1
|
Liu HN, Wang XY, Zou Y, Wu WB, Lin Y, Ji BY, Wang TY. Synthetic enhancers including TFREs improve transgene expression in CHO cells. Heliyon 2024; 10:e26901. [PMID: 38468921 PMCID: PMC10926067 DOI: 10.1016/j.heliyon.2024.e26901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
The human cytomegalovirus major immediate early gene (CMV) promoter is currently the most preferred promoter for recombinant therapeutic proteins (RTPs) production in CHO cells. To enhance the production of RTPs, five synthetic enhancers including multiple transcription factor regulatory elements (TFREs) were evaluated to enhance recombinant protein level in transient and stably transfected CHO cells. Compared with the control, four elements can enhance the report genes expression under both two transfected states. Further, the function of these four enhancers on human serum albumin (HSA) were investigated. We found that the transient expression can increase by up to 1.5 times, and the stably expression can maximum increase by up to 2.14 times. The enhancement of transgene expression was caused by the boost of their corresponding mRNA levels. Transcriptomics analysis was performed and found that transcriptional activation and cell cycle regulation genes were involved. In conclusion, optimization of enhancers in the CMV promoter could increase the production yield of transgene in transfected CHO cells, which has significance for developing high-yield CHO cell expression system.
Collapse
Affiliation(s)
- Hui-Ning Liu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- SanQuan College of Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zou
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Wen-Bao Wu
- Shanghai Immunocan Biotech Co., LTD, Shanghai 200000, China
| | - Yan Lin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo-Yu Ji
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
2
|
Majumdar S, Desai R, Hans A, Dandekar P, Jain R. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies. Mol Biotechnol 2024:10.1007/s12033-024-01060-6. [PMID: 38363529 DOI: 10.1007/s12033-024-01060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/17/2024]
Abstract
The increasing demand for biosimilar monoclonal antibodies (mAbs) has prompted the development of stable high-producing cell lines while simultaneously decreasing the time required for screening. Existing platforms have proven inefficient, resulting in inconsistencies in yields, growth characteristics, and quality features in the final mAb products. Selecting a suitable expression host, designing an effective gene expression system, developing a streamlined cell line generation approach, optimizing culture conditions, and defining scaling-up and purification strategies are all critical steps in the production of recombinant proteins, particularly monoclonal antibodies, in mammalian cells. As a result, an active area of study is dedicated to expression and optimizing recombinant protein production. This review explores recent breakthroughs and approaches targeted at accelerating cell line development to attain efficiency and consistency in the synthesis of therapeutic proteins, specifically monoclonal antibodies. The primary goal is to bridge the gap between rising demand and consistent, high-quality mAb production, thereby benefiting the healthcare and pharmaceutical industries.
Collapse
Affiliation(s)
- Sarmishta Majumdar
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Ranjeet Desai
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Aakarsh Hans
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400019, India.
| | - Ratnesh Jain
- Department of Biological Science and Biotechnology, Institute of Chemical Technology, Mumbai, 400019, India.
| |
Collapse
|
3
|
Liu R, Yao J, Zhou S, Yang J, Zhang Y, Yang X, Li L, Zhang Y, Zhuang Y, Yang Y, Chen X. Spatiotemporal control of RNA metabolism and CRISPR-Cas functions using engineered photoswitchable RNA-binding proteins. Nat Protoc 2024; 19:374-405. [PMID: 38036926 DOI: 10.1038/s41596-023-00920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 09/19/2023] [Indexed: 12/02/2023]
Abstract
RNA molecules perform various crucial roles in diverse cellular processes, from translating genetic information to decoding the genome, regulating gene expression and catalyzing chemical reactions. RNA-binding proteins (RBPs) play an essential role in regulating the diverse behaviors and functions of RNA in live cells, but techniques for the spatiotemporal control of RBP activities and RNA functions are rarely reported yet highly desirable. We recently reported the development of LicV, a synthetic photoswitchable RBP that can bind to a specific RNA sequence in response to blue light irradiation. LicV has been used successfully for the optogenetic control of RNA localization, splicing, translation and stability, as well as for the photoswitchable regulation of transcription and genomic locus labeling. Compared to classical genetic or pharmacologic perturbations, LicV-based light-switchable effectors have the advantages of large dynamic range between dark and light conditions and submicron and millisecond spatiotemporal resolutions. In this protocol, we provide an easy, efficient and generalizable strategy for engineering photoswitchable RBPs for the spatiotemporal control of RNA metabolism. We also provide a detailed protocol for the conversion of a CRISPR-Cas system to optogenetic control. The protocols typically take 2-3 d, including transfection and results analysis. Most of this protocol is applicable to the development of novel LicV-based photoswitchable effectors for the optogenetic control of other RNA metabolisms and CRISPR-Cas functions.
Collapse
Affiliation(s)
- Renmei Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Jing Yao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Siyu Zhou
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jing Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaqiang Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiaoyan Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Leshi Li
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yunbin Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yingping Zhuang
- School of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Sinegubova MV, Orlova NA, Vorobiev II. Promoter from Chinese hamster elongation factor-1a gene and Epstein-Barr virus terminal repeats concatemer fragment maintain stable high-level expression of recombinant proteins. PeerJ 2023; 11:e16287. [PMID: 37901457 PMCID: PMC10607201 DOI: 10.7717/peerj.16287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Background The Chinese hamster ovary (CHO) cell line is the main host for the high-titer production of therapeutic and diagnostic proteins in the biopharmaceutical industry. In most cases, plasmids for efficient protein expression in CHO cells are based on the cytomegalovirus (CMV) promoter. The autologous Chinese hamster eukaryotic translation elongation factor 1α (EEF1A1) promoter is a viable alternative to the CMV promoter in industrial applications. The EEF1A1 promoter and its surrounding DNA regions proved to be effective at maintaining high-level and stable expression of recombinant proteins in CHO cells. EEF1A1-based plasmids' large size can lead to low transfection efficiency and hamper target gene amplification. We hypothesized that an efficient EEF1A1-based expression vector with a long terminal repeat fragment from the Epstein-Barr virus (EBVTR) could be truncated without affecting promoter strength or the long-term stability of target gene expression. Methods We made a series of deletions in the downstream flanking region of the EEF1A1 gene, and then in its upstream flanking region. The resulting plasmids, which coded for the enhanced green fluorescent protein (eGFP), were tested for the level of eGFP expression in the populations of stably transfected CHO DG44 cells and the stability of eGFP expression in the long-term culture in the absence of selection agents. Results It was shown that in the presence of the EBVTR fragment, the entire downstream flanking region of the EEF1A1 gene could be excluded from the plasmid vector. Shortening of the upstream flanking region of the EEF1A1 gene to a length of 2.5 kbp also had no significant effect on the level of eGFP expression or long-term stability. The EBVTR fragment significantly increased expression stability for both the CMV and EEF1A1 promoter-based plasmids, and the expression level drop during the two-month culture was more significant for both CMV promoter-based plasmids. Conclusion Target protein expression stability for the truncated plasmid, based on the EEF1A1 gene and EBVTR fragment, is sufficient for common biopharmaceutical applications, making these plasmid vectors a viable alternative to conventional CMV promoter-based vectors.
