeted strategies in the treatment of CRC.
Collapse
Affiliation(s)
- Weihua Tong
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, 71th Xin Min Street, Changchun, 130021, Jilin, China
| | - Donghui Sun
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, 71th Xin Min Street, Changchun, 130021, Jilin, China
| | - Quan Wang
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, 71th Xin Min Street, Changchun, 130021, Jilin, China
| | - Jian Suo
- Department of Gastrointestinal-Colorectal Surgery, First Hospital of Jilin University, 71th Xin Min Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
22
|
Dabaghi M, Rahgozar S, Moshtaghian J, Moafi A, Abedi M, Pourabutaleb E. Overexpression of SORCIN is a Prognostic Biomarker for Multidrug-Resistant Pediatric Acute Lymphoblastic Leukemia and Correlates with Upregulated MDR1/P-gp. Genet Test Mol Biomarkers 2016; 20:516-21. [PMID: 27382961 DOI: 10.1089/gtmb.2016.0031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Multidrug resistance is one of the major causes of treatment failure in pediatric acute lymphoblastic leukemia (ALL), and SORCIN is an intracellular calcium modulator protein. The current study was designed to investigate the in vitro and in vivo relationships between the expression levels of SORCIN: in tumor cell lines and children with ALL; its possible correlation with MDR1/P-glycoprotein (P-gp), a multidrug resistance-related gene; and response to therapy. MATERIALS AND METHODS Childhood T-lymphoblastic leukemia (CCRF-CEM) cell lines resistant to methotrexate (MTX) were developed. Patient studies were performed by including 30 children with ALL at diagnosis, 3 children with bone marrow relapse, and 15 children with no symptoms of cancer. The mRNA expression profiles of SORCIN and MDR1/P-gp was assessed using quantitative polymerase chain reaction (qPCR). Minimal residual disease (MRD) was measured in the patient population, a year following the initial therapy using qPCR. RESULTS Cell line data analyses showed a positive correlation between SORCIN mRNA levels and resistance to MTX. The difference between patient and control groups for SORCIN expression levels was not significant. However, patients with a negative response to therapy showed an increase in SORCIN mRNA levels (up to 6.8-fold) compared with those with negative MRD. In addition, the results demonstrated a significant positive correlation between SORCIN and MDR1/P-gp gene expression levels. CONCLUSION The current study introduces, for the first time, a possible prognostic value of SORCIN in childhood ALL, which may be correlated with MDR1/P-gp gene expression in these patients.
Collapse
Affiliation(s)
- Mohammad Dabaghi
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Soheila Rahgozar
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Jamal Moshtaghian
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Alireza Moafi
- 2 Department of Pediatric-Hematology-Oncology, Sayed-ol-Shohada Hospital, Isfahan University of Medical Sciences , Isfahan, Iran
| | - Marjan Abedi
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| | - Elnaz Pourabutaleb
- 1 Department of Biology, Faculty of Science, University of Isfahan , Isfahan, Iran
| |
Collapse
|
23
|
Structural basis of Sorcin-mediated calcium-dependent signal transduction. Sci Rep 2015; 5:16828. [PMID: 26577048 PMCID: PMC4649501 DOI: 10.1038/srep16828] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022] Open
Abstract
Sorcin is an essential penta-EF hand calcium binding protein, able to confer the multi-drug resistance phenotype to drug-sensitive cancer cells and to reduce Endoplasmic Reticulum stress and cell death. Sorcin silencing blocks cell cycle progression in mitosis and induces cell death by triggering apoptosis. Sorcin participates in the modulation of calcium homeostasis and in calcium-dependent cell signalling in normal and cancer cells. The molecular basis of Sorcin action is yet unknown. The X-ray structures of Sorcin in the apo (apoSor) and in calcium bound form (CaSor) reveal the structural basis of Sorcin action: calcium binding to the EF1-3 hands promotes a large conformational change, involving a movement of the long D-helix joining the EF1-EF2 sub-domain to EF3 and the opening of EF1. This movement promotes the exposure of a hydrophobic pocket, which can accommodate in CaSor the portion of its N-terminal domain displaying the consensus binding motif identified by phage display experiments. This domain inhibits the interaction of sorcin with PDCD6, a protein that carries the Sorcin consensus motif, co-localizes with Sorcin in the perinuclear region of the cell and in the midbody and is involved in the onset of apoptosis.
