1
|
Eslaminejad T, Nematollahi-Mahani SN, Sargazi ML, Ansari M, Mirzaie V. Evaluating the effects of curcumin nano-chitosan on miR-221 and miR-222 expression and Wnt/β-catenin pathways in MCF-7, MDA-MB-231 and SKBR3 cell lines. Diagn Pathol 2024; 19:35. [PMID: 38365810 PMCID: PMC10870642 DOI: 10.1186/s13000-024-01468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Breast cancer is one of the most common diseases worldwide that affects women of reproductive age. miR-221 and miR-222 are two highly homogeneous microRNAs that play pivotal roles in many cellular processes and regulate the Wnt/β-catenin signaling pathway. Curcumin (CUR), a yellow polyphenolic compound, targets numerous signaling pathways relevant to cancer therapy. The main aim of this study was to compare the ability of chitosan curcumin nanoparticle (CC-CUR) formulation with the curcumin in modulating miR-221 and miR-222 expression through Wnt/β-catenin signaling pathway in MCF-7, MDA-MB-231 and SK-BR-3 breast cancer cell lines. METHOD Chitosan-cyclodextrin-tripolyphosphate containing curcumin nanoparticles (CC-CUR) were prepared. Cytotoxicity of the CUR and CC-CUR was evaluated. Experimental groups including CC-CUR, CUR and negative control were designed. The expression of miR-221 and miR-222 and Wnt/β-catenin pathway genes was measured. RESULTS The level of miR-221 and miR-222 and β-catenin genes decreased in MCF-7 and MDA-MB-231 cells and WIF1 gene increased in all cells in CC-CUR group. However, the results in SK-BR-3 cell line were unexpected; since miRs and WIF1 gene expressions were increased following CC-CUR administration and β-catenin decreased by administration of CUR. CONCLUSION Although the composite form of curcumin decreased the expression of miR-221 and miR-222 in MCF-7 and MDA cells, with significant decreasing of β-catenin and increasing of WIF1 gene in almost all three cell lines, we can conclude than this formulation exerts its effect mainly through the Wnt/β-catenin pathway. These preliminary findings may pave the way for the use of curcumin nanoparticles in the treatment of some known cancers.
Collapse
Affiliation(s)
- Touba Eslaminejad
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Marzieh Lotfian Sargazi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Departments of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Vida Mirzaie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Dunne E, Baena-Montes JM, Donaghey K, Clarke C, Kraśny MJ, Amin B, O’Halloran T, Quinlan LR, Elahi A, O’Halloran M. A Predictive and an Optimization Mathematical Model for Device Design in Cardiac Pulsed Field Ablation Using Design of Experiments. J Cardiovasc Dev Dis 2023; 10:423. [PMID: 37887870 PMCID: PMC10607717 DOI: 10.3390/jcdd10100423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Cardiac catheter ablation (CCA) is a common method used to correct cardiac arrhythmia. Pulsed Field Ablation (PFA) is a recently-adapted CCA technology whose ablation is dependent on electrode and waveform parameters (factors). In this work, the use of the Design of Experiments (DoE) methodology is investigated for the design and optimization of a PFA device. The effects of the four factors (input voltage, electrode spacing, electrode width, and on-time) and their interactions are analyzed. An empirical model is formed to predict and optimize the ablation size responses. Based on the ranges tested, the significant factors were the input voltage, the electrode spacing, and the on time, which is in line with the literature. Two-factor interactions were found to be significant and need to be considered in the model. The resulting empirical model was found to predict ablation sizes with less than 2.1% error in the measured area and was used for optimization. The findings and the strong predictive model developed highlight that the DoE approach can be used to help determine PFA device design, to optimize for certain ablation zone sizes, and to help inform device design to tackle specific cardiac arrhythmias.
