1
|
Elanany MM, Mostafa D, Hamdy NM. Remodeled tumor immune microenvironment (TIME) parade via natural killer cells reprogramming in breast cancer. Life Sci 2023; 330:121997. [PMID: 37536617 DOI: 10.1016/j.lfs.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Breast cancer (BC) is the main cause of cancer-related mortality among women globally. Despite substantial advances in the identification and management of primary tumors, traditional therapies including surgery, chemotherapy, and radiation cannot completely eliminate the danger of relapse and metastatic illness. Metastasis is controlled by microenvironmental and systemic mechanisms, including immunosurveillance. This led to the evolvement of immunotherapies that has gained much attention in the recent years for cancer treatment directed to the innate immune system. The long forgotten innate immune cells known as natural killer (NK) cells have emerged as novel targets for more effective therapeutics for BC. Normally, NK cells has the capacity to identify and eradicate tumor cells either directly or by releasing cytotoxic granules, chemokines and proinflammatory cytokines. Yet, NK cells are exposed to inhibitory signals by cancer cells, which causes them to become dysfunctional in the immunosuppressive tumor microenvironment (TME) in BC, supporting tumor escape and spread. Potential mechanisms of NK cell dysfunction in BC metastasis have been recently identified. Understanding these immunologic pathways driving BC metastasis will lead to improvements in the current immunotherapeutic strategies. In the current review, we highlight how BC evades immunosurveillance by rendering NK cells dysfunctional and we shed the light on novel NK cell- directed therapies.
Collapse
Affiliation(s)
- Mona M Elanany
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt
| | - Dina Mostafa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| | - Nadia M Hamdy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Ain Shams University, Abassia, 11566 Cairo, Egypt.
| |
Collapse
|
2
|
Lee H, Jung S, Gong G, Lim B, Lee HJ. Association of cyclooxygenase-2 expression with endoplasmic reticulum stress and autophagy in triple-negative breast cancer. PLoS One 2023; 18:e0289627. [PMID: 37540709 PMCID: PMC10403079 DOI: 10.1371/journal.pone.0289627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023] Open
Abstract
Cyclooxygenase-2 plays a role in oncogenesis and its overexpression is associated with triple-negative breast cancer. However, the mechanisms whereby cyclooxygenase-2 contribute to breast cancer are complex and not well understood. Cyclooxygenase-2 overexpression causes hypoxia, oxidative stress, and endoplasmic reticulum stress. The aim of this study is to investigate the correlations among cyclooxygenase-2 expression, endoplasmic reticulum stress-associated molecules, and autophagy-associated molecules in triple-negative breast cancer. Surgical specimens from two cohorts of triple-negative breast cancer patients without neoadjuvant systemic therapy were analyzed: cohorts 1 and 2 consisted of 218 cases from 2004 to 2006 and 221 cases from 2007 to 2009, respectively. Specimens were evaluated by immunohistochemical examination of cyclooxygenase-2, endoplasmic reticulum stress markers, and autophagy markers expression using tissue microarrays. Cyclooxygenase-2 was overexpressed in 29.8% and 23.9% of cases in cohorts 1 and 2, respectively; and it was positively correlated with two out of three endoplasmic reticulum stress-associated molecules (XBP1, p = 0.025 and p = 0.003 in cohort 1 and cohort 2, respectively; PERK, p < 0.001 in both cohorts). Cyclooxygenase-2 was also positively correlated with two out of three autophagy markers (p62, p = 0.002 and p = 0.003 in cohort 1 and cohort 2, respectively; beclin1, p < 0.001 in both cohorts). Although cyclooxygenase-2 was not an independent prognostic factor for distant metastasis free survival and overall survival, its expression was associated with the expression of endoplasmic reticulum stress and autophagy molecules in triple-negative breast cancer.
