1
|
Chen Z, Zhuo W, Wang Y, Qi J, Liu L, Lu S, Wang H, Sun T, Wang L, Ren F. Mitochondrial genome of Lonicera macranthoides: features, RNA editing, and insights into male sterility. FRONTIERS IN PLANT SCIENCE 2025; 15:1520251. [PMID: 39866323 PMCID: PMC11759266 DOI: 10.3389/fpls.2024.1520251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
Introduction Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. Lonicera macranthoides, a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties. However, studies on the mitogenome of L. macranthoides still remain limited. Methods The mitochondrial DNA contained in the whole genome DNA was extracted from a male sterile cultivar of L. macranthoides, named 'Yulei 1'. Next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies were combined to obtain the mitogenome. RNA editing events were identified by integrating the mitogenome data with RNA sequencing data from leaf, stem, and flower tissues. The potential causes of male sterility in 'Yulei 1' were analyzed based on the loss of functional genes, mitogenome rearrangements, RNA editing events, and open reading frames (ORFs). Results and discussion The complete mitogenome of L. macranthoides 'Yulei 1' was obtained for the first time, with a length of 1,002,202 bp. It contains 48 protein-coding genes (PCGs), 26 tRNA genes, and 3 rRNA genes. Additionally, 79 simple sequence repeats (SSRs), 39 tandem repeats, and 99 dispersed repeats were identified. Among these, two direct repeats (RP1a/1b, RP2a/2b) and two inverse repeats (RP3a/b, RP4a/b) may facilitate mitogenome recombination. Gene transfer analysis revealed that 4.36% and 21.98% of mitogenomic sequences mapped to the chloroplast and nuclear genomes, respectively. Phylogenetic analysis indicated that L. macranthoides is closest to L. japonica at the mitogenome level. Notably, RNA editing events varied across different plant tissues, with 357 editing sites in 30 PCGs in leaves, 138 sites in 24 PCGs in flowers, and 68 sites in 13 PCGs in stems. Finally, all indications of CMS in the mitogenome were screened, including the detection of ORFs, and the findings showed no mutations in the mitogenome that would explain the sterility of 'Yulei 1'. Overall, our study provides a complete mitogenome of L. macranthoides, which will aid in its genetic marker exploration, evolutionary relationship analysis, and breeding programs.
Collapse
Affiliation(s)
- Zhong Chen
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Wei Zhuo
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Yuqi Wang
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Junpeng Qi
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Li Liu
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Sheng’E. Lu
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Han Wang
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Tao Sun
- Chongqing Customs Technology Center, Shapingba, Chongqing, China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong, China
| | - Fengming Ren
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
- School of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Bishan, Chongqing, China
| |
Collapse
|
2
|
Yang Z, Liu X, Qin X, Xiao Z, Luo Q, Pan D, Yang H, Liao S, Chen X. Unveiling the intricate structural variability induced by repeat-mediated recombination in the complete mitochondrial genome of Cuscuta gronovii Willd. Genomics 2025; 117:110966. [PMID: 39571828 DOI: 10.1016/j.ygeno.2024.110966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/26/2024] [Accepted: 11/18/2024] [Indexed: 01/13/2025]
Abstract
Cuscuta gronovii Willd., a member of the Convolvulaceae family, is noted for its potential medicinal and nutritional benefits. In this study, we utilized a combination of Illumina and Oxford Nanopore sequencing technologies to successfully assemble the complete circular mitochondrial genome (mitogenome) of C. gronovii. The mitogenome, spanning 304,467 base pairs, includes 54 genes: 33 protein-coding genes, three ribosomal RNA (rRNA) genes, and 18 transfer RNA (tRNA) genes. Beyond its primary circular structure, we discovered and validated several alternative genomic conformations, driven by five specific repeat sequences. Three inverted repeats were found to initiate rearrangements, resulting in the creation of seven distinct chromosomal structures, while two direct repeats split a larger molecule into two subgenomic entities. We also mapped 421 RNA editing sites across the protein-coding sequences, influencing 33 protein-coding genes with varying distribution, particularly noting high frequencies in the nad4 and ccmB genes. Sixteen of these RNA editing sites were experimentally validated through PCR amplification and Sanger sequencing, confirming their presence with 100 % accuracy. This research not only introduces the first mitochondrial genome of C. gronovii but also highlights its complex conformational variability induced by repeat-mediated recombination, providing a valuable genomic resource for further molecular breeding efforts and phylogenetic evolution within the genus Cuscuta.