Collapse
Affiliation(s)
- Eoghan Dunne
- Translational Medical Device Lab (TMD Lab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Jara M. Baena-Montes
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
| | - Kevin Donaghey
- AuriGen Medical, GMIT Innovation Hubs, H91 DCH9 Galway, Ireland
| | - Cormac Clarke
- AuriGen Medical, GMIT Innovation Hubs, H91 DCH9 Galway, Ireland
| | - Marcin J. Kraśny
- Translational Medical Device Lab (TMD Lab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Bilal Amin
- Translational Medical Device Lab (TMD Lab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, College of Science and Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Tony O’Halloran
- AuriGen Medical, GMIT Innovation Hubs, H91 DCH9 Galway, Ireland
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, University of Galway, H91 TK33 Galway, Ireland
| | - Adnan Elahi
- Translational Medical Device Lab (TMD Lab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Smart Sensors Lab, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, College of Science and Engineering, University of Galway, H91 TK33 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMD Lab), Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
- Electrical & Electronic Engineering, College of Science and Engineering, University of Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
3
|
Eslaminejad T, Faghih Mirzaei E, Abaszadeh M. Synthesis, Antioxidant, Cytotoxicity, Induce Apoptosis Investigation and Docking Study of New Halogenated Dihydropyrano[3,2- b]Chromene-3-Carbonitrile Derivatives on MCF-7 Breast Cancer Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e132932. [PMID: 38116542 PMCID: PMC10728837 DOI: 10.5812/ijpr-132932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 12/21/2023]
Abstract
Background Chromene derivatives showed numerous biological activities. In the current study, the antioxidant, cytotoxicity, and apoptosis properties of halogenated dihydropyrano[3,2-b]chromene-3-carbonitrile derivatives (HDCCD) on MCF-7 cell line have been examined. Objectives This study's principal point was synthesizing new halogenated pyranochromene derivatives and assessing their cytotoxic effects and apoptosis potential on MCF-7 breast cancer cell line by flow cytometry. Methods Initially, 6-chloro- and 6-bromo-3-hydroxychromone compounds were prepared. In the next step, a series of HDCCD were synthesized by a one-pot three-component reaction of these two compounds, aromatic aldehydes, and malononitrile, in the presence of triethylamine in EtOH at reflux conditions. These compounds were fully characterized by standard spectroscopic techniques (IR, 1H, and 13C NMR) and elemental analyses. The potential of the antioxidant activity was determined by using ferric reducing antioxidant power assay (FRAP). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) were used to evaluate metabolic activity. The nitric oxide (NO) and malondialdehyde (MDA) biomarkers of the exposed cells were evaluated on the cells and their supernatant. To quantify apoptotic death of MCF-7 breast cancer cells treated by the compounds at their IC50 concentrations, Annexin V-FITC apoptosis detection kit was utilized. Molecular docking of compounds (6a-j) into the Cyclin-dependent kinase 6 (PDB code: 4EZ5) was carried out, and the probable binding mode of compounds 6e and 6j was determined. Results A dose-response relationship was seen in all the compounds. Most of them induced cytotoxic effects on the cells. Nitrite concentration of the culture media of the cells was decreased compared to the control. Malondialdehyde levels of the cells were below the range of the control by the addition of 6b, 6d, 6e, 6f, and 6g compounds on the cells, while the addition of the 6a, 6c, 6h, 6i, and 6j compounds increased the MDA level compared to the control. Flow cytometric analysis showed that most of the exposed cells were in the early and late apoptotic stage, and a few of them were in the necrotic stage. Conclusions It could be concluded that HDCCD (6a-j) was toxic and caused death in the cells by apoptosis. The compounds have lipophilic characteristics, so they can easily pass the cell membrane. As confirmed by LDH results, it can be concluded that the cytotoxicity is connected with apoptosis rather than necrosis, endorsed by flowcytometry analysis afterward.
Collapse
Affiliation(s)
- Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Faghih Mirzaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Abaszadeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Potočnik T, Maček Lebar A, Kos Š, Reberšek M, Pirc E, Serša G, Miklavčič D. Effect of Experimental Electrical and Biological Parameters on Gene Transfer by Electroporation: A Systematic Review and Meta-Analysis. Pharmaceutics 2022; 14:pharmaceutics14122700. [PMID: 36559197 PMCID: PMC9786189 DOI: 10.3390/pharmaceutics14122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The exact mechanisms of nucleic acid (NA) delivery with gene electrotransfer (GET) are still unknown, which represents a limitation for its broader use. Further, not knowing the effects that different experimental electrical and biological parameters have on GET additionally hinders GET optimization, resulting in the majority of research being performed using a trial-and-error approach. To explore the current state of knowledge, we conducted a systematic literature review of GET papers in in vitro conditions and performed meta-analyses of the reported GET efficiency. For now, there is no universal GET strategy that would be appropriate for all experimental aims. Apart from the availability of the required electroporation device and electrodes, the choice of an optimal GET approach depends on parameters such as the electroporation medium; type and origin of cells; and the size, concentration, promoter, and type of the NA to be transfected. Equally important are appropriate controls and the measurement or evaluation of the output pulses to allow a fair and unbiased evaluation of the experimental results. Since many experimental electrical and biological parameters can affect GET, it is important that all used parameters are adequately reported to enable the comparison of results, as well as potentially faster and more efficient experiment planning and optimization.