Collapse
Affiliation(s)
- Haechan Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | - SungWook Jung
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Bora Lim
- Department of Hematology and Oncology, Baylor College of Medicine, Houston, TX, United States of America
| | - Hee Jin Lee
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Lin HJ, Liu Y, Lofland D, Lin J. Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers (Basel) 2022; 14:cancers14020285. [PMID: 35053449 PMCID: PMC8774102 DOI: 10.3390/cancers14020285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immune therapy is designed to stimulate tumoricidal effects in a variety of solid tumors including breast carcinomas. However, the emergence of resistant clones leads to treatment failure. Understanding the molecular, cellular, and microenvironmental aberrations is crucial to uncovering underlying mechanisms and developing advanced strategies for preventing or combating these resistant malignancies. This review will summarize research findings revealing various mechanisms employed to hijack innate and adaptive immune surveillance mechanisms, develop hypoxic and tumor promoting metabolism, and foster an immune tolerance microenvironment. In addition, it will highlight potential targets for therapeutic approaches. Abstract Breast cancer is the most common malignancy among females in western countries, where women have an overall lifetime risk of >10% for developing invasive breast carcinomas. It is not a single disease but is composed of distinct subtypes associated with different clinical outcomes and is highly heterogeneous in both the molecular and clinical aspects. Although tumor initiation is largely driven by acquired genetic alterations, recent data suggest microenvironment-mediated immune evasion may play an important role in neoplastic progression. Beyond surgical resection, radiation, and chemotherapy, additional therapeutic options include hormonal deactivation, targeted-signaling pathway treatment, DNA repair inhibition, and aberrant epigenetic reversion. Yet, the fatality rate of metastatic breast cancer remains unacceptably high, largely due to treatment resistance and metastases to brain, lung, or bone marrow where tumor bed penetration of therapeutic agents is limited. Recent studies indicate the development of immune-oncological therapy could potentially eradicate this devastating malignancy. Evidence suggests tumors express immunogenic neoantigens but the immunity towards these antigens is frequently muted. Established tumors exhibit immunological tolerance. This tolerance reflects a process of immune suppression elicited by the tumor, and it represents a critical obstacle towards successful antitumor immunotherapy. In general, immune evasive mechanisms adapted by breast cancer encompasses down-regulation of antigen presentations or recognition, lack of immune effector cells, obstruction of anti-tumor immune cell maturation, accumulation of immunosuppressive cells, production of inhibitory cytokines, chemokines or ligands/receptors, and up-regulation of immune checkpoint modulators. Together with altered metabolism and hypoxic conditions, they constitute a permissive tumor microenvironment. This article intends to discern representative incidents and to provide potential innovative therapeutic regimens to reinstate tumoricidal immunity.
Collapse
Affiliation(s)
- Huey-Jen Lin
- Department of Medical & Molecular Sciences, University of Delaware, Willard Hall Education Building, 16 West Main Street, Newark, DE 19716, USA
- Correspondence: ; Tel.: +1-302-831-7576; Fax: +1-302-831-4180
| | - Yingguang Liu
- Department of Molecular and Cellular Sciences, College of Osteopathic Medicine, Liberty University, 306 Liberty View Lane, Lynchburg, VA 24502, USA;
| | - Denene Lofland
- Department of Microbiology and Immunology, Tower Campus, Drexel University College of Medicine, 50 Innovation Way, Wyomissing, PA 19610, USA;
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, Molecular Medicine Graduate Program, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, 108 N. Greene Street, Baltimore, MD 21201, USA;
| |
Collapse
|
4
|
Yamashita N, Long M, Fushimi A, Yamamoto M, Hata T, Hagiwara M, Bhattacharya A, Hu Q, Wong KK, Liu S, Kufe D. MUC1-C integrates activation of the IFN-γ pathway with suppression of the tumor immune microenvironment in triple-negative breast cancer. J Immunother Cancer 2021; 9:jitc-2020-002115. [PMID: 33495298 PMCID: PMC7839859 DOI: 10.1136/jitc-2020-002115] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 01/09/2023] Open
Abstract
Background Immune checkpoint inhibitors (ICIs) have had a profound impact on the treatment of many tumors; however, their effectiveness against triple-negative breast cancers (TNBCs) has been limited. One factor limiting responsiveness of TNBCs to ICIs is a lack of functional tumor-infiltrating lymphocytes (TILs) in ‘non-inflamed’ or ‘cold’ tumor immune microenvironments (TIMEs), although by unknown mechanisms. Targeting MUC1-C in a mouse transgenic TNBC tumor model increases cytotoxic tumor-infiltrating CD8+ T cells (CTLs), supporting a role for MUC1-C in immune evasion. The basis for these findings and whether they extend to human TNBCs are not known. Methods Human TNBC cells silenced for MUC1-C using short hairpin RNAs (shRNAs) were analyzed for the effects of MUC1-C on global transcriptional profiles. Differential expression and rank order analysis was used for gene set enrichment analysis (GSEA). Gene expression was confirmed by quantitative reverse-transcription PCR and immunoblotting. The The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) datasets were analyzed for effects of MUC1 on GSEA, cell-type enrichment, and tumor immune dysfunction and exclusion. Single-cell scRNA-seq datasets of TNBC samples were analyzed for normalized expression associations between MUC1 and selected genes within tumor cells. Results Our results demonstrate that MUC1-C is a master regulator of the TNBC transcriptome and that MUC1-C-induced gene expression is driven by STAT1 and IRF1. We found that MUC1-C activates the inflammatory interferon (IFN)-γ-driven JAK1→STAT1→IRF1 pathway and induces the IDO1 and COX2/PTGS2 effectors, which play key roles in immunosuppression. Involvement of MUC1-C in activating the immunosuppressive IFN-γ pathway was extended by analysis of human bulk and scRNA-seq datasets. We further demonstrate that MUC1 associates with the depletion and dysfunction of CD8+ T cells in the TNBC TIME. Conclusions These findings demonstrate that MUC1-C integrates activation of the immunosuppressive IFN-γ pathway with depletion of TILs in the TNBC TIME and provide support for MUC1-C as a potential target for improving TNBC treatment alone and in combination with ICIs. Of translational significance, MUC1-C is a druggable target with chimeric antigen receptor (CAR) T cells, antibody-drug conjugates (ADCs) and a functional inhibitor that are under clinical development.