Collapse
Affiliation(s)
- Zhijian Yang
- Cross-Straits Agricultural Technology Cooperation Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xue Liu
- Chongqing Key Laboratory of Traditional Chinese Medicine Resource, Endangered Medicinal Breeding National Engineering Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing, China.
| | - Xiaohui Qin
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Xiao
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Luo
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Danni Pan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Yang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sufeng Liao
- Cross-Straits Agricultural Technology Cooperation Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanyang Chen
- Cross-Straits Agricultural Technology Cooperation Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China; College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China; Fujian Provincial Key Laboratory of Crop Breeding by Design, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Cai Y, Chen H, Ni Y, Li J, Zhang J, Liu C. Repeat-mediated recombination results in Complex DNA structure of the mitochondrial genome of Trachelospermum jasminoides. BMC PLANT BIOLOGY 2024; 24:966. [PMID: 39407117 PMCID: PMC11481363 DOI: 10.1186/s12870-024-05568-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Trachelospermum jasminoides has medicinal and ornamental value and is widely distributed in China. Although the chloroplast genome has been documented, the mitochondrial genome has not yet been studied. RESULTS The mitochondrial genome of T. jasminoides was assembled and functionally annotated using Illumina and nanopore reads. The mitochondrial genome comprises a master circular molecular structure of 605,764 bp and encodes 65 genes: 39 protein-coding genes, 23 transfer RNA (tRNA) genes and 3 ribosomal RNA genes. In addition to the single circular conformation, we found many alternative conformations of the T. jasminoides mitochondrial genome mediated by 42 repetitive sequences. Six repetitive sequences (DRS01-DRS06) were supported by nanopore long reads, polymerase chain reaction (PCR) amplifications, and Sanger sequencing of the PCR products. Eleven homologous fragments were identified by comparing the mitochondrial and chloroplast genome sequences, including three complete tRNA genes. Moreover, 531 edited RNA sites were identified in the protein-coding sequences based on RNA sequencing data, with nad4 having the highest number of sites (54). CONCLUSION To our knowledge, this is the first description of the mitochondrial genome of T. jasminoides. Our results demonstrate the existence of multiple conformations. These findings lay a foundation for understanding the genetics and evolutionary dynamics of Apocynaceae.
Collapse
Affiliation(s)
- Yisha Cai
- School of Medicine, Huaqiao University, Fujian, 362021, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Haimei Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Yang Ni
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Jingling Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China
| | - Jinghong Zhang
- School of Medicine, Huaqiao University, Fujian, 362021, China.
| | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, PR China.
| |
Collapse
|
4
|
Liu GH, Zuo YW, Shan Y, Yu J, Li JX, Chen Y, Gong XY, Liao XM. Structural analysis of the mitochondrial genome of Santalum album reveals a complex branched configuration. Genomics 2024; 116:110935. [PMID: 39243912 DOI: 10.1016/j.ygeno.2024.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Santalum album L. is an evergreen tree which is mainly distributes throughout tropical and temperate regions. And it has a great medicinal and economic value. RESULTS In this study, the complete mitochondrial genome of S. album were assembled and annotated, which could be descried by a complex branched structure consisting of three contigs. The lengths of these three contigs are 165,122 bp, 93,430 bp and 92,491 bp. We annotated 34 genes coding for proteins (PCGs), 26 tRNA genes, and 4 rRNA genes. The analysis of repeated elements shows that there are 89 SSRs and 242 pairs of dispersed repeats in S. album mitochondrial genome. Also we found 20 MTPTs among the chloroplast and mitochondria. The 20 MTPTs sequences span a combined length of 22,353 bp, making up 15.52 % of the plastome, 6.37 % of the mitochondrial genome. Additionally, by using the Deepred-mt tool, we found 628 RNA editing sites in 34 PCGs. Moreover, significant genomic rearrangement is observed between S. album and its associated mitochondrial genomes. Finally, based on mitochondrial genome PCGs, we deduced the phylogenetic ties between S. album and other angiosperms. CONCLUSIONS We reported the mitochondrial genome from Santalales for the first time, which provides a crucial genetic resource for our study of the evolution of mitochondrial genome.