Collapse
Affiliation(s)
- Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Lee H, Song ES, Lee YH, Park JY, Kuk MU, Kwon HW, Roh H, Park JT. A novel hybrid promoter capable of continuously producing proteins in high yield. Biochem Biophys Res Commun 2023; 650:103-108. [PMID: 36774687 DOI: 10.1016/j.bbrc.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The establishment of cell lines with a high protein production is the most crucial objective in the field of biopharmaceuticals. To this end, efforts have been made to increase transgene expression through promoter improvement, but the efficiency or stability of protein production was insufficient for use in commercial production. Here, we developed a novel strategy to increase the efficiency and stability of protein production by hybridizing a promoter that exhibits higher expression levels at the transient level with a promoter that exhibits higher stability at the stable level. Expression levels of transgenes by each promoter were measured at transient and stable levels for five single promoters: Rous sarcoma virus (RSV), cytomegalovirus (CMV), human phosphoglycerate kinase (hPGK), simian virus 40 (SV40), and zebrafish ubiquitin B (Ubb). The hPGK promoter enabled high-yield transgene expression at transient levels and the SV40 promoter enabled sustained expression at stable levels. Therefore, hPGK and SV40 promoters were selected as candidates for establishing hybrid promoters and two hybrid promoters were constructed; one hybrid promoter in which the SV40 promoter is added before the hPGK promoter (a.k.a. SKYI) and the other hybrid promoter in which the SV40 promoter is added after the hPGK promoter (a.k.a. SKYII). Of the two hybrid promoters, the hybrid promoter SKYII promoted high-yield transgene expression at both transient and stable levels compared to single hPGK and SV40. Together, our findings open new doors in the field of biopharmaceuticals by presenting a novel promoter platform that can be used for high-yield and sustained protein production.
Collapse
Affiliation(s)
- Haneur Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Eun Seon Song
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Yun Haeng Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Ji Yun Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Myeong Uk Kuk
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea
| | - Hyung Wook Kwon
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon, 22012, South Korea
| | - Hyungmin Roh
- Department of Chemical and Biological Engineering, Inha Technical College, Incheon, 22212, South Korea.
| | - Joon Tae Park
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, South Korea; Convergence Research Center for Insect Vectors, Incheon National University, Incheon, 22012, South Korea.
| |
Collapse
|
6
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
7
|
Screening of CHO-K1 endogenous promoters for expressing recombinant proteins in mammalian cell cultures. Plasmid 2022; 119-120:102620. [DOI: 10.1016/j.plasmid.2022.102620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
|
8
|
Mahboudi S, Moosavi-Nasab M, Kazemi B, Rahimpour A, Eskandari MH, Mohammadian O, Shams F. Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells. Mol Biol Rep 2021; 48:4405-4412. [PMID: 34089466 DOI: 10.1007/s11033-021-06456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Monoclonal antibodies (mAbs) are widely employed as invaluable therapeutics for a vast number of human disorders. Several approaches have been introduced for the improvement of mAb production in Chinese hamster ovary (CHO) cells due to the increasing demand for these products. In this regard, various chromatin-modifying elements such as insulators have been incorporated in the expression vectors to augment mAb expression. In this study, human gamma-satellite insulator containing vectors were utilized for the expression of an anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) mAb in CHO-K1 cells. To this aim, dual expression vectors encoding the antibody light chain (LC) and heavy chain (HC) with or without the insulator element were constructed, and mAb expression was evaluated in transient and stable expression. Based on the results, mAb expression significantly increased in the stable cell pool, and clonal cells developed using the human gamma-satellite insulator. In contrast, transient antibody expression was not affected by the insulator element. Finally, the enhancement of LC and HC mRNA levels was found in the insulator containing stable cell pools using the quantitative real-time-polymerase chain reaction (qRT-PCR). Our findings showed the positive effect of the human gamma-satellite insulator on the stable expression of an anti-PCSK9 immunoglobulin G1 (IgG1) mAb in CHO-K1 cells using dual expression vectors.
Collapse
Affiliation(s)
- Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Omid Mohammadian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Owen JR, Hennig SL, McNabb BR, Mansour TA, Smith JM, Lin JC, Young AE, Trott JF, Murray JD, Delany ME, Ross PJ, Van Eenennaam AL. One-step generation of a targeted knock-in calf using the CRISPR-Cas9 system in bovine zygotes. BMC Genomics 2021; 22:118. [PMID: 33581720 PMCID: PMC7881600 DOI: 10.1186/s12864-021-07418-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/31/2021] [Indexed: 12/31/2022] Open
Abstract
Background The homologous recombination (HR) pathway is largely inactive in early embryos prior to the first cell division, making it difficult to achieve targeted gene knock-ins. The homology-mediated end joining (HMEJ)-based strategy has been shown to increase knock-in efficiency relative to HR, non-homologous end joining (NHEJ), and microhomology-mediated end joining (MMEJ) strategies in non-dividing cells. Results By introducing gRNA/Cas9 ribonucleoprotein complex and a HMEJ-based donor template with 1 kb homology arms flanked by the H11 safe harbor locus gRNA target site, knock-in rates of 40% of a 5.1 kb bovine sex-determining region Y (SRY)-green fluorescent protein (GFP) template were achieved in Bos taurus zygotes. Embryos that developed to the blastocyst stage were screened for GFP, and nine were transferred to recipient cows resulting in a live phenotypically normal bull calf. Genomic analyses revealed no wildtype sequence at the H11 target site, but rather a 26 bp insertion allele, and a complex 38 kb knock-in allele with seven copies of the SRY-GFP template and a single copy of the donor plasmid backbone. An additional minor 18 kb allele was detected that looks to be a derivative of the 38 kb allele resulting from the deletion of an inverted repeat of four copies of the SRY-GFP template. Conclusion The allelic heterogeneity in this biallelic knock-in calf appears to have resulted from a combination of homology directed repair, homology independent targeted insertion by blunt-end ligation, NHEJ, and rearrangement following editing of the gRNA target site in the donor template. This study illustrates the potential to produce targeted gene knock-in animals by direct cytoplasmic injection of bovine embryos with gRNA/Cas9, although further optimization is required to ensure a precise single-copy gene integration event. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07418-3.