Collapse
|
24
|
Gao Y, Li W, Liu X, Gao F, Zhao X. Reversing effect and mechanism of soluble resistance-related calcium-binding protein on multidrug resistance in human lung cancer A549/DDP cells. Mol Med Rep 2014; 11:2118-24. [PMID: 25394367 DOI: 10.3892/mmr.2014.2936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/07/2014] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is the primary malignancy of the lung and is the leading cause of cancer‑associated mortality in China. Multidrug resistance (MDR) is an essential aspect of lung cancer treatment failure and a popular topic of investigation in tumor studies. Previous studies have demonstrated that soluble resistance‑related calcium‑binding protein (Sorcin) is involved in the MDR of various types of human tumor, and that silencing Sorcin was able to reverse the MDR of several types of cultured human cancer cells. However, the effect and potential mechanism underlying the ability of Sorcin to reverse MDR in human lung cancer remains to be fully elucidated. The present study examined the role of Sorcin in the reversal of MDR in human lung cancer A549/DDP cells. The effects included increased drug sensitivity to cisplatin, apoptotic rate, cell cycle arrest in the G2/M phase and intracellular accumulation of rhodamine‑123, and decreased expression of multidrug resistance gene 1, lung resistance protein, multidrug resistance‑associated protein, glutathione S‑transferase π, ATP‑binding cassette transporter A2 (ABCA2), ABCA5, B‑cell lymphoma 2 and P‑glycoprotein, and the depletion of glutathione in Sorcin‑silenced A549/DDP cells. The present study also revealed that there was a downregulation of p‑Akt and phosphorylated extracellular signal‑regulated kinase (p‑ERK), and a decreased transcriptional activation of nuclear factor κB, signal transducer and activator of transcription (STAT)3, STAT5 and nuclear factor of activated T‑cells following silencing of Sorcin. The results indicated that Sorcin may be used as a potential therapeutic target for MDR through inhibiting the Akt and ERK pathways in human lung cancer.
Collapse
Affiliation(s)
- Yanyan Gao
- Department of Internal Medicine, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Li
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaobo Liu
- Department of Chest Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Fusheng Gao
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xiaohua Zhao
- Department of Chest Surgery, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
25
|
Gong Z, Sun P, Chu H, Zhu H, Sun D, Chen J. Overexpression of sorcin in multidrug-resistant human breast cancer. Oncol Lett 2014; 8:2393-2398. [PMID: 25364401 PMCID: PMC4214497 DOI: 10.3892/ol.2014.2543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/01/2014] [Indexed: 12/15/2022] Open
Abstract
Sorcin is a soluble resistance-related calcium-binding protein, which is expressed in normal mammalian tissues, such as the liver, lungs and heart. It has been observed to be elevated in a number of cancer types, including colorectal, gastric and breast cancer. Its upregulation is usually associated with the development of chemotherapeutic drug resistance. The aim of this study was to evaluate the sorcin expression levels in human serum samples of breast cancer subjects at various stages, and subsequently compare the outcome of neoadjuvant chemotherapy when the sorcin levels fluctuated. In total, 50 subjects were recruited from patients who were admitted to Yantai Yuhunagding Hospital (Yantai, China) and diagnosed with breast cancer. Blood samples prior to and following chemotherapy were assessed using two-dimensional gel electrophoresis (2-DE) and western blot analysis. The 2-DE analysis of the serum samples revealed that sorcin was upregulated in six out of 29 neoadjuvant chemotherapy (NAC)-sensitive patients and, in those who developed multidrug resistance, sorcin was upregulated in 15 out of 21 patients (P<0.01). The differential expression levels of sorcin were confirmed by western blot and immunohistochemical analysis. In conclusion, sorcin expression in the human serum of breast cancer patients who are resistant to NAC was elevated when compared with that of NAC-sensitive patients.