Collapse
Affiliation(s)
- Tjaša Potočnik
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Alenka Maček Lebar
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Matej Reberšek
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Eva Pirc
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
5
|
Razavi R, Amiri M, Alshamsi HA, Eslaminejad T, Salavati-Niasari M. Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Firouzeh N, Eslaminejad T, Shafiei R, Faridi A, Fasihi Harandi M. Lethal in vitro effects of optimized chitosan nanoparticles against protoscoleces of Echinococcus granulosus. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211014219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cystic Echinococcosis (CE) is a parasitic infection caused by the larval stage of Echinococcus granulosus. Exploring safe and effective scolicidal agents for the surgery is an urgent need for the successful treatment of CE. This study aimed to determine scolicidal activity of the synthesized chitosan nanoparticles. Physicochemical properties of synthesized nanoparticles were determined by using DLS, FTIR, and SEM. Different concentrations of chitosan nanoparticles from 125 to 1000 μg/ml were examined at different incubation times (10, 60, 120, and 180 min). Scolicidal and cytotoxic activity of chitosan nanoparticles were confirmed by eosin exclusion and hemolysis activity tests. FTIR spectra, zeta potential (+42 ± 2.08) and PDI (0.388 ± 0.034) value revealed that the chitosan nanoparticles were synthesized. Significant differences among the scolicidal effects of chitosan nanoparticles were observed in comparison to the control treatments and highest scolicidal activity was observed at 1000 μg/ml after 180 min exposure time. Hemolytic activity was not significant at all concentrations of chitosan nanoparticles. Our findings support the hypothesis that Chitosan nanoparticles have the potential to be a safe and efficient scolicidal agent candidate at very low concentrations and in a wide range of exposure time. Further in vivo studies are recommended to evaluate chitosan nanoparticle efficacy before clinical application.
Collapse
Affiliation(s)
- Nima Firouzeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ashkan Faridi
- Department of Parasitology and Mycology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
7
|
Afzali E, Eslaminejad T, Yazdi Rouholamini SE, Shahrokhi-Farjah M, Ansari M. Cytotoxicity Effects of Curcumin Loaded on Chitosan Alginate Nanospheres on the KMBC-10 Spheroids Cell Line. Int J Nanomedicine 2021; 16:579-589. [PMID: 33531802 PMCID: PMC7846832 DOI: 10.2147/ijn.s251056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose Breast cancer is one of the most lethal types of cancer in women. Curcumin showed therapeutic potential against breast cancer, but applying that by itself does not lead to the associated health benefits due to its poor bioavailability, which appears to be primarily due to poor absorption, rapid metabolism, and rapid elimination. Moreover, poor water solubility of curcumin causes accumulation of a high concentration of curcumin and so decrease its permeability to the cell. Many strategies are employed to reduce curcumin metabolism such as adjuvants and designing novel delivery systems. Therefore, in this study sodium alginate and chitosan were used to synthesize the hydrogels that are known as biocompatible, hydrophilic and low toxic drug delivery systems. Also, folic acid was used to link to chitosan in order to actively targetfolate receptors on the cells. Methods Chitosan-β-cyclodextrin-TPP-Folic acid/alginate nanoparticles were synthesized and then curcumin was loaded on them. Interaction between the constituents of the particles was characterized by FTIR spectroscopy. Morphological structures of samples were studied by FE-SEM. Release profile of curcumin was determined by dialysis membrane. The cytotoxic test was done on the Kerman male breast cancer (KMBC-10) cell line by using MTT assay. The viability of cells was detected by fluorescent staining. Gene expression was investigated by real-time PCR. Results The encapsulation of curcumin into nano-particles showed an almost spherical shape and an average particle size of 155 nm. In vitro cytotoxicity investigation was indicated as dose-respond reaction against cancer breast cells after 24 h incubation. On the other hand, in vitro cell uptake study revealed active targeting of CUR-NPs into spheroids. Besides, CXCR4 expression was detected about 30-fold less than curcumin alone. The CUR-NPs inhibited proliferation and increased apoptosis in spheroid human breast cancer cells. Conclusion Our results showed the potential of NPs as an effective candidate for curcumin delivery to the target tumor spheroids that confirmed the creatable role of folate receptors.
Collapse
Affiliation(s)
- Elham Afzali
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyede Elmira Yazdi Rouholamini
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mariam Shahrokhi-Farjah
- Physiology Research Centre, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Peng H, Zou C, Wang C, Tang W, Zhou J. The effective removal of phenol from aqueous solution via adsorption on CS/β-CD/CTA multicomponent adsorbent and its application for COD degradation of drilling wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33668-33680. [PMID: 32533479 DOI: 10.1007/s11356-020-09437-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The 3-chloro-2 hydroxypropyltrimethyl ammonium chloride was successfully introduced into the β-cyclodextrin-modified chitosan to create the multicomponent adsorbent O-HTACC-g-CD. The structure of sorbent was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The adsorption capacity of O-HTACC-g-CD toward phenol was investigated as a function of pH, temperature, contact time as well as adsorbent dosage. The Box-Behnken response surface methodology was employed to optimize the effects of experimental parameters including adsorbent dose, pH, and time on the adsorption of phenol at 298.15 K. The obtained optimal values for adsorbent dose, pH, and time were 0.06 g, 6, and 200 min, respectively. The obtained experimental data follows the pseudo-second-order kinetic and Langmuir model. The thermodynamic parameters such as free energy change, enthalpy change, and entropy change were calculated, revealing that adsorption of phenol on O-HTACC-g-CD is a spontaneous and exothermic process. The prepared O-HTACC-g-CD displayed high adsorption capacity (39.98 mg g-1) and excellent removal rate (96%) for phenol from the aqueous solution at 288.15 K. The gained removal rates of chemical oxygen demand (CODCr) were in the range of 60.6-61.2%. Considerable results of sorption could be attributed to the multicomponent structure of the adsorbent with more active sites including the cavities, amino, and carboxyl functional groups which provided better sites for the phenolic pollutant to adsorb on the adsorbent via Van der Waals force, hydrogen bond, and the inclusion effect. Therefore, the results obtained strongly suggest that O-HTACC-g-CD could be an effective adsorbent for the removal of phenol and CODcr from drilling wastewater.