Collapse
Affiliation(s)
- Joseph R Owen
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Sadie L Hennig
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Bret R McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Tamer A Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA.,Department of Clinical Pathology, School of Medicine, University of Mansoura, Mansoura, Egypt
| | - Justin M Smith
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Jason C Lin
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Amy E Young
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Josephine F Trott
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - James D Murray
- Department of Animal Science, University of California - Davis, Davis, CA, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, CA, USA
| | - Mary E Delany
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | - Pablo J Ross
- Department of Animal Science, University of California - Davis, Davis, CA, USA
| | | |
Collapse
|
10
|
Dou Y, Lin Y, Wang TY, Wang XY, Jia YL, Zhao CP. The CAG promoter maintains high-level transgene expression in HEK293 cells. FEBS Open Bio 2020; 11:95-104. [PMID: 33155423 PMCID: PMC7780116 DOI: 10.1002/2211-5463.13029] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
The vast majority of therapeutic recombinant proteins are produced in mammalian cell lines. However, proteins generated in nonhuman cell lines, such as Chinese hamster ovary (CHO) cells, are decorated with human‐like glycan structures that differ from those of human cells, and these may induce immunogenic responses in human cells. Human embryonic kidney cells (HEK293F) are also extensively used as hosts for the expression of recombinant therapeutic proteins, but their utility is limited by the low expression of transgenes in these cells. Here, we investigated recombinant protein expression from eight frequently used promoters in transfected HEK293F cells. The expression levels and stability of the transgenes were evaluated by flow cytometry and qRT‐PCR. The most efficient expression (in terms of both mRNA and protein yields) was achieved using a cytomegalovirus (CMV) major immediate‐early enhancer combined with the chicken beta‐actin promoter (CAG) promoter, as compared to all other tested promoters under both transient and stable transfection conditions. In addition, application of mild hypothermia (i.e., 33 °C) after transfection improved the positive effect of the CMV enhancer fused to the chicken beta‐actin promoter (CAG promoter) on enhanced green fluorescent protein (eGFP) expression. Although the temperature sensitivity of the CMV promoter is greater than that of CAG promoter, recombinant protein levels were still highest when expression was driven by the CAG promoter. When eGFP was replaced with hepatitis B surface antigen, the CAG promoter still showed the highest transgene expression. In conclusion, our data show that the CAG promoter is a strong promoter for recombinant protein expression in HEK293F cells.
Collapse
Affiliation(s)
- Yuanyuan Dou
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, China
| | - Yan Lin
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, China
| | - Yan-Long Jia
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, China
| |
Collapse
|
11
|
Guo X, Wang C, Wang TY. Chromatin-modifying elements for recombinant protein production in mammalian cell systems. Crit Rev Biotechnol 2020; 40:1035-1043. [PMID: 32777953 DOI: 10.1080/07388551.2020.1805401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian cells are the preferred choice system for the production of complex molecules, such as recombinant therapeutic proteins. Although the technology for increasing the yield of proteins has improved rapidly, the process of selecting, identifying as well as maintaining high-yield cell clones is still troublesome, time-consuming and usually uncertain. Optimization of expression vectors is one of the most effective methods for enhancing protein expression levels. Several commonly used chromatin-modifying elements, including the matrix attachment region, ubiquitous chromatin opening elements, insulators, stabilizing anti-repressor elements can be used to increase the expression level and stability of recombinant proteins. In this review, these chromatin-modifying elements used for the expression vector optimization in mammalian cells are summarized, and future strategies for the utilization of expression cassettes are also discussed.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| | - Chong Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
Fusion with matrix attachment regions enhances expression of recombinant protein in human HT-1080 cells. J Biosci Bioeng 2020; 130:533-538. [PMID: 32773266 DOI: 10.1016/j.jbiosc.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022]
Abstract
Like endogenous proteins, recombinant foreign proteins produced in human cell lines also need post-translational modifications. However, high and long-term expression of a gene of interest (GOI) presents significant challenges for recombinant protein production in human cells. In this work, the effect of human matrix attachment region elements (MARs), including the β-globin MAR (gMAR), chicken lysozyme MAR (cMAR), and a combination of these two, on the stable expression of GOI was assessed in human HT-1080 cells. After transfection with vectors containing the MAR elements and eGFP, stably HT-1080 cell pools were obtained under selective pressure. eGFP protein expression was analyzed by flow cytometry, while transgene copy number and eGFP mRNA expression levels were determined with qPCR and qRT-PCR technology. We found that MARs could not enhance transfection efficiency, but gMAR could significantly increase eGFP expression in stable HT-1080 cell pools by approximately 2.69-fold. Moreover, gMAR could also increase eGFP expression stability during long-term culture. Lastly, we showed that the effect of the MARs on transgenes was related to the gene copy number. In summary, this study found that MARs could both enhance the transgene expression and stability in HT-1080 cells.
Collapse
|
13
|
Effects of viral promoters, the Woodchuck hepatitis post-transcriptional regulatory element, and weakened antibiotic resistance markers on transgene expression in Chinese hamster ovary cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Ogaki Y, Fukuma M, Shimizu N. Repeat induces not only gene silencing, but also gene activation in mammalian cells. PLoS One 2020; 15:e0235127. [PMID: 32579599 PMCID: PMC7313748 DOI: 10.1371/journal.pone.0235127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
Repeat-induced gene silencing (RIGS) establishes the centromere structure, prevents the spread of transposons and silences transgenes, thereby limiting recombinant protein production. We previously isolated a sequence (B-3-31) that alleviates RIGS from the human genome. Here, we developed an assay system for evaluating the influence of repeat sequences on gene expression, based on in vitro ligation followed by our original gene amplification technology in animal cells. Using this assay, we found that the repeat of B-3-31, three core sequences of replication initiation regions (G5, C12, and D8) and two matrix attachment regions (AR1 and 32–3), activated the co-amplified plasmid-encoded d2EGFP gene in both human and hamster cell lines. This upregulation effect persisted for up to 82 days, which was confirmed to be repeat-induced, and was thus designated as a repeat-induced gene activation (RIGA). In clear contrast, the repeat of three bacterial sequences (lambda-phage, Amp, and ColE1) and three human retroposon sequences (Alu, 5’-untranslated region, and ORF1 of a long interspersed nuclear element) suppressed gene expression, thus reflecting RIGS. RIGS was CpG-independent. We suggest that RIGA might be associated with replication initiation. The discovery of RIGS and RIGA has implications for the repeat in mammalian genome, as well as practical value in recombinant production.
Collapse
Affiliation(s)
- Yusuke Ogaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
15
|
Wang TY, Guo X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems. Appl Microbiol Biotechnol 2020; 104:5673-5688. [PMID: 32372203 DOI: 10.1007/s00253-020-10640-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Human tissue plasminogen activator was the first recombinant therapy protein that successfully produced in Chinese hamster ovary cells in 1986 and approved for clinical use. Since then, more and more therapeutic proteins are being manufactured in mammalian cells, and the technologies for recombinant protein production in this expression system have developed rapidly, with the optimization of both upstream and downstream processes. One of the most promising strategies is expression vector cassette optimization based on the expression vector cassette. In this review paper, these approaches and developments are summarized, and the future strategy on the utilizing of expression cassettes for the production of recombinant therapeutic proteins in mammalian cells is discussed.
Collapse
Affiliation(s)
- Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
| | - Xiao Guo
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, 453003, Henan, China
- Perildicals Publishing House, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
16
|
Xu ZJ, Jia YL, Wang M, Yi DD, Zhang WL, Wang XY, Zhang JH. Effect of promoter, promoter mutation and enhancer on transgene expression mediated by episomal vectors in transfected HEK293, Chang liver and primary cells. Bioengineered 2020; 10:548-560. [PMID: 31668126 PMCID: PMC6844389 DOI: 10.1080/21655979.2019.1684863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The episomal vector cannot integrate into the host cell chromosome, which has no potential risk in gene therapy. However, the low level of transgene expression driven by episomal vectors needs to be solved. In this study, we investigated the effects of enhancers, promoters and promoter variants on transgene expression levels driven by episomal vectors in HEK293, Chang liver and primary cells. Results showed that all eight cis-acting elements used could increase transfection efficiency and transient eGFP expression in transfected HEK293 and Chang liver cells. In stably transfected mammalian cells, the elongation factor-1 alpha (EF-1α) promoter and mutant-404 showed high and stable transgene expression. The mechanisms might be related to the type and quantity of transcription factor regulatory elements. Moreover, quantitative reverse transcription polymerase chain reaction analysis showed that mRNA expression levels were not directly proportional to protein expression levels. Furthermore, the EF-1α promoter conferred high transgene expression levels in primary cells, and the plasmid was also present in the episomal state. Taken together, these results provided valuable information for improving transgene expression with episomal vectors in mammalian cells.