Collapse
Affiliation(s)
- Nami Yamashita
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark Long
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Atsushi Fushimi
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Masaaki Yamamoto
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tsuyoshi Hata
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Masayuki Hagiwara
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Kwok-Kin Wong
- Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Donald Kufe
- Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Donovan MG, Selmin OI, Stillwater BJ, Neumayer LA, Romagnolo DF. Do Olive and Fish Oils of the Mediterranean Diet Have a Role in Triple Negative Breast Cancer Prevention and Therapy? An Exploration of Evidence in Cells and Animal Models. Front Nutr 2020; 7:571455. [PMID: 33123546 PMCID: PMC7573103 DOI: 10.3389/fnut.2020.571455] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the most common malignancy and cause of cancer-related mortality among women worldwide. Triple negative breast cancers (TNBC) are the most aggressive and lethal of the breast cancer molecular subtypes, due in part to a poor understanding of TNBC etiology and lack of targeted therapeutics. Despite advances in the clinical management of TNBC, optimal treatment regimens remain elusive. Thus, identifying interventional approaches that suppress the initiation and progression of TNBC, while minimizing side effects, would be of great interest. Studies have documented an inverse relationship between the incidence of hormone receptor negative breast cancer and adherence to a Mediterranean Diet, particularly higher consumption of fish and olive oil. Here, we performed a review of studies over the last 5 years investigating the effects of fish oil, olive oil and their components in model systems of TNBC. We included studies that focused on the fish oil ω-3 essential fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in addition to olive oil polyphenolic compounds and oleic acid. Both beneficial and deleterious effects on TNBC model systems are reviewed and we highlight how multiple components of these Mediterranean Diet oils target signaling pathways known to be aberrant in TNBC including PI3K/Akt/mTOR, NF-κB/COX2 and Wnt/β-catenin.
Collapse
Affiliation(s)
- Micah G. Donovan
- Interdisciplinary Cancer Biology Graduate Program, The University of Arizona, Tucson, AZ, United States
| | - Ornella I. Selmin
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
| | - Barbara J. Stillwater
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Leigh A. Neumayer
- Department of Surgery, Breast Surgery Oncology, The University of Arizona, Tucson, AZ, United States
| | - Donato F. Romagnolo
- University of Arizona Cancer Center, The University of Arizona, Tucson, AZ, United States
- Department of Nutritional Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Donato F. Romagnolo
| |
Collapse
|
6
|
Burge S, Lichtenberger LM. Growth inhibitory effects of PC-NSAIDs on human breast cancer subtypes in cell culture. Oncol Lett 2019; 18:6243-6248. [PMID: 31788101 PMCID: PMC6864988 DOI: 10.3892/ol.2019.10951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/07/2019] [Indexed: 11/05/2022] Open
Abstract
The potential role of non-steroidal anti-inflammatory drug (NSAID) therapy in the prevention and treatment of cancer has generated considerable research interest. Phosphatidylcholine (PC)-associated NSAIDs decrease the gastrointestinal side effects of NSAID therapy, and may be more effective than traditional NSAIDs in limiting tumor growth. In the present study, human cells representing three major breast cancer subtypes were cultured with aspirin, indomethacin and PC-associated forms of each drug, with PC alone as a control. All tested drugs decreased the tumor cell number after 8 days of culture, with PC-NSAIDs having the greatest inhibitory effect, and NSAIDs alone, particularly aspirin, having the least effect. PC alone was effective in limiting the proliferation of all cell lines, suggesting that the two components of PC-NSAIDs have an additive effect. The ELISA results did not support a strong role for inhibition of cyclooxygenase enzymes in the decrease in cancer cell proliferation, which may account for the limited effectiveness of aspirin alone. PC-NSAIDs, particularly indomethacin-PC, are attractive candidate drugs in the prevention and treatment of different types of breast cancer, including triple negative breast cancer.