Collapse
Affiliation(s)
- Hong Peng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| | - Changjun Zou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China.
| | - Chengjun Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| | - Wenyue Tang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| | - Juxian Zhou
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Xindu District, Chengdu, 610500, People's Republic of China
| |
Collapse
|
9
|
Mirzaie V, Ansari M, Nematollahi-Mahani SN, Moballegh Nasery M, Karimi B, Eslaminejad T, Pourshojaei Y. Nano-Graphene Oxide-supported APTES-Spermine, as Gene Delivery System, for Transfection of pEGFP-p53 into Breast Cancer Cell Lines. Drug Des Devel Ther 2020; 14:3087-3097. [PMID: 32801647 PMCID: PMC7398748 DOI: 10.2147/dddt.s251005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Genetic diseases can be the result of genetic dysfunctions that happen due to some inhibitory and/or environmental risk factors, which are mostly called mutations. One of the most promising treatments for these diseases is correcting the faulty gene. Gene delivery systems are an important issue in improving the gene therapy efficiency. Therefore, the main purpose of this study was modifying graphene oxide nanoparticles by spermine in order to optimize the gene delivery system. METHODS Graphene oxide/APTES was modified by spermine (GOAS) and characterized by FT-IR, DLS, SEM and AFM techniques. Then pEGFP-p53 was loaded on GOAS, transfected into cells and evaluated by fluorescent microscopy and gene expression techniques. RESULTS FT-IR data approved the GOAS sheet formation. Ninety percent of the particles were less than 56 nm based on DLS analysis. SEM analysis indicated that the sheets were dispersed with no aggregation. AFM results confirmed the dispersed structures with thickness of 1.25±0.87 nm. STA analysis showed that GOAS started to decompose from 400°C and was very unstable during the heating process. The first weight loss up to 200°C was due to the evaporation of absorbed water, the second one observed in the range of 200-550°C was assigned to the decomposition of labile oxygen- and nitrogen-containing functional groups, and the third one above 550°C was attributed to the removal of oxygen functionalities. In vitro release of DNA demonstrated the efficient activity of the new synthesized system. Ninety percent of the cells were transfected and showed the GFP under fluorescence microscopy, and TP53 gene was expressed 51-fold in BT-20 cells compared to β-actin as the reference gene. Flow cytometry analysis confirmed the apoptosis of the cells rather than necrosis. CONCLUSION It could be concluded that the new synthesized structure could transfer a high amount of the therapeutic agent into cells with best activity.
Collapse
Affiliation(s)
- Vida Mirzaie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Department of Drug and Food Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahshid Moballegh Nasery
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Behzad Karimi
- Surface Coating and Corrosion Department, Institute for Color Science and Technology, Tehran, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Ohadi M, Shahravan A, Dehghannoudeh N, Eslaminejad T, Banat IM, Dehghannoudeh G. Potential Use of Microbial Surfactant in Microemulsion Drug Delivery System: A Systematic Review. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:541-550. [PMID: 32103896 PMCID: PMC7008186 DOI: 10.2147/dddt.s232325] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/15/2020] [Indexed: 01/03/2023]
Abstract
Background Microemulsions drug delivery systems (MDDS) have been known to increase the bioavailability of hydrophobic drugs. The main challenge of the MDDS is the development of an effective and safe system for drug carriage and delivery. Biosurfactants are preferred surface-active molecules because of their lower toxicity and safe characteristics when compared to synthetic surfactants. Glycolipid and lipopeptide are the most common biosurfactants that were tested for MDDS. The main goal of the present systematic review was to estimate the available evidence on the role of biosurfactant in the development of MDDS. Search Strategy Literature searches involved the main scientific databases and were focused on the period from 2005 until 2017. The Search filter composed of two items: “Biosurfactant” and/or “Microemulsion.” Inclusion Criteria Twenty-four studies evaluating the use of biosurfactant in MDDS were eligible for inclusion. Among these 14 were related to the use of glycolipid biosurfactants in the MDDS formulations, while four reported using lipopeptide biosurfactants and six other related review articles. Results According to the output study parameters, biosurfactants acted as active stabilizers, hydrophilic or hydrophobic linkers and safety carriers in MDDS, and among them glycolipid biosurfactants had the most application in MDDS formulations. Conclusion Synthetic surfactants could be replaced by biosurfactants as an effective bio-source for MDDS due to their excellent self-assembling and emulsifying activity properties.