Collapse
Affiliation(s)
- Zhaohua Gong
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongjin Chu
- Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hua Zhu
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Dengjun Sun
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jian Chen
- Department of Oncology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China ; Central Laboratory, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
26
|
Colotti G, Poser E, Fiorillo A, Genovese I, Chiarini V, Ilari A. Sorcin, a calcium binding protein involved in the multidrug resistance mechanisms in cancer cells. Molecules 2014; 19:13976-89. [PMID: 25197934 PMCID: PMC6271628 DOI: 10.3390/molecules190913976] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 11/23/2022] Open
Abstract
Sorcin is a penta-EF hand calcium binding protein, which participates in the regulation of calcium homeostasis in cells. Sorcin regulates calcium channels and exchangers located at the plasma membrane and at the endo/sarcoplasmic reticulum (ER/SR), and allows high levels of calcium in the ER to be maintained, preventing ER stress and possibly, the unfolded protein response. Sorcin is highly expressed in the heart and in the brain, and overexpressed in many cancer cells. Sorcin gene is in the same amplicon as other genes involved in the resistance to chemotherapeutics in cancer cells (multi-drug resistance, MDR) such as ABCB4 and ABCB1; its overexpression results in increased drug resistance to a number of chemotherapeutic agents, and inhibition of sorcin expression by sorcin-targeting RNA interference leads to reversal of drug resistance. Sorcin is increasingly considered a useful marker of MDR and may represent a therapeutic target for reversing tumor multidrug resistance.
Collapse
Affiliation(s)
- Gianni Colotti
- Institute of Biology, Molecular Medicine and Nanobiotechnology, Consiglio Nazionale delle Ricerche, P.le A Moro 5, Rome 00185, Italy.
| | - Elena Poser
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Annarita Fiorillo
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Ilaria Genovese
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Valerio Chiarini
- Department Biochemical Sciences "A. Rossi Fanelli", University Sapienza, P.le A. Moro 5, Rome 00185, Italy.
| | - Andrea Ilari
- Institute of Biology, Molecular Medicine and Nanobiotechnology, Consiglio Nazionale delle Ricerche, P.le A Moro 5, Rome 00185, Italy.
| |
Collapse
|
27
|
Yamagishi N, Nakao R, Kondo R, Nishitsuji M, Saito Y, Kuga T, Hatayama T, Nakayama Y. Increased expression of sorcin is associated with multidrug resistance in leukemia cells via up-regulation of MDR1 expression through cAMP response element-binding protein. Biochem Biophys Res Commun 2014; 448:430-6. [PMID: 24796664 DOI: 10.1016/j.bbrc.2014.04.125] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Sorcin, a 22 kDa Ca(2+) binding protein, was first identified in a vincristine-resistant Chinese hamster lung cell line, and was later demonstrated to be involved in the development of multidrug-resistance (MDR) phenotypes in a variety of human cancer cell lines. However, the exact role of sorcin in MDR cells is yet to be fully elucidated. Here we explored the role of sorcin in the development of MDR in leukemia cells, and revealed that the expression level of sorcin was directly correlated to the expression of MDR1/P-glycoprotein (P-gp). In addition, it was shown that sorcin induced the expression of MDR1/P-gp through a cAMP response element (CRE) between -716 and -709 bp of the mdr1/p-gp gene. Furthermore, overexpression of sorcin increased the phosphorylation of CREB1 and the binding of CREB1 to the CRE sequence of mdr1/p-gp promoter, and induced the expression of MDR1/P-gp. These findings suggested that sorcin induces MDR1/P-gp expression markedly through activation of the CREB pathway and is associated with the MDR phenotype. The new findings may be helpful for understanding the mechanisms of MDR in human cancer cells, prompting its further investigation as a molecular target to overcome MDR.