Collapse
Affiliation(s)
- Shelley Burge
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Lenard M. Lichtenberger
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
7
|
Behling F, Ries V, Skardelly M, Gepfner-Tuma I, Schuhmann M, Ebner FH, Tabatabai G, Bornemann A, Schittenhelm J, Tatagiba M. COX2 expression is associated with proliferation and tumor extension in vestibular schwannoma but is not influenced by acetylsalicylic acid intake. Acta Neuropathol Commun 2019; 7:105. [PMID: 31291992 PMCID: PMC6621994 DOI: 10.1186/s40478-019-0760-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023] Open
Abstract
Acetylsalicylic acid has been linked to a lower risk for different cancer types, presumably through its inhibitory effect on cyclooxygenase 2. This has also been investigated in vestibular schwannomas with promising results suggesting an antiproliferative effect and recently the intake has been recommended for vestibular schwannomas as a conservative treatment option. We constructed tissue microarrays from paraffin-embedded tissue samples of 1048 vestibular schwannomas and analyzed the expression of cyclooxygenase 2 and the proliferation marker MIB1 (Molecular Immunology Borstel) via immunohistochemistry together with clinical data (age, gender, tumor extension, prior radiotherapy, neurofibromatosis type 2, tumor recurrence, cyclooxygenase 2 responsive medication). Univariate analysis showed that cyclooxygenase 2 expression was increased with age, female gender, prior radiotherapy and larger tumor extension. MIB1 expression was also associated with higher cyclooxygenase 2 expression. Schwannomas of neurofibromatosis type 2 patients had lower cyclooxygenase 2 levels. Use of acetylsalicylic acid, non-steroidal anti-inflammatory drugs, glucocorticoids or other immunosuppressants did not show differences in cyclooxygenase 2 or MIB1 expression. Instead, cyclooxygenase 2 expression increases with tumor extension while MIB1 expression is not associated with tumor size. Overall, cyclooxygenase 2 expression is associated with proliferation but not influenced by regular intake of acetylsalicylic acid or other cyclooxygenase 2-responsive medications. Acetylsalicylic acid intake does not alter cyclooxygenase 2 expression and has no antiproliferative effect in vestibular.
Collapse
|
8
|
Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J Cancer Res Clin Oncol 2019; 145:2083-2095. [PMID: 31203442 PMCID: PMC6658585 DOI: 10.1007/s00432-019-02946-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 01/26/2023]
Abstract
Purpose While enhanced expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) and their derived metabolites is associated with breast cancer (BC) risk, the precise link between BC carcinogenesis and enhanced inflammatory activity remains to be clarified. Human Cytomegalovirus (HCMV) may induce expression of COX-2 and 5-LO and is frequently found in breast cancer biopsies. Thus, we investigated whether there is an association between HCMV proteins and expression of COX-2 and 5-LO in human BC tissue and BC cell lines. Materials and methods Paraffin embedded biopsies obtained from 49 patients with breast cancer and 26 tissue samples from adjacent, benign breast tissues were retrospectively examined for HCMV-immediate early (IE), HCMV-Late (LA), COX-2, and 5-LO proteins by immunohistochemistry. In vitro, uninfected and HCMV-infected BC cell lines were examined for COX-2 and 5-LO transcripts and proteins by PCR and flow cytometry. Results Extensive expression of COX-2, 5-LO and HCMV-IE proteins were preferentially detected in BC samples. We found a statistically significant concordant correlation between extensive HCMV-IE and COX-2 (P < 0.0001) as well as with HCMV-IE and 5-LO (P = 0.0003) in infiltrating BC. In vitro, HCMV infection induced COX-2 and 5-LO transcripts and COX-2 proteins in MCF-7 cells (P =0.008, P =0.018, respectively). In MDA-MB-231 cells that already had high base line levels of COX-2 expression, HCMV induced both COX-2 and 5-LO proteins but not transcripts. Conclusion Our findings demonstrate a significant correlation between extensive HCMV-IE protein expression and overexpression of COX-2 and 5-LO in human breast cancer. Electronic supplementary material The online version of this article (10.1007/s00432-019-02946-8) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Wu CH, Yang MY, Wang CJ. Quercetin-3-O-glucuronide inhibits doxorubicin resistance by reducing endoplasmic reticulum stress in hepatocellular carcinoma cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
10
|