Collapse
Affiliation(s)
- Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Arash Shahravan
- Endodontology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Negar Dehghannoudeh
- Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada
| | - Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ibrahim M Banat
- Faculty of Life & Health Sciences, University of Ulster, Coleraine BT52 1SA, N. Ireland, UK
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Huang Y, Hu X, Zhao H, He D, Li Y, Yang M, Yu Z, Li K, Zhang J. Composite alkali polysaccharide supramolecular nanovesicles improve biocharacteristics and anti-lung cancer activity of natural phenolic drugs via oral administration. Int J Pharm 2020; 573:118864. [DOI: 10.1016/j.ijpharm.2019.118864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/21/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
12
|
Darini A, Eslaminejad T, Nematollahi Mahani SN, Ansari M. Magnetogel Nanospheres Composed of Cisplatin-Loaded Alginate/B-Cyclodextrin as Controlled Release Drug Delivery. Adv Pharm Bull 2019; 9:571-577. [PMID: 31857960 PMCID: PMC6912182 DOI: 10.15171/apb.2019.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 06/11/2019] [Accepted: 06/15/2019] [Indexed: 12/26/2022] Open
Abstract
Purpose: The main aim of the present study was to design, fabrication and physicochemical characteristics of the magnetogel nanospheres as carriers for Cisplatin in the in vitro environment. Methods: Magnetic nanospheres were synthesized by using a chemical co-precipitation method and coated by sodium alginate through double emulsion method. Then cisplatin was encapsulated into β-cyclodextrin -sodium alginate grafted magnetic nanospheres. The physicochemical properties of the sodium alginate grafted magnetic nanospheres were characterized by using FTIR, particle size analyzing, vibrating sample magnetometry, thermogravimetric and SEM analysis. Also the drug entrapment efficiency, content and in vitro release profile were investigated. Results: Size distribution results revealed that the particles size was distributed in the range of 50± nm. Also morphological properties showed that particles are separated and spherical with the grafted layers of the polymer. The release profile data were in the acceptable range compared to the blank (cisplatin solution). Conclusion: It could be concluded that the sodium alginate grafted magnetic nanospheres could act as a slow and controlled release system to deliver cisplatin.
Collapse
Affiliation(s)
- Ali Darini
- Department of Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mehdi Ansari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Karimian R, Aghajani M. Cyclodextrins and their Derivatives as Carrier Molecules in Drug and Gene Delivery Systems. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190627115422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing
six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4)
bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs
are widely used in many industrial products, technologies and analytical methods owing to
their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are
used as complexing agents to enhance aqueous solubility, physico-chemical stability and
bio-availability of administered drugs. Herein, special attention is given to the use of α-, β-
and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the
past few decades through various routes of administration with a major emphasis on the
more recent developments.
Collapse
Affiliation(s)
- Ramin Karimian
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Milad Aghajani
- Chemical Injuries Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Mohebbi S, Nezhad MN, Zarrintaj P, Jafari SH, Gholizadeh SS, Saeb MR, Mozafari M. Chitosan in Biomedical Engineering: A Critical Review. Curr Stem Cell Res Ther 2019; 14:93-116. [DOI: 10.2174/1574888x13666180912142028] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Biomedical engineering seeks to enhance the quality of life by developing advanced materials and technologies. Chitosan-based biomaterials have attracted significant attention because of having unique chemical structures with desired biocompatibility and biodegradability, which play different roles in membranes, sponges and scaffolds, along with promising biological properties such as biocompatibility, biodegradability and non-toxicity. Therefore, chitosan derivatives have been widely used in a vast variety of uses, chiefly pharmaceuticals and biomedical engineering. It is attempted here to draw a comprehensive overview of chitosan emerging applications in medicine, tissue engineering, drug delivery, gene therapy, cancer therapy, ophthalmology, dentistry, bio-imaging, bio-sensing and diagnosis. The use of Stem Cells (SCs) has given an interesting feature to the use of chitosan so that regenerative medicine and therapeutic methods have benefited from chitosan-based platforms. Plenty of the most recent discussions with stimulating ideas in this field are covered that could hopefully serve as hints for more developed works in biomedical engineering.