Collapse
Affiliation(s)
- Guang-Hua Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, 418008 Huaihua, Hunan, China.; College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - You-Wei Zuo
- Center for Biodiversity Conservation and Utilization, Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 400715 Beibei, Chongqing, China.
| | - Yuanyu Shan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China
| | - Jie Yu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400716, China.
| | - Jia-Xi Li
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Ying Chen
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Xin-Yi Gong
- College of Biological and Food Engineering, Huaihua University, 418008 Huaihua, Hunan, China
| | - Xiao-Min Liao
- Hunan University of Medicine General Hospital, 418008 Huaihua, Hunan, China..
| |
Collapse
|
5
|
Alawfi MS, Alzahrani DA, Albokhari EJ. Complete plastome genomes of three medicinal heliotropiaceae species: comparative analyses and phylogenetic relationships. BMC PLANT BIOLOGY 2024; 24:654. [PMID: 38987665 PMCID: PMC11234707 DOI: 10.1186/s12870-024-05388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Heliotropiaceae is a family of the order Boraginales and has over 450 species. The members of the family Heliotropiaceae have been widely reported to be used in traditional medicine Over time, the classification of Heliotropiaceae has remained uncertain and has moved from family to subfamily, or conversely. RESULTS In the present study, we sequenced, analyzed, and compared the complete plastomes of Euploca strigosa, Heliotropium arbainense, and Heliotropium longiflorum with the genomes of related taxa. The lengths of the plastomes of E. strigosa, H. arbainense, and H. longiflorum were 155,174 bp, 154,709 bp, and 154,496 bp, respectively. Each plastome consisted of 114 genes: 80 protein-coding genes, 4 ribosomal RNA genes, and 30 transfer RNA genes. The long repeats analysis indicated that reverse, palindromic, complement and forward repeats were all found in the three plastomes. The simple repeats analysis showed that the plastomes of E. strigosa, H. arbainense, and H. longiflorum contained 158, 165, and 151 microsatellites, respectively. The phylogenetic analysis confirmed two major clades in the Boraginales: clade I comprised Boraginaceae, while clade II included Heliotropiaceae, Ehretiaceae, Lennoaceae, and Cordiaceae. Inside the family Heliotropiaceae, E. strigosa is nested within the Heliotropium genus. CONCLUSIONS This study expands our knowledge of the evolutionary relationships within Heliotropiaceae and offers useful genetic resources.
Collapse
Affiliation(s)
- Mohammad S Alawfi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia.
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Dhafer A Alzahrani
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enas J Albokhari
- Department of Biological Sciences, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Tong W, Yu D, Zhu X, Le Z, Chen H, Hu F, Wu S. The Whole Mitochondrial Genome Sequence of Dendrobium loddigesii Rolfe, an Endangered Orchid Species in China, Reveals a Complex Multi-Chromosome Structure. Genes (Basel) 2024; 15:834. [PMID: 39062613 PMCID: PMC11275824 DOI: 10.3390/genes15070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Dendrobium loddigesii is a precious traditional Chinese medicine with high medicinal and ornamental value. However, the characterization of its mitochondrial genome is still pending. Here, we assembled the complete mitochondrial genome of D. loddigesii and discovered that its genome possessed a complex multi-chromosome structure. The mitogenome of D. loddigesii consisted of 17 circular subgenomes, ranging in size from 16,323 bp to 56,781 bp. The total length of the mitogenome was 513,356 bp, with a GC content of 43.41%. The mitogenome contained 70 genes, comprising 36 protein-coding genes (PCGs), 31 tRNA genes, and 3 rRNA genes. Furthermore, we detected 403 repeat sequences as well as identified 482 RNA-editing sites and 8154 codons across all PCGs. Following the sequence similarity analysis, 27 fragments exhibiting homology to both the mitogenome and chloroplast genome were discovered, accounting for 9.86% mitogenome of D. loddigesii. Synteny analysis revealed numerous sequence rearrangements in D. loddigesii and the mitogenomes of related species. Phylogenetic analysis strongly supported that D. loddigesii and D. Amplum formed a single clade with 100% bootstrap support. The outcomes will significantly augment the orchid mitochondrial genome database, offering profound insights into Dendrobium's intricate mitochondrial genome architecture.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; (W.T.); (D.Y.); (X.Z.); (Z.L.); (H.C.); (F.H.)