Hamy AS, Tury S, Wang X, Gao J, Pierga JY, Giacchetti S, Brain E, Pistilli B, Marty M, Espié M, Benchimol G, Laas E, Laé M, Asselain B, Aouchiche B, Edelman M, Reyal F. Celecoxib With Neoadjuvant Chemotherapy for Breast Cancer Might Worsen Outcomes Differentially by COX-2 Expression and ER Status: Exploratory Analysis of the REMAGUS02 Trial. J Clin Oncol 2019; 37:624-635. [PMID: 30702971 DOI: 10.1200/jco.18.00636] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The overexpression of cyclooxygenase 2 (COX-2) gene, also known as prostaglandin-endoperoxide synthase 2 ( PTGS2), occurs in breast cancer, but whether it affects response to anticox drugs remains unclear. We investigated the relationships between PTGS2 expression, celecoxib use during neoadjuvant chemotherapy (NAC), and both event-free survival (EFS) and overall survival (OS). MATERIALS AND METHODS We analyzed a cohort of 156 patients with human epidermal growth factor receptor 2 -negative breast cancer from the REMAGUS02 (ISRCTN Registry No. 10059974) trial with pretreatment PTGS2 expression data. Patients were treated by sequential NAC (epirubicin plus cyclophosphamide followed by docetaxel with or without celecoxib). Experimental validation was performed on breast cancer cell lines. The Cancer and Leukemia Group B (CALGB) 30801 ( ClinicalTrials.gov identifier: NCT01041781) trial that tested chemotherapy with or without celecoxib in patients with lung cancer served as an independent validation cohort. RESULTS After 94.5 months of follow-up, EFS was significantly lower in the celecoxib group (hazard ratio [HR], 1.7; 95% CI, 1 to 2.88; P = .046). A significant interaction between PTGS2 expression and celecoxib use was detected ( Pinteraction = .01). In the PTGS2-low group (n = 100), EFS was lower in the celecoxib arm (HR, 3.01; 95% CI, 1.45 to 6.24; P = .002) than in the standard treatment arm. Celecoxib use was an independent predictor of poor EFS, distant relapse-free survival, and OS. Celecoxib in addition to docetaxel enhanced cell viability in PTGS2-low cell lines but not in PTGS2-high cell lines. In CALGB 30801, a trend toward poorer progression-free survival was observed in the patients with low urinary metabolite of prostaglandin E2 who received celecoxib (HR = 1.57; 95% CI, 0.87 to 2.84; P = .13). CONCLUSION Celecoxib use during chemotherapy adversely affected survival in patients with breast cancer, and the effect was more marked in PTGS2-low and/or estrogen receptor-negative tumors. COX-2 inhibitors should preferably be avoided during docetaxel use in patients with breast cancer who are undergoing NAC.
Collapse
Affiliation(s)
| | - Sandrine Tury
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | - Xiaofei Wang
- 2 Alliance Statistics and Data Center, Durham, NC
| | - Junheng Gao
- 2 Alliance Statistics and Data Center, Durham, NC
| | | | - Sylvie Giacchetti
- 3 Hôpital Saint Louis (APHP), Université Paris Diderot, Paris, France
| | - Etienne Brain
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | | | - Michel Marty
- 3 Hôpital Saint Louis (APHP), Université Paris Diderot, Paris, France
| | - Marc Espié
- 3 Hôpital Saint Louis (APHP), Université Paris Diderot, Paris, France
| | | | - Enora Laas
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | - Marick Laé
- 1 Institut Curie, Université Paris Descartes, Paris, France
| | | | | | | | - Fabien Reyal
- 1 Institut Curie, Université Paris Descartes, Paris, France
| |
Collapse
|
11
|
Metformin Inhibits Migration and Invasion by Suppressing ROS Production and COX2 Expression in MDA-MB-231 Breast Cancer Cells. Int J Mol Sci 2018; 19:ijms19113692. [PMID: 30469399 PMCID: PMC6274682 DOI: 10.3390/ijms19113692] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Several mechanisms of action have been proposed to explain the apparent antineoplastic functions of metformin, many of which are observed at high concentrations that may not be reflective of achievable tissue concentrations. We propose that metformin at low concentrations functions to inhibit ROS production and inflammatory signaling in breast cancer, thereby reducing metastasis. Methods: Using the highly invasive MDA-MB-231 breast carcinoma model, we ascertained the impact of metformin on cell viability by DNA content analysis and fluorescent dye exclusion. Migration and invasion assays were performed using a modified Boyden chamber assay and metastasis was ascertained using the chorioallantoic membrane (CAM) assay. PGE2 production was measured by Enzyme-Linked Immunosorbent Assay (ELISA). COX2 and ICAM1 levels were determined by flow cytometry immunoassay. Results: Metformin acutely decreased cell viability and caused G2 cell cycle arrest only at high concentrations (10 mM). At 100 µM, however, metformin reduced ICAM1 and COX2 expression, as well as reduced PGE2 production and endogenous mitochondrial ROS production while failing to significantly impact cell viability. Consequently, metformin inhibited migration, invasion in vitro and PGE2-dependent metastasis in CAM assays. Conclusion: At pharmacologically achievable concentrations, metformin does not drastically impact cell viability, but inhibits inflammatory signaling and metastatic progression in breast cancer cells.