Collapse
Affiliation(s)
- Nobuyuki Yamagishi
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan; Radioisotope Center, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Ryota Nakao
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Rumi Kondo
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mai Nishitsuji
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Youhei Saito
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takahisa Kuga
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takumi Hatayama
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuji Nakayama
- Department of Biochemistry & Molecular Biology, Division of Biological Sciences, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
28
|
Tegillarca granosa extract Haishengsu (HSS) suppresses expression of mdr1, BCR/ABL and sorcin in drug-resistant K562/ADM tumors in mice. Adv Med Sci 2014; 58:112-7. [PMID: 23729583 DOI: 10.2478/v10039-012-0069-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To evaluate the effect of Haishengsu (HSS), a protein extract from Tegillarca granosa, on multidrug-resistance genes mdr1, BCR/ABL and sorcin in transplanted tumors. MATERIAL/METHODS Mice were inoculated subcutaneously with a drug resistant leukemia cell line K562/ADM. Tumor-bearing animals were divided into control, adriamycin, HSS and combination therapy (adriamycin plus HSS) groups. Flow cytometry was used to detect apoptosis of tumor cells, and RT-PCR was used to evaluate the expression of mdr1, BCR/ABL and sorcin. RESULTS The apoptosis rate in the high (71.8%), medium (72.3%) and low doses HSS group (72.4%) was higher than in control (1.2%, p<0.01), adriamycin (34.4%, p<0.05) or combination therapy group (46.4%, p<0.05). The mean optical density of mdr1, BCR/ABL and sorcin in HSS groups was lower than in control, adriamycin and combination therapy group (p<0.01). The optical density of the three genes in high HSS group was lower than in medium and low HSS group (p<0.01). CONCLUSIONS Haishengsu promotes apoptosis of drug-resistant K562/ADM tumors in mice in a dose-dependent manner. The pro-apoptotic effect of Haishengsu may be related to a reduced expression of multidrug-resistance genes mdr1, BCR/ABL and sorcin.
Collapse
|
29
|
Lalioti VS, Ilari A, O'Connell DJ, Poser E, Sandoval IV, Colotti G. Sorcin links calcium signaling to vesicle trafficking, regulates Polo-like kinase 1 and is necessary for mitosis. PLoS One 2014; 9:e85438. [PMID: 24427308 PMCID: PMC3888430 DOI: 10.1371/journal.pone.0085438] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/27/2013] [Indexed: 12/11/2022] Open
Abstract
Sorcin, a protein overexpressed in many multi-drug resistant cancers, dynamically localizes to distinct subcellular sites in 3T3-L1 fibroblasts during cell-cycle progression. During interphase sorcin is in the nucleus, in the plasma membrane, in endoplasmic reticulum (ER) cisternae, and in ER-derived vesicles localized along the microtubules. These vesicles are positive to RyR, SERCA, calreticulin and Rab10. At the beginning of mitosis, sorcin-containing vesicles associate with the mitotic spindle, and during telophase are concentrated in the cleavage furrow and, subsequently, in the midbody. Sorcin regulates dimensions and calcium load of the ER vesicles by inhibiting RYR and activating SERCA. Analysis of sorcin interactome reveals calcium-dependent interactions with many proteins, including Polo-like kinase 1 (PLK1), Aurora A and Aurora B kinases. Sorcin interacts physically with PLK1, is phosphorylated by PLK1 and induces PLK1 autophosphorylation, thereby regulating kinase activity. Knockdown of sorcin results in major defects in mitosis and cytokinesis, increase in the number of rounded polynucleated cells, blockage of cell progression in G2/M, apoptosis and cell death. Sorcin regulates calcium homeostasis and is necessary for the activation of mitosis and cytokinesis.