| |
Collapse
|
7
|
Liu Q, Wu Z, Tian C, Yang Y, Liu L, Feng Y, Li Z. Complete mitochondrial genome of the endangered Prunus pedunculata (Prunoideae, Rosaceae) in China: characterization and phylogenetic analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1266797. [PMID: 38155854 PMCID: PMC10753190 DOI: 10.3389/fpls.2023.1266797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Introduction Prunus pedunculata (Prunoideae: Rosaceae), a relic shrub with strong resistance and multiple application values, is endangered in China. Extensive research had been devoted to gene expression, molecular markers, plastid genome analysis, and genetic background investigations of P. pedunculata. However, the mitochondrial genome of this species has not been systematically described, owing to the complexity of the plant mitogenome. Methods In the present research, the complete mitochondrial genome of P. pedunculata was assembled, annotated, and characterized. The genomic features, gene content and repetitive sequences were analyzed. The genomic variation and phylogenetic analysis have been extensively enumerated. Results and discussion The P. pedunculata mitogenome is a circular molecule with a total length of 405,855 bp and a GC content of 45.63%, which are the smallest size and highest GC content among the known Prunus mitochondrial genomes. The mitogenome of P. pedunculata encodes 62 genes, including 34 unique protein-coding genes (PCGs, excluding three possible pseudogenes), three ribosomal RNA genes, and 19 transfer RNA genes. The mitogenome is rich in repetitive sequences, counting 112 simple sequence repeats, 15 tandem repeats, and 50 interspersed repetitive sequences, with a total repeat length of 11,793 bp, accounting for 2.91% of the complete genome. Leucine (Leu) was a predominant amino acid in PCGs, with a frequency of 10.67%, whereas cysteine (Cys) and tryptophan (Trp) were the least adopted. The most frequently used codon was UUU (Phe), with a relative synonymous codon usage (RSCU) value of 1.12. Selective pressure was calculated based on 20 shared PCGs in the mitogenomes of the 32 species, most of which were subjected to purifying selection (Ka/Ks < 1), whereas ccmC and ccmFn underwent positive selection. A total of 262 potential RNA editing sites in 26 PCGs were identified. Furthermore, 56 chloroplast-derived fragments were ascertained in the mitogenome, ranging from 30 to 858 bp, and were mainly located across IGS (intergenic spacer) regions or rRNA genes. These findings verify the occurrence of intracellular gene transfer events from the chloroplast to the mitochondria. Furthermore, the phylogenetic relationship of P. pedunculata was supported by the mitogenome data of 30 other taxa of the Rosaceae family. Understanding the mitochondrial genome characteristics of P. pedunculata is of great importance to promote comprehension of its genetic background and this study provides a basis for the genetic breeding of Prunus.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zinian Wu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| | - Chunyu Tian
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yanting Yang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Lemeng Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yumei Feng
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Zhiyong Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
- Key Laboratory of Grassland Resources and Utilization of Ministry of Agriculture, Hohhot, China
| |
Collapse
|
8
|
Lee HJ, Lee Y, Lee SC, Kim CK, Kang JN, Kwon SJ, Kang SH. Comparative analysis of mitochondrial genomes of Schisandra repanda and Kadsura japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1183406. [PMID: 37469771 PMCID: PMC10352487 DOI: 10.3389/fpls.2023.1183406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.