Collapse
|
12
|
Basudhar D, Glynn SA, Greer M, Somasundaram V, No JH, Scheiblin DA, Garrido P, Heinz WF, Ryan AE, Weiss JM, Cheng RYS, Ridnour LA, Lockett SJ, McVicar DW, Ambs S, Wink DA. Coexpression of NOS2 and COX2 accelerates tumor growth and reduces survival in estrogen receptor-negative breast cancer. Proc Natl Acad Sci U S A 2017; 114:13030-13035. [PMID: 29087320 PMCID: PMC5724261 DOI: 10.1073/pnas.1709119114] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proinflammatory signaling pathways are commonly up-regulated in breast cancer. In estrogen receptor-negative (ER-) and triple-negative breast cancer (TNBC), nitric oxide synthase-2 (NOS2) and cyclooxygenase-2 (COX2) have been described as independent predictors of disease outcome. We further explore these findings by investigating the impact of their coexpression on breast cancer survival. Elevated coexpression of NOS2/COX2 proteins is a strong predictor of poor survival among ER- patients (hazard ratio: 21). Furthermore, we found that the key products of NOS2 and COX2, NO and prostaglandin E2 (PGE2), respectively, promote feed-forward NOS2/COX2 crosstalk in both MDA-MB-468 (basal-like) and MDA-MB-231 (mesenchymal-like) TNBC cell lines in which NO induced COX2 and PGE2 induced NOS2 proteins. COX2 induction by NO involved TRAF2 activation that occurred in a TNFα-dependent manner in MDA-MB-468 cells. In contrast, NO-mediated TRAF2 activation in the more aggressive MDA-MB-231 cells was TNFα independent but involved the endoplasmic reticulum stress response. Inhibition of NOS2 and COX2 using amino-guanidine and aspirin/indomethacin yielded an additive reduction in the growth of MDA-MB-231 tumor xenografts. These findings support a role of NOS2/COX2 crosstalk during disease progression of aggressive cancer phenotypes and offer insight into therapeutic applications for better survival of patients with ER- and TNBC disease.
Collapse
Affiliation(s)
- Debashree Basudhar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Sharon A Glynn
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Madison Greer
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Veena Somasundaram
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Jae Hong No
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - David A Scheiblin
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health Frederick, MD 21702
| | - Pablo Garrido
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health Frederick, MD 21702
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Jonathan M Weiss
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Robert Y S Cheng
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Lisa A Ridnour
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc. for the National Cancer Institute, National Institutes of Health Frederick, MD 21702
| | - Daniel W McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David A Wink
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702;
| |
Collapse
|
13
|
Li B, Li X, Xiong H, Zhou P, Ni Z, Yang T, Zhang Y, Zeng Y, He J, Yang F, Zhang N, Wang Y, Zheng Y, He F. Inhibition of COX2 enhances the chemosensitivity of dichloroacetate in cervical cancer cells. Oncotarget 2017; 8:51748-51757. [PMID: 28881683 PMCID: PMC5584284 DOI: 10.18632/oncotarget.18518] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/06/2017] [Indexed: 12/14/2022] Open
Abstract
Dichloroacetate (DCA), a traditional mitochondria-targeting agent, has shown promising prospect as a sensitizer in fighting against malignancies including cervical cancer. But it is unclear about the effect of DCA alone on cervical tumor. Moreover, previous reports have demonstrated that the increased cyclooxygenase-2 (COX2) expression is associated with chemoresistance and poor prognosis of cervical cancer. However, it is still unknown whether COX2 can affect the sensitivity of DCA in cervical cancer cells. In this study, we found that cervical cancer cells were insensitive to DCA. Furthermore, we for the first time revealed that DCA could upregulate COX2 which impeded the chemosensitivity of DCA in cervical cancer cells. Mechanistic study showed that DCA reduced the level of RNA binding protein quaking (QKI), leading to the decay suppression of COX2 mRNA and the subsequent elevation of COX2 protein. Inhibition of COX2 using celecoxib could sensitize DCA in repressing the growth of cervical cancer cells both in vitro and in vivo. These results indicate that COX2 is a novel resistance factor of DCA, and combination of celecoxib with DCA may be beneficial to the treatment of cervical cancer.