Collapse
Affiliation(s)
- Vasiliki S. Lalioti
- Centro de Biología Molecular Severo Ochoa, CSIC -Universidad Autónoma de Madrid, Departamento Biología Celular e Inmunología, Cantoblanco; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Andrea Ilari
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University “Sapienza” P.le A.Moro 5, Rome, Italy
| | - David J. O'Connell
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
| | - Elena Poser
- Department of Biochemical Sciences “A. Rossi Fanelli”, University “Sapienza” P.le A.Moro 5, Rome, Italy
| | - Ignacio V. Sandoval
- Centro de Biología Molecular Severo Ochoa, CSIC -Universidad Autónoma de Madrid, Departamento Biología Celular e Inmunología, Cantoblanco; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Gianni Colotti
- CNR-National Research Council of Italy, Institute of Molecular Biology and Pathology c/o Department of Biochemical Sciences “A. Rossi Fanelli”, University “Sapienza” P.le A.Moro 5, Rome, Italy
| |
Collapse
|
30
|
Sorcin silencing inhibits epithelial-to-mesenchymal transition and suppresses breast cancer metastasis in vivo. Breast Cancer Res Treat 2013; 143:287-99. [PMID: 24337682 DOI: 10.1007/s10549-013-2809-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/04/2013] [Indexed: 01/06/2023]
Abstract
Sorcin, a 22-kDa calcium-binding protein, renders cancer cells resistant to chemotherapeutic agents, thus playing an important role in multidrug resistance. As there is a clear association between drug resistance and an aggressive phenotype, we asked whether sorcin affects also the motility, invasion, and stem cell characteristics of cancer cells. We have used both RNA interference (transient and stable expression of hairpins) and a lentiviral expression vector to experimentally modulate sorcin expression in a variety of cells. We demonstrate that sorcin depletion in MDA-MB-231 breast cancer cells reduces the pool of CD44(+)/CD24(-) and ALDH1(high) cancer stem cells (CSCs) as well as mammosphere-forming capacity. We also observe that sorcin regulates epithelial-mesenchymal transition and CSCs partly through E-cadherin and vascular endothelial growth factor expression. This leads to the acquisition of an epithelial-like phenotype, attenuating epithelial-mesenchymal transition and suppression of metastases in nude mice. The sorcin-depleted phenotype can also be reproduced in lung adenocarcinoma A549 cells and lung fibrosarcoma HT1080 cells. In addition, overexpression of sorcin in MCF7 cells, which have low endogenous sorcin expression levels, increases their migration and invasion in vitro. This offers the rationale for the development of therapeutic strategies down-regulating sorcin expression for the treatment of cancer.
Collapse
|
31
|
Inhibition of sorcin reverses multidrug resistance of K562/A02 cells and MCF-7/A02 cells via regulating apoptosis-related proteins. Cancer Chemother Pharmacol 2013; 72:789-98. [DOI: 10.1007/s00280-013-2254-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/26/2013] [Indexed: 01/12/2023]
|
32
|
Indovina P, Marcelli E, Pentimalli F, Tanganelli P, Tarro G, Giordano A. Mass spectrometry-based proteomics: the road to lung cancer biomarker discovery. MASS SPECTROMETRY REVIEWS 2013; 32:129-142. [PMID: 22829143 DOI: 10.1002/mas.21355] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/18/2012] [Accepted: 04/18/2012] [Indexed: 06/01/2023]
Abstract
Lung cancer is the leading cause of cancer death in men and women in Western nations, and is among the deadliest cancers with a 5-year survival rate of 15%. The high mortality caused by lung cancer is attributable to a late-stage diagnosis and the lack of effective treatments. So, it is crucial to identify new biomarkers that could function not only to detect lung cancer at an early stage but also to shed light on the molecular mechanisms that underlie cancer development and serve as the basis for the development of novel therapeutic strategies. Considering that DNA-based biomarkers for lung cancer showed inadequate sensitivity, specificity, and reproducibility, proteomics could represent a better tool for the identification of useful biomarkers and therapeutic targets for this cancer type. Among the proteomics technologies, the most powerful tool is mass spectrometry. In this review, we describe studies that use mass spectrometry-based proteomics technologies to analyze tumor proteins and peptides, which might represent new diagnostic, prognostic, and predictive markers for lung cancer. We focus in particular on those findings that hold promise to impact significantly on the clinical management of this disease.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers/blood
- Biomarkers/metabolism