Collapse
Affiliation(s)
- Hyo Ju Lee
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Ji-Nam Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| | - Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
9
|
Jiang M, Ni Y, Li J, Liu C. Characterisation of the complete mitochondrial genome of Taraxacum mongolicum revealed five repeat-mediated recombinations. PLANT CELL REPORTS 2023; 42:775-789. [PMID: 36774424 DOI: 10.1007/s00299-023-02994-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
We reported the mitochondrial genome of Taraxacum mongolicum for the first time. Five pairs of repeats that can mediate recombination were validated, leading to multiple conformations of genome. Taraxacum mongolicum belongs to the Asteraceae family and has important pharmaceutical value. To explore the possible interaction between the organelle genomes, we assembled the complete mitochondrial genome (mitogenome) of T. mongolicum using Illumina and Oxford Nanopore sequencing data. This genome corresponded to a circular molecule 304,467 bp long. It encodes 52 unique genes including 31 protein-coding, 3 ribosomal RNA (rRNA) and 18 transfer RNA (tRNA) genes. In addition to the single circular conformation, the existence of alternative conformations mediated by five repetitive sequences in the mitogenome was identified and validated. Recombination mediated by the inverted repeats resulted in two conformations. Conversely, recombination mediated by the two direct repeats broke one large circular molecule into two subgenomic circular molecules. Furthermore, we identified 12 homologous fragments by comparing the sequences of mitogenome and plastome, including eight complete tRNA genes. Lastly, we identified a total of 278 RNA-editing sites in protein-coding sequences based on RNA-seq data. Among them, cox1 and nad5 gene has the most sites (21), followed by the nad2 gene with 19 sites. We successfully validated 213 predicted RNA-editing sites using PCR amplification and Sanger sequencing. This project reported the first mitogenome of T. mongolicum and demonstrated its multiple conformations generated by repeat-mediated recombination. This genome could provide critical information for the molecular breeding of T. mongolicum, and also be used as a reference genome for other species of the genus Taraxacum.
Collapse
Affiliation(s)
- Mei Jiang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yang Ni
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Jingling Li
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China
| | - Chang Liu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine from Ministry of Education, Engineering Research Center of Chinese Medicine Resources from Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Sheng W, Deng J, Wang C, Kuang Q. The garden asparagus ( Asparagus officinalis L.) mitochondrial genome revealed rich sequence variation throughout whole sequencing data. FRONTIERS IN PLANT SCIENCE 2023; 14:1140043. [PMID: 37051082 PMCID: PMC10084930 DOI: 10.3389/fpls.2023.1140043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Garden asparagus (Asparagus officinalis L.) is a horticultural crop with high nutritional and medical value, considered an ideal plant for sex determination research among many dioecious plants, whose genomic information can support genetic analysis and breeding programs. In this research, the entire mitochondrial genome of A. officinalis was sequenced, annotated and assembled using a mixed Illumina and PacBio data. The garden asparagus circular mitochondrial genome measures 492,062 bp with a GC value of 45.9%. Thirty-six protein-coding genes, 17 tRNA and 6 rRNA genes were annotated, among which 8 protein-coding genes contained 16 introns. In addition, 254 SSRs with 10 complete tandem repeats and 293 non-tandem repeats were identified. It was found that the codons of edited sites located in the amino acids showed a leucine-formation trend, and RNA editing sites mainly caused the mutual transformation of amino acids with the same properties. Furthermore, 72 sequence fragments accounting for 20,240 bp, presentating 4.11% of the whole mitochondrial genome, were observed to migrate from chloroplast to mitochondrial genome of A. officinalis. The phylogenetic analysis showed that the closest genetic relationship between A. officinalis with onion (Allium cepa) inside the Liliaceae family. Our results demonstrated that high percentage of protein-coding genes had evolutionary conservative properties, with Ka/Ks values less than 1. Therefore, this study provides a high-quality garden asparagus mitochondrial genome, useful to promote better understanding of gene exchange between organelle genomes.