Collapse
Affiliation(s)
- Bo Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Xinzhe Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Haojun Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Peng Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Zhenhong Ni
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Teng Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yijun Zeng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Jintao He
- Battalion 17 of Students, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | - Fan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yuting Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| | - Yingru Zheng
- Department of Obstetrics and Gynecology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing 400042, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
14
|
Kwon J, Eom KY, Koo TR, Kim BH, Kang E, Kim SW, Kim YJ, Park SY, Kim IA. A Prognostic Model for Patients with Triple-Negative Breast Cancer: Importance of the Modified Nottingham Prognostic Index and Age. J Breast Cancer 2017; 20:65-73. [PMID: 28382096 PMCID: PMC5378581 DOI: 10.4048/jbc.2017.20.1.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose Considering the distinctive biology of triple-negative breast cancer (TNBC), this study aimed to identify TNBC-specific prognostic factors and determine the prognostic value of the Nottingham Prognostic Index (NPI) and its variant indices. Methods A total of 233 patients with newly diagnosed stage I to III TNBC from 2003 to 2012 were reviewed. We retrospectively analyzed the patients' demographics, clinicopathologic parameters, treatment, and survival outcomes. The NPI was calculated as follows: tumor size (cm)×0.2+node status+Scarff-Bloom-Richardson (SBR) grade. The modified NPI (MNPI) was obtained by adding the modified SBR grade rather than the SBR grade. Results The median follow-up was 67.8 months. Five-year disease-free survival (DFS) and overall survival (OS) were 81.4% and 89.9%, respectively. Multivariate analyses showed that the MNPI was the most significant and common prognostic factor of DFS (p=0.001) and OS (p=0.019). Young age (≤35 years) was also correlated with poor DFS (p=0.006). A recursive partitioning for establishing the prognostic model for DFS was performed based on the results of multivariate analysis. Patients with a low MNPI (≤6.5) were stratified into the low-risk group (p<0.001), and patients with a high MNPI (>6.5) were subdivided into the intermediate (>35 years) and high-risk (≤35 years) groups. Age was not a prognostic factor in patients with a low MNPI, whereas in patients with a high MNPI, it was the second key factor in subdividing patients according to prognosis (p=0.023). Conclusion The MNPI could be used to stratify patients with stage I to III TNBC according to prognosis. It was the most important prognosticator for both DFS and OS. The prognostic significance of young age for DFS differed by MNPI.
Collapse
Affiliation(s)
- Jeanny Kwon
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Keun-Yong Eom
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea.; Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Tae Ryool Koo
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Byoung Hyuck Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eunyoung Kang
- Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Sung-Won Kim
- Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Yu Jung Kim
- Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - So Yeon Park
- Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - In Ah Kim
- Department of Radiation Oncology, Seoul National University Bundang Hospital, Seongnam, Korea.; Breast Care Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| |
Collapse
|
15
|
Wang G, Huang Z, Liu X, Huang W, Chen S, Zhou Y, Li D, Singer RH, Gu W. IMP1 suppresses breast tumor growth and metastasis through the regulation of its target mRNAs. Oncotarget 2016; 7:15690-702. [PMID: 26910917 PMCID: PMC4941270 DOI: 10.18632/oncotarget.7464] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 02/05/2016] [Indexed: 02/05/2023] Open
Abstract
We have previously reported the ability of IMP1 in inhibiting proliferation and invasiveness of breast carcinoma cells in vitro. In the current study, we utilized a mouse xenograft model to further investigate the function of IMP1 in breast tumor progression and its underlying mechanism. We demonstrated that IMP1 expression significantly suppressed the growth of MDA231 cell-derived xenograft tumors and subsequent lung metastasis. Microarray analyses and differential gene expression identified handful mRNAs, many of which were involved in breast tumor-growth and metastasis. Further studies revealed that these mRNAs were directly interacted with the KH34 domain of IMP1 and this interaction post-transcriptionally regulated their corresponding protein expression. Either deletion of the KH34 domain of IMP1 or alteration of the expression of IMP1-bound mRNAs affected cell proliferation and tumor growth, producing the same phenotypes as IMP1 knockdown. Correlation of increased IMP1 expression with the reduced levels of its bound mRNAs, such as PTGS2, GDF15 and IGF-2 transcripts, was also observed in human breast tumors. Our studies provide insights into a molecular mechanism that the positive function of IMP1 to inhibit breast tumor growth and metastasis could be through the regulation of its target mRNAs.
Collapse
Affiliation(s)
- Guangli Wang
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Zhenqiang Huang
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Xin Liu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Wenhe Huang
- Tumor Hospital, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Shaoying Chen
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Yanchun Zhou
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Deling Li
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| |
Collapse
|
16
|