Collapse
Affiliation(s)
- Shabnam Mohebbi
- Department of Chemical Engineering, Tabriz University, Tabriz, Iran
| | | | - Payam Zarrintaj
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Hassan Jafari
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Saman Seyed Gholizadeh
- Department of Microbiology, College of Basic Science, Islamic Azad University, Shiraz Branch, Shiraz, Iran
| | - Mohammad Reza Saeb
- Departments of Resin and Additives, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| |
Collapse
|
15
|
Afzali E, Forootanfar H, Eslaminejad T, Amirpour-Rostami S, Ansari M. Enhancing purification of α-amylase by superparamagnetic complex with alginate/chitosan/β-cyclodextrin/TPP. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1529171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Elham Afzali
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Amirpour-Rostami
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehdi Ansari
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Food and Drug Control, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Therapeutic Potential of DNAzyme Loaded on Chitosan/Cyclodextrin Nanoparticle to Recovery of Chemosensitivity in the MCF-7 Cell Line. Appl Biochem Biotechnol 2018; 187:708-723. [PMID: 30039475 DOI: 10.1007/s12010-018-2836-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
Commonly, acquired resistances to anticancer drug are mediated by overexpression of a membrane-associated protein that encode via multi-drug resistance gene-1 (MDR1). Herein, the mRNA-cleaving DNAzyme that targets the mRNA of MDR1 gene in doxorubicin-resistant breast cancer cell line (MCF-7/DR) loaded on the chitosan β-cyclodextrin complexes was used as a tropical agent. Chitosan/β-cyclodextrin complexes were used to deliver DNAzymes into cancer cells. Determination of the physicochemical characteristics of the particles was done by photon correlation spectroscopy and scanning electron microscopy. The encapsulation efficiency of the complexes was tested by using gel retardation assay. Positively charged nanoparticles interacted with DNAzyme that could perform as an efficient DNAzyme transfection system. The rationale usage of this platform is to sensitize MCF-7/DR to doxorubicin by downregulating the drug-resistance gene MDR1. Results demonstrated a downregulation of MDR1 mRNAs in MCF-7/DR/DNZ by real-time PCR, compared to the MCF-7/DR as control. WST1 assay showed the 22-fold decrease in drug resistance on treated cells 24 h after transfection. Results showed the intracellular accumulation of Rh123 increased in the treated cells with DNAzyme. Results suggested a potential platform in association with chemotherapy drug for cancer therapy and indicated extremely efficient at delivery of DNAzyme in restoring chemosensitivity.
Collapse
|
17
|
Ohadi M, Dehghannoudeh G, Forootanfar H, Shakibaie M, Rajaee M. Investigation of the structural, physicochemical properties, and aggregation behavior of lipopeptide biosurfactant produced by Acinetobacter junii B6. Int J Biol Macromol 2018; 112:712-719. [PMID: 29425877 DOI: 10.1016/j.ijbiomac.2018.01.209] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
Abstract
In the present study the produced biosurfactant of Acinetobacter junii B6 (recently isolated from Iranian oil excavation site) were partially purified and identified by high performance thin layer chromatography (HPTLC), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H NMR). Elemental analysis of the biosurfactant by energy dispersive X-ray spectroscopy (EDS) revealed that the biosurfactant was anionic in nature. The physiochemical properties of the lipopeptide biosurfactant were evaluated by determination of its critical micelle concentration (CMC) and hydrophile-lipophile balance (HLB). The produced biosurfactant decreased the surface tension of water to 36mNm-1 with the CMC of approximately 300mg/l. Furthermore, the solubility properties of the biosurfactant (dissolved in phosphate-buffer saline solution, pH7.4) were investigated by turbidity examination, dynamic light scattering (DLS) measurements, and transmission electron microscopy (TEM) inspection. It could be concluded that the biosurfactant showed the spherical-shaped vesicles at a concentration higher than its CMC and the circular dichroism (CD) spectra showed that the secondary structure of the biosurfactant vesicles is dominated by the β sheet.
Collapse
Affiliation(s)
- Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Forootanfar
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mojtaba Shakibaie
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Rajaee
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism. Carbohydr Polym 2018; 182:106-114. [DOI: 10.1016/j.carbpol.2017.10.097] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/19/2017] [Accepted: 10/31/2017] [Indexed: 11/21/2022]
|
19
|
Hong SJ, Ahn MH, Sangshetti J, Choung PH, Arote RB. Sugar-based gene delivery systems: Current knowledge and new perspectives. Carbohydr Polym 2018; 181:1180-1193. [DOI: 10.1016/j.carbpol.2017.11.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/26/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
|
20
|
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8:34-50. [PMID: 29872621 PMCID: PMC5985630 DOI: 10.1016/j.apsb.2017.11.005] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022] Open
Abstract
Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.