Collapse
Affiliation(s)
- Zhong-Jie Xu
- Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Long Jia
- Pharmacy collage, Xinxiang Medical University, Xinxiang, Henan, China
| | - Meng Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Dan Yi
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wei-Li Zhang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
17
|
Zhang JH, Zhang JH, Wang XY, Xu DH, Wang TY. Distance effect characteristic of the matrix attachment region increases recombinant protein expression in Chinese hamster ovary cells. Biotechnol Lett 2019; 42:187-196. [PMID: 31776751 DOI: 10.1007/s10529-019-02775-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Previously, we have found that the matrix attachment region (MAR) may confer a 'distance effect' on transgene expression. This work aims to systematically explore the increased transgene expression in transfected Chinese hamster ovary (CHO) cells due to the characteristics of MAR and its mechanism. RESULTS Compared with the control vector, 500 and 1000 bp DNA distances between MAR and the cytomegalovirus promoter can increase transgene expression by 1.77- and 1.56-fold, respectively. Meanwhile, transgene expression was not affected when 2000 and 2500 bp spacer DNAs were inserted, but a declining trend was observed when a 1500 bp spacer DNA was inserted. The vector containing a 500 bp DNA distance significantly increased the expression of the enhanced green fluorescent protein, and this increase was not related to transgene copy numbers. CONCLUSIONS A short DNA distance-containing MAR confers high transgene expression level in transfected CHO cells, but a distance threshold does not exist in the vector system.
Collapse
Affiliation(s)
- Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ji-Hong Zhang
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
18
|
Non-viral Gene Therapy for Stargardt Disease with ECO/pRHO-ABCA4 Self-Assembled Nanoparticles. Mol Ther 2019; 28:293-303. [PMID: 31611143 DOI: 10.1016/j.ymthe.2019.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/10/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Stargardt disease (STGD) is an autosomal recessive retinal disorder caused by a monogenic ABCA4 mutation. Currently, there is no effective therapy to cure Stargardt disease. The replacement of mutated ABCA4 with a functional gene remains an attractive strategy. In this study, we have developed a non-viral gene therapy using nanoparticles self-assembled by a multifunctional pH-sensitive amino lipid ECO and a therapeutic ABCA4 plasmid. The nanoparticles mediated efficient intracellular gene transduction in wild-type (WT) and Abca4-/- mice. Specific ABCA4 expression in the outer segment of photoreceptors was achieved by incorporating a rhodopsin promoter into the plasmids. The ECO/pRHO-ABCA4 nanoparticles induced substantial and specific ABCA4 expression for at least 8 months, 35% reduction in A2E accumulation on average, and a delayed Stargardt disease progression for at least 6 months in Abca4-/- mice. ECO/plasmid nanoparticles constitute a promising non-viral gene therapy platform for Stargardt disease and other visual dystrophies.
Collapse
|
19
|
Jia YL, Guo X, Ni TJ, Lu JT, Wang XY, Wang TY. Novel short synthetic matrix attachment region for enhancing transgenic expression in recombinant Chinese hamster ovary cells. J Cell Biochem 2019; 120:18478-18486. [PMID: 31168866 DOI: 10.1002/jcb.29165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023]
Abstract
Matrix attachment regions (MARs) are DNA fragments with specific motifs that enhance transgenic expression; however, the characteristics and functions of these elements remain unclear. In this study, we designed and synthesized three short chimeric MARs, namely, SM4, SM5, and SM6, with different numbers and orders of motifs on the basis of the features and motifs of previously reported MARs, namely, SM1, SM2, and SM3, respectively. Expression vectors with six synthetic MARs flanking the down or upstream of the expression cassette for enhanced green fluorescence protein (EGFP) were constructed and introduced into Chinese hamster ovary (CHO) cells. Results indicated that the EGFP expression of the CHO cells with transfection bySM4, SM5, or SM6-containing vectors was higher than that of those containing SM1, SM2, or SM3 regardless of the MAR insertion position. The improving effect of SM5 was particularly pronounced. Transgenic expression was further enhanced with the increasing SM5 copy number. Bioinformatics analysis indicated that several arrangements of the DNA-binding motifs for CEBP, FAST, Hox, glutathione, and NMP4 may help increase transgenic expression levels and the average population of highly expressed cells. Our findings on novel synthetic MARs will help establish stable expression systems in mammalian cells.
Collapse
Affiliation(s)
- Yan-Long Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Jun Ni
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiang-Tao Lu
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.,School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
20
|
Alavi SE, Cabot PJ, Moyle PM. Glucagon-Like Peptide-1 Receptor Agonists and Strategies To Improve Their Efficiency. Mol Pharm 2019; 16:2278-2295. [PMID: 31050435 DOI: 10.1021/acs.molpharmaceut.9b00308] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is increasing in global prevalence and is associated with serious health problems (e.g., cardiovascular disease). Various treatment options are available for T2DM, including the incretin hormone glucagon-like peptide-1 (GLP-1). GLP-1 is a therapeutic peptide secreted from the intestines following food intake, which stimulates the secretion of insulin from the pancreas. The native GLP-1 has a very short plasma half-life, owning to renal clearance and degradation by the enzyme dipeptidyl peptidase-4. To overcome this issue, various GLP-1 agonists with increased resistance to proteolytic degradation and reduced renal clearance have been developed, with several currently marketed. Strategies, such as controlled release delivery systems, methods to reduce renal clearance (e.g., PEGylation and conjugation to antibodies), and methods to improve proteolytic stability (e.g., stapling, cyclization, and glycosylation) provide means to further improve the ability of GLP-1 analogs. These will be discussed in this literature review.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| | - Peter J Cabot
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| | - Peter M Moyle
- School of Pharmacy , The University of Queensland , Woolloongabba , 4102 , Australia
| |
Collapse
|
21
|
Wang XY, Yi DD, Wang TY, Wu YF, Chai YR, Xu DH, Zhao CP, Song C. Enhancing expression level and stability of transgene mediated by episomal vector via buffering DNA methyltransferase in transfected CHO cells. J Cell Biochem 2019; 120:15661-15670. [PMID: 31074065 DOI: 10.1002/jcb.28835] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Nonviral episomal vectors present attractive alternative vehicles for gene therapy applications. Previously, we have established a new type of nonviral episomal vector-mediated by the characteristic motifs of matrix attachment regions (MARs), which is driven by the cytomegalovirus (CMV) promoter. However, the CMV promoter is intrinsically susceptible to silencing, resulting in declined productivity during long-term culture. In this study, Chinese hamster ovary (CHO) cells and DNA methyltransferase-deficient (Dnmt3a-deficient) CHO cells were transfected with plasmid-mediated by MAR, or CHO cells were treated with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine. Flow cytometry, plasmid rescue experiments, fluorescence in-situ hybridization (FISH), and bisulfite sequencing were performed to observe transgene expression, its state of existence, and the CpG methylation level of the CMV promoter. The results indicated that all DNA methylation inhibitor and methyltransferase deficient cells could increase transgene expression levels and stability in the presence or absence of selection pressure after a 60-generation culture. Plasmid rescue assay and FISH analysis showed that the vector still existed episomally after long-time culture. Moreover, a relatively lower CMV promoter methylation level was observed in Dnmt3a-deficient cell lines and CHO cells treated with 5-Aza-2'-deoxycytidine. In addition, Dnmt3a-deficient cells were superior to the DNA methylation inhibitor treatment regarding the transgene expression and long-term stability. Our study provides the first evidence that lower DNA methyltransferase can enhance expression level and stability of transgenes mediated by episomal vectors in transfected CHO cells.