Serra KP, Peres RMR, Sarian LO, Vassallo J, Pinto GA, Silva GRDP, Soares FA, da Cunha IW, Espinola J, Bento AM, Del Corso LM, Derchain S. Cyclooxygenase-2 (COX2) and p53 protein expression are interdependent in breast cancer but not associated with clinico-pathological surrogate subtypes, tumor aggressiveness and patient survival. Acta Histochem 2016; 118:176-82. [PMID: 26791786 DOI: 10.1016/j.acthis.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED In the last decade, different molecular subtypes of breast cancer have been proposed. Although displaying appreciable association with disease prognosis and the prognostic value of cytotoxic and endocrine therapeutic modalities, the subtypes seem to fail at completely explaining disease behavior and response to treatment. Molecules such as those of the cyclocooxigenase (COX) family, currently composed of three entities (COX 1, 2 and 3) have been shown to be associated with breast carcinogenesis, and the analysis of p53 expression in breast tumors may also offer some additional prognostic clues. Our study is aimed at assessing COX2 and p53 expression in these clinico-pathological surrogate subtypes, and to evaluate whether the expression of these molecules can help further explain the variability in prognosis still found within the clinico-pathological subtypes groups of breast cancer. METHODS A total of 183 breast cancer samples were obtained from women treated at the Womeńs Hospital of Campinas State University, Campinas, Brazil, between June 2008 and January 2011. Immunohistochemistry was performed to detect the expression of ER, PR, ki67, COX2, and p53 and the HER2 status of the 183 specimens was assessed using FISH. Two COX2 staining thresholds were used to define COX2 positivity: low threshold (LT): moderate and intense staining were considered positive; high-threshold (HT): only intense staining was considered positive. RESULTS There was no trend in COX2 overexpression from Luminal A-like to Triple-negative subtypes. By contrast, p53 was expressed in roughly 67% of the Luminal A-like tumors, 50% of the Luminal B-like HER2 positive tumors, 60.9% of the Luminal B-like HER2 negative, approximately 82% of the HER2 positive (non-luminal) and 87% of the Triple-negative tumors (p for trends=0.06). There was a significantly higher proportion of COX2 positive (LT) tumors (66.9%) when p53 was also positive compared to when the tumor was negative for p53 (in which case only18.0% of the tumors were positive for COX2; p<0.001). Neither marker was found to be associated with patients' survival. CONCLUSIONS There seems to be a positive association between the expressions of COX2 and p53. Otherwise, neither the expression of COX nor that of p53 was associated with clinico-pathological subtypes, tumor features and prognosis. It seems to be too early to elect the detection of COX2 using IHC as prognostic or predictive tool, but incipient evidence points toward a possible role for the marker.
Collapse
Affiliation(s)
- Katia Piton Serra
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences PO Box 6111, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| | - Raquel Mary Rodrigues Peres
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences PO Box 6111, State University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Luis Otávio Sarian
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences PO Box 6111, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| | - José Vassallo
- Department of Pathology, Street Tessalia Vieira de Camargo, 126, State University of Campinas-UNICAMP, Postal Code 13083-887, Campinas, São Paulo, Brazil; Department of Pathology, A.C. Camargo Cancer Hospital, Antônio Prudente Foundation, Street Professor Antônio Prudente,109, Liberdade, 01509-900 São Paulo, São Paulo, Brazil.
| | - Glauce Aparecida Pinto
- Department of Pathology, Street Tessalia Vieira de Camargo, 126, State University of Campinas-UNICAMP, Postal Code 13083-887, Campinas, São Paulo, Brazil.
| | - Geisilene Russano de Paiva Silva
- Department of Pathology, Street Tessalia Vieira de Camargo, 126, State University of Campinas-UNICAMP, Postal Code 13083-887, Campinas, São Paulo, Brazil.
| | - Fernando Augusto Soares
- Department of Pathology, A.C. Camargo Cancer Hospital, Antônio Prudente Foundation, Street Professor Antônio Prudente,109, Liberdade, 01509-900 São Paulo, São Paulo, Brazil.
| | - Isabela Werneck da Cunha
- Department of Pathology, A.C. Camargo Cancer Hospital, Antônio Prudente Foundation, Street Professor Antônio Prudente,109, Liberdade, 01509-900 São Paulo, São Paulo, Brazil.
| | - Juliana Espinola
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences PO Box 6111, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| | - Adriano Mesquita Bento
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences PO Box 6111, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| | - Leticia Marinho Del Corso
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences PO Box 6111, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| | - Sophie Derchain
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences PO Box 6111, State University of Campinas-UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
17
|
Ravelli A, Reuben JM, Lanza F, Anfossi S, Cappelletti MR, Zanotti L, Gobbi A, Milani M, Spada D, Pedrazzoli P, Martino M, Bottini A, Generali D. Immune-related strategies driving immunotherapy in breast cancer treatment: a real clinical opportunity. Expert Rev Anticancer Ther 2015; 15:689-702. [PMID: 25927868 DOI: 10.1586/14737140.2015.1042864] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because its original use as a treatment for hematologic disease, more recently immunotherapy has emerged as a novel effective therapeutic strategy for solid malignancies, such as melanoma and prostate carcinoma. For breast carcinoma, an immunologic therapeutic approach has not been well evaluated, even though there is evidence to suggest it would be a successful novel strategy, especially taking into account the high mortality rate of the most aggressive variants of this heterogeneous disease. Here, we briefly describe the most recently awarded immune-based therapies with a consolidated or potential implication for the treatment of solid malignancies. We focus on immune checkpoints and on the clinical potential of their abrogation, with a further overview of novel vaccine-based approaches and the most relevant immunotherapeutic techniques. We aim to provide an exhaustive review of the most promising immune-therapeutic agents that may have implications for breast cancer treatment.
Collapse
Affiliation(s)
- Andrea Ravelli
- U.O. Ematologia e CTMO, AZ. Istituti Ospitalieri di Cremona, Viale Concordia 1, 26100 Cremona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|