Collapse
Key Words
- ABD, albumin binding domain
- ACM, aclacinomycin
- ACS, absorbable collagen sponge
- ADH, adipic dihydrazide
- ART, artemisinin
- ASF, Antheraea mylitta silk fibroin
- ATRA, all-trans retinoic acid
- ATS, artesunate
- BCEC, brain capillary endothelial cells
- BMP-2, bone morphogenetic protein-2
- BSA, bovine serum albumin
- BSF, Bombyx mori silk fibroin
- Biomacromolecule
- CC-HAM, core-crosslinked polymeric micelle based hyaluronic acid
- CD, cyclodextrin
- CD-NPs, amphiphilic MMA–tBA β-CD star copolymers that are capable of forming nanoparticles
- CD-g-CS, chitosan grafted with β-cyclodextrin
- CD/BP, cyclodextrin–bisphosphonate complexes
- CIA, collagen-induced arthritis
- CM, collagen matrices
- CMD-ChNP, carboxylmethyl dextran chitosan nanoparticle
- DHA, dihydroartesunate
- DOXO-EMCH, (6-maleimidocaproyl)hydrazone derivative of doxorubicin
- DOX–TRF, doxorubincin–transferrin conjugate
- DTX-HPLGA, HA coated PLGA nanoparticulate docetaxel
- Drug delivery
- ECM, extracellular matrix
- EMT, epithelial mesenchymal transition
- EPR, enhanced permeability and retention
- FcRn, neonatal Fc receptor
- GAG, glycosaminoglycan
- GC-DOX, glycol–chitosan–doxorubicin conjugate
- GDNF, glial-derived neurotrophic factor
- GO, grapheme oxide
- GSH, glutathione
- Gd, gadolinium
- HA, hyaluronic acid
- HA-CA, catechol-modified hyaluronic acid
- HCF, heparin-conjugated fibrin
- HDL, high density lipoprotein
- HEK, human embryonic kidney
- HSA, human serum albumin
- IDL, intermediate density lipoprotein
- INF, interferon
- LDL, low density lipoprotein
- LDLR, low density lipoprotein receptor
- LDV, leucine–aspartic acid–valine
- LMWH, low molecular weight heparin
- MSA, mouse serum albumin
- MTX–HSA, methotrexate–albumin conjugate
- NIR, near-infrared
- NSCLC, non-small cell lung cancer
- OP-Gel-NS, oxidized pectin-gelatin-nanosliver
- PEC, polyelectrolyte
- PTX, paclitaxel
- Polysaccharide
- Protein
- RES, reticuloendothelial system
- RGD, Arg–Gly–Asp peptide
- SF, silk fibroin
- SF-CSNP, silk fibroin modified chitosan nanoparticle
- SFNP, silk fibroin nanoparticle
- SPARC, secreted protein acidic and rich in cysteine
- TRAIL, tumor-necrosis factor-related apoptosis-inducing ligand
- Tf, transferrin
- TfR, transferrin receptor
- Tissue engineering
- VEGF, vascular endothelial growth factor
- VLDL, very low density lipoprotein
- pDNA, plasmid DNA
- rHDL, recombinant HDL
- rhEGF-2/HA, recombinant human fibroblast growth factor type 2 in a hyaluronic acid carrier
Collapse
Affiliation(s)
| | | | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Nematollahi MH, Torkzadeh-Mahanai M, Pardakhty A, Ebrahimi Meimand HA, Asadikaram G. Ternary complex of plasmid DNA with NLS-Mu-Mu protein and cationic niosome for biocompatible and efficient gene delivery: a comparative study with protamine and lipofectamine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1781-1791. [PMID: 29081256 DOI: 10.1080/21691401.2017.1392316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Non-viral gene delivery methods are considered due to safety and simplicity in human gene therapy. Since the use of cationic peptide and niosome represent a promising approach for gene delivery purposes we used recombinant fusion protein and cationic niosome as a gene carrier. A multi-domain fusion protein including nuclear localization motif (NLS) and two DNA-binding (Mu) domains, namely NLS-Mu-Mu (NMM) has been designed, cloned and expressed in E. coli DE3 strain. Afterward, the interested protein was purified by affinity chromatography. Binary vectors based on protein/DNA and ternary vectors based on protein/DNA/niosome were prepared. Protamine was used as a control. DNA condensing properties of NMM and protamine were evaluated by various experiments. Furthermore, we examined cytotoxicity, hemolysis and transfection potential of the binary and ternary complexes in HEK293T and MCF-7 cell lines. Protamine and Lipofectamine™2000 were used as positive controls, correspondingly. The recombinant NMM was expressed and purified successfully and DNA was condensed efficiently at charge ratios that were not harmful to cells. Peptidoplexes showed transfection efficiency (TE) but ternary complexes had higher TE. Additionally, NMM ternary complex was more efficient compared to protamine ternary vectors. Our results showed that niosomal ternary vector of NMM is a promising non-viral gene carrier to achieve an effective and safe carrier system for gene therapy.