Collapse
Affiliation(s)
- Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Dan Yi
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan-Fang Wu
- Department of Pharmacy, Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, University of Zhengzhou, Zhengzhou, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chao Song
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
22
|
Zhu J, Hatton D. New Mammalian Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:9-50. [PMID: 28585079 DOI: 10.1007/10_2016_55] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are an increasing number of recombinant antibodies and proteins in preclinical and clinical development for therapeutic applications. Mammalian expression systems are key to enabling the production of these molecules, and Chinese hamster ovary (CHO) cell platforms continue to be central to delivery of the stable cell lines required for large-scale production. Increasing pressure on timelines and efficiency, further innovation of molecular formats and the shift to new production systems are driving developments of these CHO cell line platforms. The availability of genome and transcriptome data coupled with advancing gene editing tools are increasing the ability to design and engineer CHO cell lines to meet these challenges. This chapter aims to give an overview of the developments in CHO expression systems and some of the associated technologies over the past few years.
Collapse
Affiliation(s)
- Jie Zhu
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Diane Hatton
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
23
|
Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE, Rugbjerg P, Hansen HG, Lee GM, Andersen MR, Kildegaard HF. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synth Biol 2019; 8:758-774. [PMID: 30807689 DOI: 10.1021/acssynbio.8b00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.
Collapse
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Saranya Nallapareddy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Peter Rugbjerg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Xu X, Gao J, Dai W, Wang D, Wu J, Wang J. Gene activation by a CRISPR-assisted trans enhancer. eLife 2019; 8:45973. [PMID: 30973327 PMCID: PMC6478495 DOI: 10.7554/elife.45973] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The deactivated CRISPR/Cas9 (dCas9) is now the most widely used gene activator. However, current dCas9-based gene activators are still limited by their unsatisfactory activity. In this study, we developed a new strategy, the CRISPR-assisted trans enhancer, for activating gene expression at high efficiency by combining dCas9-VP64/sgRNA with the widely used strong CMV enhancer. In this strategy, CMV enhancer DNA was recruited to target genes in trans by two systems: dCas9-VP64/csgRNA-sCMV and dCas9-VP64-GAL4/sgRNA-UAS-CMV. The former recruited trans enhancer by annealing between two short complementary oligonucleotides at the ends of the sgRNA and trans enhancer. The latter recruited trans enhancer by binding between GAL4 fused to dCas9 and UAS sequence of trans enhancer. The trans enhancer activated gene transcription as the natural looped cis enhancer. The trans enhancer could activate both exogenous reporter genes and variant endogenous genes in various cells, with much higher activation efficiency than that of current dCas9 activators.
Collapse
Affiliation(s)
- Xinhui Xu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Van der Weken H, Cox E, Devriendt B. Rapid production of a chimeric antibody-antigen fusion protein based on 2A-peptide cleavage and green fluorescent protein expression in CHO cells. MAbs 2019; 11:559-568. [PMID: 30694096 PMCID: PMC6512901 DOI: 10.1080/19420862.2019.1574531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/04/2019] [Accepted: 01/21/2019] [Indexed: 01/22/2023] Open
Abstract
To enable large-scale antibody production, the creation of a stable, high producer cell line is essential. This process often takes longer than 6 months using standard limited dilution techniques and is very labor intensive. The use of a tri-cistronic vector expressing green fluorescent protein (GFP) and both antibody chains, separated by a GT2A peptide sequence, allows expression of all proteins under a single promotor in equimolar ratios. By combining the advantages of 2A peptide cleavage and single cell sorting, a chimeric antibody-antigen fusion protein that contained the variable domains of mouse IgG with a porcine IgA constant domain fused to the FedF antigen could be produced in CHO-K1 cells. After transfection, a strong correlation was found between antibody production and GFP expression (r = 0.69) using image analysis of formed monolayer patches. This enables the rapid selection of GFP-positive clones using automated image analysis for the selection of high producer clones. This vector design allowed the rapid selection of high producer clones within a time-frame of 4 weeks after transfection. The highest producing clone had a specific antibody productivity of 2.32 pg/cell/day. Concentrations of 34 mg/L were obtained using shake-flask batch culture. The produced recombinant antibody showed stable expression, binding and minimal degradation. In the future, this antibody will be assessed for its effectiveness as an oral vaccine antigen.
Collapse
Affiliation(s)
- Hans Van der Weken
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ughent, Ghent, Belgium
| |
Collapse
|
26
|
Wang W, Guo X, Li YM, Wang XY, Yang XJ, Wang YF, Wang TY. Enhanced transgene expression using cis-acting elements combined with the EF1 promoter in a mammalian expression system. Eur J Pharm Sci 2018; 123:539-545. [DOI: 10.1016/j.ejps.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/12/2018] [Accepted: 08/11/2018] [Indexed: 10/28/2022]
|
27
|
Suzuki T, Goda T, Kamiya H. Durable Transgene Expression Driven by CpG-Free and -Containing Promoters in Plasmid DNA with CpG-Free Backbone. Biol Pharm Bull 2018; 41:1489-1493. [DOI: 10.1248/bpb.b18-00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tetsuya Suzuki
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Takuya Goda
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| |
Collapse
|
28
|
Jia Y, Guo X, Lu J, Wang X, Qiu L, Wang T. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability. J Cell Mol Med 2018; 22:4106-4116. [PMID: 29851281 PMCID: PMC6111867 DOI: 10.1111/jcmm.13687] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Yan‐Long Jia
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao Guo
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Jiang‐Tao Lu
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao‐Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Le‐Le Qiu
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Tian‐Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
29
|
Patel NA, Anderson CR, Terkildsen SE, Davis RC, Pack LD, Bhargava S, Clarke HR. Antibody expression stability in CHO clonally derived cell lines and their subclones: Role of methylation in phenotypic and epigenetic heterogeneity. Biotechnol Prog 2018; 34:635-649. [DOI: 10.1002/btpr.2655] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/24/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Neha A. Patel
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | | | | - Ray C. Davis
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | - Laura D. Pack
- Dept. of CMC Statistics; Seattle Genetics; Bothell WA 98021
| | - Swapnil Bhargava
- Dept. of Bioprocess Development; Seattle Genetics; Bothell WA 98021
| | | |
Collapse
|
30
|
Human rhinovirus internal ribosome entry site element enhances transgene expression in transfected CHO-S cells. Sci Rep 2018; 8:6661. [PMID: 29703950 PMCID: PMC5923211 DOI: 10.1038/s41598-018-25049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 01/27/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are mainly used for recombinant protein production. However, the unstable transgene expression and lower transgene copy numbers are the major issues need to be resolved. Here, eleven internal ribosome entry site (IRES) elements from viral and cellular IRES were evaluated for foreign gene expression in CHO-S cells. We constructed eleven fusing plasmids containing different IRES sequences downstream of the enhanced green fluorescent protein (EGFP) gene. EGFP expression was detected by flow cytometry and the transgene copy number was evaluated by quantitative PCR. The erythropoietin (EPO) protein was also used to assess the stronger IRES. The results showed that IRES from human rhinovirus (HRV) exhibited the highest EGFP expression level under transient and stable transfections. The EGFP expression level of vector with IRES from HRV was related to the gene copy number in stably transfected CHO-S cells. Moreover, IRES from HRV induced higher expression level of EPO compared with one mutant IRES from EMCV in transfected cells. In conclusion, IRES from HRV can function as a strong IRES element for stable expression in CHO-S cells, which could potentially guide more effective foreign gene expression in CHO-S cells.