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/metabolism
- Chromatography, High Pressure Liquid
- Glycosylation/drug effects
- Humans
- Lung Neoplasms/blood
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Pleural Effusion, Malignant/blood
- Pleural Effusion, Malignant/drug therapy
- Pleural Effusion, Malignant/metabolism
- Prognosis
- Protein Processing, Post-Translational/drug effects
- Proteomics/methods
- Saliva/chemistry
- Saliva/drug effects
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Tandem Mass Spectrometry
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
33
|
Qu Y, Yang Y, Ma D, Xiao W. Increased trefoil factor 3 levels in the serum of patients with three major histological subtypes of lung cancer. Oncol Rep 2012; 27:1277-83. [PMID: 22246423 PMCID: PMC3583529 DOI: 10.3892/or.2012.1627] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/22/2011] [Indexed: 01/11/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths in the world. The trefoil factor (TFF) family is composed of three thermostable, and protease-resistant proteins, named TFF1, TFF2 and TFF3. TFF protein levels have been found to be related to the development of various types of cancer. However, it is still unclear whether TFF proteins are differentially expressed in the serum of different histological subtypes of lung cancer compared to healthy individuals. In this study, we investigated the levels of TFF proteins in serum and lung tissues of 130 lung cancer patients (58 squamous cell lung carcinoma cases, 43 adenocarcinoma cases and 29 SCLC cases) and 60 healthy individuals. It was found that TFF1 and TFF2 have similar or slightly higher levels in these three subtypes of lung cancer compared to healthy individuals, while TFF3 levels were significantly higher in the examined lung cancer cases compared to healthy individuals. Immunoblot analyses of TFF1, TFF2 and TFF3 indicated that lung cancer tissues and lung cancer cell lines have a higher expression of the TFF3 protein, but not of TFF1 or TFF2 proteins, compared to tissues from healthy individuals or from the normal cell line. Quantitative RT-PCR analysis indicated higher levels of TFF3, but not TFF1 and TFF2, transcripts in lung cancer tissues or cell lines. These results show increased TFF3 levels in serum and lung tissues, suggesting that TFF3 may serve as a promising, easily detected biomarker of lung cancer.
Collapse
Affiliation(s)
- Yiqing Qu
- Department of Respiratory Medicine, Qilu Hospital, Shandong University, Jinan 250012, PR China.
| | | | | | | |
Collapse
|
34
|
Sorcin, a potential therapeutic target for reversing multidrug resistance in cancer. J Physiol Biochem 2012; 68:281-7. [DOI: 10.1007/s13105-011-0140-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Morofuji N, Ojima H, Onaya H, Okusaka T, Shimada K, Sakamoto Y, Esaki M, Nara S, Kosuge T, Asahina D, Ushigome M, Hiraoka N, Nagino M, Kondo T. Macrophage-capping protein as a tissue biomarker for prediction of response to gemcitabine treatment and prognosis in cholangiocarcinoma. J Proteomics 2011; 75:1577-89. [PMID: 22155129 DOI: 10.1016/j.jprot.2011.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/08/2011] [Accepted: 11/24/2011] [Indexed: 12/15/2022]
Abstract
Cholangiocarcinoma is one of the deadliest malignancies worldwide. Recent studies reported that treatment with gemcitabine was effective in prolonging survival. However, as the treatment only benefited a limited subset of patients, selection of patients before treatment is required. To discover biomarkers predictive of the response to gemcitabine treatment in cholangiocarcinoma, we examined the proteome of three types of material resource; ten cell lines, nine xenografts and nine surgically resected primary tumors from patients who exhibited different response to gemcitabine treatment. Two-dimensional difference gel electrophoresis generated quantitative protein expression profiles including 3571 protein spots. We detected 172 protein spots with significant correlation with response to gemcitabine treatment. All proteins corresponding to these 172 protein spots were identified by mass spectrometry. We found that the macrophage-capping protein (CapG) was associated with response to gemcitabin treatment in all three types of material source. Immunohistochemical validation in an additional set of 196 cholangiocarcinoma cases revealed that CapG expression was associated with lymphatic invasion status and overall survival. Multivariate analysis showed that CapG protein expression was an independent prognostic factor for overall survival. In conclusion, CapG was identified as a novel candidate biomarker to predict response to gemcitabine treatment and survival in cholangiocarcinoma.