Collapse
Affiliation(s)
- Mohammad Hadi Nematollahi
- a Neurology Research Center , Kerman University of Medical Sciences , Kerman , Iran.,b Department of Biochemistry, School of Medicine , Kerman University of Medical Sciences , Kerman , Iran
| | - Masoud Torkzadeh-Mahanai
- c Biotechnology Department, Institute of Science and High Technology and Environmental Sciences , Graduate University of Advanced Technology , Kerman , Iran
| | - Abbas Pardakhty
- d Pharmaceutics Research Center, Institute of Neuropharmacology , Kerman University of Medical Science , Kerman , Iran
| | | | - Gholamreza Asadikaram
- b Department of Biochemistry, School of Medicine , Kerman University of Medical Sciences , Kerman , Iran.,e Neuroscience Research Center, Institute of Neuropharmacology , Kerman University of Medical Sciences , Kerman , Iran
| |
Collapse
|
22
|
Zhang Y, Peng X, Song W, Sun Y, Wang L, Li Q, Zhao R. [Effects of microRNA-140 gene transfection with nucleus localization signal linked nucleic kinase substrate short peptide conjugated chitosan on rabbit articular chondrocytes]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1256-1261. [PMID: 29806331 PMCID: PMC8498133 DOI: 10.7507/1002-1892.201705088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 09/07/2017] [Indexed: 12/16/2022]
Abstract
Objective To investigate the effects of nucleus localization signal linked nucleic kinase substrate short peptide (NNS) conjugated chitosan (CS) ( NNSCS) mediated the transfection of microRNA-140 (miR-140) in rabbit articular chondrocytes in vitro. Methods Recombinant plasmid GV268-miR-140 and empty plasmid GV268 were combined with NNSCS to form NNSCS/pDNA complexes, respectively. Chondrocytes were isolated and cultured through trypsin and collagenase digestion from articular cartilage of newborn New Zealand white rabbits. The second generation chondrocytes were divided into 3 intervention groups: normal cell control group (group A), NNSCS/GV268 empty plasmid transfection group (group B), and NNSCS/GV268-miR-140 transfection group (group C). NNSCS/GV268 and NNSCS/GV268-miR- 140 complexes were transiently transfected into cells of groups B and C. After transfection, real-time fluorescent quantitative PCR (RT-qPCR) was used to detect the expressions of exogenous miR-140; Annexin Ⅴ-FITC/PI double staining and MTT assay were used to detect the effect of exogenous miR-140 on apoptosis and proliferation of transfected chondrocytes; the expressions of Sox9, Aggrecan, and histone deacetylase 4 (Hdac4) were detected by RT-qPCR. Results RT-qPCR showed that the expression of miR-140 in group C was significantly higher than that in groups A and B ( P<0.05). Compared with groups A and B, the apoptosis rate in group C was decreased and the proliferation activity was improved, Sox9 and Aggrecan gene expressions were significantly up-regulated, and Hdac4 gene expression was significantly down-regulated ( P<0.05). There was no significant difference in above indexes between groups A and B ( P>0.05). Conclusion Exogenous gene can be carried into the chondrocytes by NNSCS and expressed efficiently, the high expression of miR-140 can improve the biological activity of chondrocytes cultured in vitro, which provides important experimental basis for the treatment of cartilage damage diseases.
Collapse
Affiliation(s)
- Yangyang Zhang
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Xiaoxiang Peng
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Wei Song
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Yanli Sun
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Lujuan Wang
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Qian Li
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053, P.R.China
| | - Ronglan Zhao
- Department of Medical Laboratory, Weifang Medical University & Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, WeifangMedical University & Key Discipline of Clinical Laboratory Medicine of Shandong Province, Affiliated Hospital of Weifang Medical University, Weifang Shangdong, 261053,
| |
Collapse
|
23
|
Niño-Pariente A, Armiñán A, Reinhard S, Scholz C, Kos P, Wagner E, Vicent MJ. Design of Poly-l-Glutamate-Based Complexes for pDNA Delivery. Macromol Biosci 2017; 17. [PMID: 28378951 DOI: 10.1002/mabi.201700029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Indexed: 12/19/2022]
Abstract
Due to the polyanionic nature of DNA, typically cationic or neutral delivery vehicles have been used for gene delivery. As a new approach, this study focuses on the design, development, and validation of nonviral polypeptide-based carriers for oligonucleotide delivery based on a negatively charged poly-l-glutamic acid (PGA) backbone partly derivatized with oligoaminoamide residues. To this end, PGA-derivatives modified with different pentameric succinyl tetraethylene pentamines (Stp5 ) are designed. Optionally, histidines for modulation of endosomal buffer capacity and cysteines for pDNA complex stabilization are included, followed by characterization of biophysical properties and gene transfer efficiency in N2a neuroblastoma or 4T1 breast cancer cells.
Collapse
Affiliation(s)
- Amaya Niño-Pariente
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Ana Armiñán
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| | - Sören Reinhard
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | - Claudia Scholz
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for Nanoscience, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, Building D, 81377, Munich, Germany
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe (CIPF), C/Eduardo Primo Yúfera 3, Valencia, 46012, Spain
| |
Collapse
|