Collapse
|
31
|
Jazayeri SH, Amiri-Yekta A, Bahrami S, Gourabi H, Sanati MH, Khorramizadeh MR. Vector and Cell Line Engineering Technologies Toward Recombinant Protein Expression in Mammalian Cell Lines. Appl Biochem Biotechnol 2018; 185:986-1003. [PMID: 29396733 DOI: 10.1007/s12010-017-2689-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/29/2017] [Indexed: 11/26/2022]
Abstract
The rapid growth of global biopharmaceutical market in the recent years has been a good indication of its significance in biotechnology industry. During a long period of time in recombinant protein production from 1980s, optimizations in both upstream and downstream processes were launched. In this regard, one of the most promising strategies is expression vector engineering technology based on incorporation of DNA opening elements found in the chromatin border regions of vectors as well as targeting gene integration. Along with these approaches, cell line engineering has revealed convenient outcomes in isolating high-producing clones. According to the fact that more than 50% of the approved therapeutic proteins is being manufactured in mammalian cell lines, in this review, we focus on several approaches and developments in vector and cell line engineering technologies in mammalian cell culture.
Collapse
Affiliation(s)
- Seyedeh Hoda Jazayeri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Salahadin Bahrami
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran
| | - Mohammad Hossein Sanati
- Department of Genetics, Reproductive Biomedicine Research Center, ACECR, Royan Institute for Reproductive Biomedicine, P.O. Box: 14155-6343, Tehran, Iran.
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, P.O. Box: 1411413137, Tehran, Iran.
| |
Collapse
|
32
|
Romanova N, Noll T. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnol J 2017; 13:e1700232. [DOI: 10.1002/biot.201700232] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
| | - Thomas Noll
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
- Bielefeld University; Center for Biotechnology (CeBiTec); Germany
| |
Collapse
|
33
|
Chen SJ, Wang W, Zhang FY, Jia YL, Wang XY, Guo X, Chen SN, Gao JH, Wang TY. A chimeric HS4 insulator-scaffold attachment region enhances transgene expression in transfected Chinese hamster ovary cells. FEBS Open Bio 2017; 7:2021-2030. [PMID: 29226088 PMCID: PMC5715248 DOI: 10.1002/2211-5463.12335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/23/2017] [Accepted: 10/03/2017] [Indexed: 11/12/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are one of the most commonly used expression systems for the production of recombinant proteins but low levels of transgene expression and transgene silencing are frequently encountered. Epigenetic regulatory elements such as the chicken β-globin locus control region hypersensitive site 4 (HS4) and scaffold/matrix attachment regions (S/MARs) have positive effects on transgene expression. In this study, a chimeric HS4-SAR was cloned upstream or downstream of an enhanced green fluorescent protein (eGFP) expression cassette in a eukaryotic vector, and the resulting vectors were transfected into CHO cells. eGFP was detected by flow cytometry. Real-time quantitative PCR (qPCR) was used to determine copy numbers of the stably transfected cells. And fluorescence in situ hybridization (FISH) was used to detect the status of vector in the host cell chromosome. The results showed that HS4-SAR positioned downstream of the expression cassette could enhance eGFP expression by 4.83-fold compared with the control vector. There may not be a relationship between transgene copy number and gene expression level. HS4-SAR did not appear to alter the integration of the transgene into the host cell chromosome or its position in the chromosome. We found a synthetic chimeric HS4-SAR positively increased transgene expression in CHO cells.
Collapse
Affiliation(s)
- Si-Jia Chen
- Department of Biochemistry and Molecular Biology Xinxiang Medical University Henan China
| | - Wen Wang
- Pharmacy Collage Xinxiang Medical University Henan China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University China
| | - Feng-Yi Zhang
- Grade 2012 The Third Clinical Medical College of Xinxiang Medical University Henan China
| | - Yan-Long Jia
- Pharmacy Collage Xinxiang Medical University Henan China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology Xinxiang Medical University Henan China
| | - Xiao Guo
- Pharmacy Collage Xinxiang Medical University Henan China
| | - Shao-Nan Chen
- Department of Biochemistry and Molecular Biology Xinxiang Medical University Henan China
| | - Jian-Hui Gao
- Department of Biochemistry and Molecular Biology Xinxiang Medical University Henan China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology Xinxiang Medical University Henan China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University China
| |
Collapse
|
34
|
Tian ZW, Xu DH, Wang TY, Wang XY, Xu HY, Zhao CP, Xu GH. Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells. J Cell Mol Med 2017; 22:1095-1102. [PMID: 29077269 PMCID: PMC5783848 DOI: 10.1111/jcmm.13361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023] Open
Abstract
Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.
Collapse
Affiliation(s)
- Zheng-Wei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hong-Yan Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Guang-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
35
|
Ebadat S, Ahmadi S, Ahmadi M, Nematpour F, Barkhordari F, Mahdian R, Davami F, Mahboudi F. Evaluating the efficiency of CHEF and CMV promoter with IRES and Furin/2A linker sequences for monoclonal antibody expression in CHO cells. PLoS One 2017; 12:e0185967. [PMID: 29023479 PMCID: PMC5638317 DOI: 10.1371/journal.pone.0185967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/24/2017] [Indexed: 11/19/2022] Open
Abstract
In recent years, monoclonal antibodies (mAbs) have been developed as powerful therapeutic and diagnostic agents and Chinese hamster ovary (CHO) cells have emerged as the dominant host for the recombinant expression of these proteins. A critical step in recombinant expression is the utilization of strong promoters, such as the Chinese Hamster Elongation Factor-1α (CHEF-1) promoter. To compare the strengths of CHEF with cytomegalovirus (CMV) promoter for mAb expression in CHO cells, four bicistronic vectors bearing either internal ribosome entry site (IRES) or Furin/2A (F2A) sequences were designed. The efficiency of these promoters was evaluated by measuring level of expressed antibody in stable cell pools. Our results indicated that CHEF promoter-based expression of mAbs was 2.5 fold higher than CMV-based expression in F2A-mediated vectors. However, this difference was less significant in IRES-mediated mAb expressing cells. Studying the stability of the F2A expression system in the course of 18 weeks, we observed that the cells having CHEF promoter maintained their antibody expression at higher level than those transfected with CMV promoter. Further analyses showed that both IRES-mediated vectors, expressed mAbs with correct size, whereas in antibodies expressed via F2A system heterogeneity of light chains were detected due to incomplete furin cleavage. Our findings indicated that the CHEF promoter is a viable alternative to CMV promoter-based expression in F2A-mediated vectors by providing both higher expression and level of stability.