Collapse
Affiliation(s)
- Noriaki Morofuji
- Division of Pharmacoproteomics, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maddalena F, Laudiero G, Piscazzi A, Secondo A, Scorziello A, Lombardi V, Matassa DS, Fersini A, Neri V, Esposito F, Landriscina M. Sorcin induces a drug-resistant phenotype in human colorectal cancer by modulating Ca(2+) homeostasis. Cancer Res 2011; 71:7659-69. [PMID: 22052463 DOI: 10.1158/0008-5472.can-11-2172] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Ca(2+)-binding protein sorcin regulates intracellular calcium homeostasis and plays a role in the induction of drug resistance in human cancers. Recently, an 18 kDa mitochondrial isoform of sorcin was reported to participate in antiapoptosis in human colorectal cancer (CRC), but information remains lacking about the functional role of the more abundant 22 kDa isoform of sorcin expressed in CRC. We found the 22 kDa isoform to be widely expressed in human CRC cells, whether or not they were drug resistant. Its upregulation in drug-sensitive cells induced resistance to 5-fluorouracil, oxaliplatin, and irinotecan, whereas its downregulation sensitized CRC cells to these chemotherapeutic agents. Sorcin enhances the accumulation of Ca(2+) in the endoplasmic reticulum (ER), preventing ER stress, and, in support of this function, we found that the 22 kDa isoform of sorcin was upregulated under conditions of ER stress. In contrast, RNAi-mediated silencing of sorcin activated caspase-3, caspase-12, and GRP78/BiP, triggering apoptosis through the mitochondrial pathway. Our findings establish that CRC cells overexpress sorcin as an adaptive mechanism to prevent ER stress and escape apoptosis triggered by chemotherapeutic agents, prompting its further investigation as a novel molecular target to overcome MDR.
Collapse
|
37
|
Li XH, Li C, Xiao ZQ. Proteomics for identifying mechanisms and biomarkers of drug resistance in cancer. J Proteomics 2011; 74:2642-9. [PMID: 21964283 DOI: 10.1016/j.jprot.2011.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 08/31/2011] [Accepted: 09/07/2011] [Indexed: 01/08/2023]
Abstract
A major problem in chemotherapy of cancer patients is drug resistance as well as unpredictable response to treatment. During chemotherapy, multiple alterations of genetics and epigenetics that contribute to chemoresistance take place, eventually impacting on disease outcome. A more complex picture of the mechanisms of drug resistance is now emerging through application of high-throughput proteomics technology. We have entered an exciting time where proteomics are being applied to characterize the mechanisms of drug resistance, and to identify biomarkers for predicting response to chemotherapy, thereby leading to personalized therapeutic strategies of cancer patients. Comparative proteomics have identified a large number of differentially expressed proteins associated with chemoresistance. Although roles and mechanisms of such proteins in chemoresistance need to be further proved, at least some of them may be potential biomarkers for predicting chemotherapeutic response. Herein, we review the recent advancements on proteomic investigation of chemoresistance in human cancer, and emphasize putative biomarkers for predicting chemotherapeutic response and possible mechanisms of chemoresistance identified through proteomic approaches. Suggested avenues for future work are discussed.
Collapse
Affiliation(s)
- Xin-Hui Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | |
Collapse
|
38
|
Abstract
The quest to decipher protein alterations in cancer has spanned well over half a century. The vast dynamic range of protein abundance coupled with a plethora of isoforms and disease heterogeneity have been formidable challenges. Progress in cancer proteomics has substantially paralleled technological developments. Advances in analytical techniques and the implementation of strategies to de-complex the proteome into manageable components have allowed proteins across a wide dynamic range to be explored. The massive amounts of data that can currently be collected through proteomics allow the near-complete definition of cancer subproteomes, which reveals the alterations in signalling and developmental pathways. This allows the discovery of predictive biomarkers and the annotation of the cancer genome based on proteomic findings. There remains a considerable need for infrastructure development and the organized collaborative efforts to efficiently mine the cancer proteome.
Collapse
Affiliation(s)
- Samir Hanash
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5-C800, PO BOX 19024, Seattle, Washington 98109, USA.
| | | |
Collapse
|