Collapse
Affiliation(s)
- Saeedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Medical Biotechnology Department, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
36
|
Wang D, Dai W, Wu J, Wang J. Improving transcriptional activity of human cytomegalovirus major immediate-early promoter by mutating NF-κB binding sites. Protein Expr Purif 2017; 142:16-24. [PMID: 28941824 DOI: 10.1016/j.pep.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023]
Abstract
Many mammalian gene expression vectors express the transferred genes under the control of the cytomegalovirus (CMV) major immediate-early promoter (MIEP). The human MIEP has been known as the strongest promoter in mammalian cells and utilized widely in mammalian expression systems. There are four NF-κB binding sites (named as κBs) in the human MIEP. In this study, we have constructed multiple mutated MIEPs by changing the natural κBs in the human MIEP into the high-affinity artificial sequences that were in vitro selected by using systematic evolution of ligands by exponential enrichment (SELEX) and predicted by bioinformatics. With various transcriptional activity evaluations, we found three mutated MIEPs with the transcriptional activity higher than the wild-type MIEP, which should be useful and widely applicable in many mammalian transgene expression fields such as gene engineering, gene therapy and gene editing. This study provides a useful approach for promoter engineering in biotechnology. This study also produced a series of mutated MIEPs with various transcriptional activities, which may be used for the fine control of gene expression output in the future synthetic biology.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
37
|
Impact of different promoters, promoter mutation, and an enhancer on recombinant protein expression in CHO cells. Sci Rep 2017; 7:10416. [PMID: 28874794 PMCID: PMC5585415 DOI: 10.1038/s41598-017-10966-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
In the present study, six commonly used promoters, including cytomegalovirus major immediate-early (CMV), the CMV enhancer fused to the chicken beta-actin promoter (CAG), human elongation factor-1α (HEF-1α), mouse cytomegalovirus (mouse CMV), Chinese hamster elongation factor-1α (CHEF-1α), and phosphoglycerate kinase (PGK), a CMV promoter mutant and a CAG enhancer, were evaluated to determine their effects on transgene expression and stability in transfected CHO cells. The promoters and enhancer were cloned or synthesized, and mutation at C-404 in the CMV promoter was generated; then all elements were transfected into CHO cells. Stably transfected CHO cells were identified via screening under the selection pressure of G418. Flow cytometry, qPCR, and qRT-PCR were used to explore eGFP expression levels, gene copy number, and mRNA expression levels, respectively. Furthermore, the erythropoietin (EPO) gene was used to test the selected strong promoter. Of the six promoters, the CHEF-1α promoter yielded the highest transgene expression levels, whereas the CMV promoter maintained transgene expression more stably during long-term culture of cells. We conclude that CHEF-1α promoter conferred higher level of EPO expression in CHO cells, but the CMV promoter with its high levels of stability performs best in this vector system.
Collapse
|
38
|
Brown AJ, Kalsi D, Fernandez-Martell A, Cartwright J, Barber NOW, Patel YD, Turner R, Bryant CL, Johari YB, James DC. Expression Systems for Recombinant Biopharmaceutical Production by Mammalian Cells in Culture. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527699124.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Brown
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Devika Kalsi
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Joe Cartwright
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Nicholas O. W. Barber
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yash D. Patel
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | | | - Claire L. Bryant
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - Yusuf B. Johari
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| | - David C. James
- University of Sheffield; Department of Chemical and Biological Engineering; Mappin St. Sheffield S1 3JD UK
| |
Collapse
|
39
|
Martella A, Matjusaitis M, Auxillos J, Pollard SM, Cai Y. EMMA: An Extensible Mammalian Modular Assembly Toolkit for the Rapid Design and Production of Diverse Expression Vectors. ACS Synth Biol 2017; 6:1380-1392. [PMID: 28418644 DOI: 10.1021/acssynbio.7b00016] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mammalian plasmid expression vectors are critical reagents underpinning many facets of research across biology, biomedical research, and the biotechnology industry. Traditional cloning methods often require laborious manual design and assembly of plasmids using tailored sequential cloning steps. This process can be protracted, complicated, expensive, and error-prone. New tools and strategies that facilitate the efficient design and production of bespoke vectors would help relieve a current bottleneck for researchers. To address this, we have developed an extensible mammalian modular assembly kit (EMMA). This enables rapid and efficient modular assembly of mammalian expression vectors in a one-tube, one-step golden-gate cloning reaction, using a standardized library of compatible genetic parts. The high modularity, flexibility, and extensibility of EMMA provide a simple method for the production of functionally diverse mammalian expression vectors. We demonstrate the value of this toolkit by constructing and validating a range of representative vectors, such as transient and stable expression vectors (transposon based vectors), targeting vectors, inducible systems, polycistronic expression cassettes, fusion proteins, and fluorescent reporters. The method also supports simple assembly combinatorial libraries and hierarchical assembly for production of larger multigenetic cargos. In summary, EMMA is compatible with automated production, and novel genetic parts can be easily incorporated, providing new opportunities for mammalian synthetic biology.
Collapse
Affiliation(s)
- Andrea Martella
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Mantas Matjusaitis
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Jamie Auxillos
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| |
Collapse
|
40
|
Wang X, Xu Z, Tian Z, Zhang X, Xu D, Li Q, Zhang J, Wang T. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J Cell Mol Med 2017; 21:3044-3054. [PMID: 28557288 PMCID: PMC5661254 DOI: 10.1111/jcmm.13216] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/01/2017] [Indexed: 02/03/2023] Open
Abstract
In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, China
| | - Zhongjie Xu
- Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhengwei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xi Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Danhua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qin Li
- Test Laboratory, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
41
|
Ohsaki K, Ohgaki Y, Shimizu N. Amplification of a transgene within a long array of replication origins favors higher gene expression in animal cells. PLoS One 2017; 12:e0175585. [PMID: 28403180 PMCID: PMC5389822 DOI: 10.1371/journal.pone.0175585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
Plasmids with both a mammalian replication initiation region (IR) and a matrix attachment region (MAR) are spontaneously amplified in transfected cells, and generate extrachromosomal double minute (DM) or chromosomal homogeneously staining region (HSR). We previously isolated the shortest core IR (G5) required for gene amplification. In this study, we ligated the G5 DNA to create direct or inverted repeats, mixed the repeats with an expression plasmid, and transfected the mixture into human COLO 320DM or hamster CHO DG44 cells. Consequently, we found that the transfected sequence generated DMs or HSR where, surprisingly, the plasmid sequence was embedded within a long stretch of G5 sequences. The amplified structure from the direct G5 repeats was stable, whereas that from the inverted repeats was not. The amplification might be explained by the efficient replication/multimerization of the G5 repeat and recombination with the co-transfected plasmid in an extrachromosomal context. The product might then be integrated into a chromosome arm to generate a HSR. The expression from the plasmid within the long G5 array was much higher than that from a simple plasmid repeat. Because G5 is a core IR that favors gene expression, a long array of G5 provides an excellent environment for gene expression from the embedded plasmid.
Collapse
Affiliation(s)
- Kiwamu Ohsaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Yusuke Ohgaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
42
|
Zhao CP, Guo X, Chen SJ, Li CZ, Yang Y, Zhang JH, Chen SN, Jia YL, Wang TY. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells. Sci Rep 2017; 7:42805. [PMID: 28216629 PMCID: PMC5316954 DOI: 10.1038/srep42805] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.
Collapse
Affiliation(s)
- Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Xiao Guo
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Si-Jia Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Chang-Zheng Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yun Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Shao-Nan Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yan-Long Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
43
|
Ho SCL, Koh EYC, Soo BPC, Mariati, Chao SH, Yang Y. Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnol 2016; 16:71. [PMID: 27756290 PMCID: PMC5070371 DOI: 10.1186/s12896-016-0300-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Background Methylated CpG dinucleotides in promoters are associated with the loss of gene expression in recombinant Chinese hamster ovary (CHO) cells during large-scale commercial manufacturing. We evaluated a promoter devoid of CpG dinucleotides, CpGfree, in parallel with a similar CpG containing promoter, CpGrich, for their ability to maintain the expression of recombinant enhanced green fluorescent protein (EGFP) after 8 weeks of culturing. Results While the promoters gave similar transient expression levels, CpGfree clones had significantly higher average stable expression possibly due to increased resistance to early silencing during integration into the chromosome. A greater proportion of cells in clones generated using the CpGfree promoter were still expressing detectable levels of EGFP after 8 weeks but the relative expression levels measured at week 8 to those measured at week 0 did not improve compared to clones generated using the CpGrich promoter. Chromatin immunoprecipitation assays indicated that the repression of the CpGfree promoter was likely linked to histone deacetylation and methylation. Use of histone deacetylase inhibitors also managed to recover some of the lost expression. Conclusion Using a promoter without CpG dinucleotides could mitigate the early gene silencing but did not improve longer-term expression stability as silencing due to histone modifications could still take place. The results presented here would aid in promoter selection and design for improved protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Steven C L Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Esther Y C Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Benjamin P C Soo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Mariati
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.,Department of Microbiology, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117597, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
44
|
Ritter A, Nuciforo S, Schulze A, Oertli M, Rauschert T, Voedisch B, Geisse S, Jostock T, Laux H. Fam60A
plays a role for production stabilities of recombinant CHO cell lines. Biotechnol Bioeng 2016; 114:701-704. [DOI: 10.1002/bit.26181] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Anett Ritter
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Sandro Nuciforo
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Axel Schulze
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Mevion Oertli
- Novartis Institutes for BioMedical Research; Basel Switzerland
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | | | - Bernd Voedisch
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Sabine Geisse
- Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Thomas Jostock
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| | - Holger Laux
- Novartis Pharma AG; Integrated Biologics Profiling Unit; Werk Klybeck Postfach CH-4002 Basel Switzerland
| |
Collapse
|
45
|
Recombinant protein production from stable mammalian cell lines and pools. Curr Opin Struct Biol 2016; 38:129-36. [DOI: 10.1016/j.sbi.2016.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 11/23/2022]
|
46
|
Impact of Different Promoters on Episomal Vectors Harbouring Characteristic Motifs of Matrix Attachment Regions. Sci Rep 2016; 6:26446. [PMID: 27226236 PMCID: PMC4881036 DOI: 10.1038/srep26446] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
We previously demonstrated that the characteristic sequence of matrix attachment regions (MARs) allows transgenes to be maintained episomally in CHO cells. In the present study, six commonly used promoters from human cytomegalovirus major immediate-early (CMV), simian vacuolating virus 40 (SV40), Rous sarcoma virus, Homo sapiens ubiquitin C, phosphoglycerate kinase, and β-globin, respectively, were evaluated to determine their effects on transgene expression and stability in CHO cells stably transfected via the episomal vector harbouring characteristic MAR motifs. The CHO cells were transfected with vectors and then screened using G418, after which the stably transfected cells were split into two and further cultured either in the presence or absence of G418. Of the six promoters, the CMV promoter yielded the highest transgene expression levels and the highest transfection efficiency, whereas the SV40 promoter maintained transgene expression more stably during long-term culture than the other promoters did. The CMV and SV40 promoter-containing vectors were furthermore episomally maintained and conferred sustained eGFP expression in the cells even under nonselective conditions. On the basis of these findings, we conclude that the CMV promoter performs best in terms of yielding both high expression levels and high levels of stability using this episomal vector system.
Collapse
|
47
|
Moritz B, Woltering L, Becker PB, Göpfert U. High levels of histone H3 acetylation at the CMV promoter are predictive of stable expression in Chinese hamster ovary cells. Biotechnol Prog 2016; 32:776-86. [DOI: 10.1002/btpr.2271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Benjamin Moritz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
- Biomedical Center and Center for Integrated Protein Science, Molecular Biology Division, Ludwig-Maximilians-University; Munich Germany
| | - Laura Woltering
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
| | - Peter B. Becker
- Biomedical Center and Center for Integrated Protein Science, Molecular Biology Division, Ludwig-Maximilians-University; Munich Germany
| | - Ulrich Göpfert
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
| |
Collapse
|
48
|
Wang XJ, Wang J, Wang YY, Guo YJ, Chu BB, Yang GY. Sus scrofa matrix attachment region enhances expression of the PiggyBac system transfected into HEK293T cells. Biotechnol Lett 2016; 38:949-58. [PMID: 26965151 DOI: 10.1007/s10529-016-2074-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVES To determine the effects of the Sus scrofa matrix attachment region (SusMAR) on transgene expression in HEK293T cells. RESULTS Three expression vectors with the MAR at different sites in the PiggyBac (PB) transposon vector backbone were compared: two MARs flanking the β-galactosidase (β-gal) expression cassette, and one at the upstream or downstream site. Bos taurus MAR (BosMAR) and a β-gal expression cassette without MARs were the positive and negative controls, respectively. Compared to the control, β-gal activity of all SusMAR and BosMAR vectors was significantly improved in the presence of PB transposase (PBase). However, only the downstream SusMAR and upstream BosMAR vectors showed increased expression in the absence of PBase. Expression was significantly increased in all vectors with the PBase group compared to those without the PBase group. Gene copy numbers were not increased compared to the negative control. CONCLUSIONS SusMAR enhanced recombinant gene expression levels and stability in HEK293T cells, was not increase transgene copy number. These results could facilitate the development of vectors for stable production of therapeutic proteins.
Collapse
Affiliation(s)
- Xin-Jian Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiang Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yue-Ying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yu-Jie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- College of Animal Husbandary and Veterinary Science, Henan Agricultural University, Wenhua Road 95, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
49
|
Brown AJ, James DC. Precision control of recombinant gene transcription for CHO cell synthetic biology. Biotechnol Adv 2015; 34:492-503. [PMID: 26721629 DOI: 10.1016/j.biotechadv.2015.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, England, United Kingdom.
| |
Collapse
|
50
|
Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N. Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 2015; 10:967-78. [DOI: 10.1002/biot.201400649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
|