Collapse
Affiliation(s)
- Wentao Sheng
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Jianlan Deng
- School of Foreign Language, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Chao Wang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| | - Quan Kuang
- Department of Biological Technology, Nanchang Normal University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Zhao Y, Gao R, Zhao Z, Hu S, Han R, Jeyaraj A, Arkorful E, Li X, Chen X. Genome-wide identification of RNA editing sites in chloroplast transcripts and multiple organellar RNA editing factors in tea plant (Camellia sinensis L.): Insights into the albinism mechanism of tea leaves. Gene X 2023; 848:146898. [DOI: 10.1016/j.gene.2022.146898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
|
12
|
Fujian cytoplasmic male sterility and the fertility restorer gene OsRf19 provide a promising breeding system for hybrid rice. Proc Natl Acad Sci U S A 2022; 119:e2208759119. [PMID: 35969741 PMCID: PMC9407659 DOI: 10.1073/pnas.2208759119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Although hybrid rice has been widely utilized for nearly half a century, tremendously improving rice productivity worldwide, the breeding of hybrids has been difficult because of genetic complications in male sterility and fertility-restoring systems currently available in rice. Here, we characterized Fujian Abortive cytoplasmic male sterility (CMS-FA) rice, which has shown stable male sterility controlled by the mitochondrial gene FA182; a single nuclear gene, OsRf19, completely restores fertility. This single-gene inheritance has greatly eased the breeding process. By converting CMS-WA hybrids with the CMS-FA system, we developed six hybrids that showed equivalent or better performance relative to their CMS-WA counterparts. CMS-FA/OsRf19 provides a promising system for future hybrid rice breeding. Cytoplasmic male sterility (CMS) determined by mitochondrial genes and restorer of fertility (Rf) controlled by nuclear-encoded genes provide the breeding systems of many hybrid crops for the utilization of heterosis. Although several CMS/Rf systems have been widely exploited in rice, hybrid breeding using these systems has encountered difficulties due to either fertility instability or complications of two-locus inheritance or both. In this work, we characterized a type of CMS, Fujian Abortive cytoplasmic male sterility (CMS-FA), with stable sporophytic male sterility and a nuclear restorer gene that completely restores hybrid fertility. CMS is caused by the chimeric open reading frame FA182 that specifically occurs in the mitochondrial genome of CMS-FA rice. The restorer gene OsRf19 encodes a pentatricopeptide repeat (PPR) protein targeted to mitochondria, where it mediates the cleavage of FA182 transcripts, thus restoring male fertility. Comparative sequence analysis revealed that OsRf19 originated through a recent duplication in wild rice relatives, sharing a common ancestor with OsRf1a/OsRf5, a fertility restorer gene for Boro II and Hong-Lian CMS. We developed six restorer lines by introgressing OsRf19 into parental lines of elite CMS-WA hybrids; hybrids produced from these lines showed equivalent or better agronomic performance relative to their counterparts based on the CMS-WA system. These results demonstrate that CMS-FA/OsRf19 provides a highly promising system for future hybrid rice breeding.
Collapse
|
13
|
Wee CC, Nor Muhammad NA, Subbiah VK, Arita M, Nakamura Y, Goh HH. Mitochondrial genome of Garcinia mangostana L. variety Mesta. Sci Rep 2022; 12:9480. [PMID: 35676406 PMCID: PMC9177603 DOI: 10.1038/s41598-022-13706-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022] Open
Abstract
Fruits of Garcinia mangostana L. (mangosteen) are rich in nutrients with xanthones found in the pericarp having great pharmaceutical potential. Mangosteen variety Mesta is only found in Malaysia, which tastes sweeter than the common Manggis variety in Southeast Asia. In this study, we report the complete mitogenome of G. mangostana L. variety Mesta with a total sequence length of 371,235 bp of which 1.7% could be of plastid origin. The overall GC content of the mitogenome is 43.8%, comprising 29 protein-coding genes, 3 rRNA genes, and 21 tRNA genes. Repeat and tandem repeat sequences accounted for 5.8% and 0.15% of the Mesta mitogenome, respectively. There are 333 predicted RNA-editing sites in Mesta mitogenome. These include the RNA-editing events that generated the start codon of nad1 gene and the stop codon of ccmFC gene. Phylogenomic analysis using both maximum likelihood and Bayesian analysis methods showed that the mitogenome of mangosteen variety Mesta was grouped under Malpighiales order. This is the first complete mitogenome from the Garcinia genus for future evolutionary studies.
Collapse
Affiliation(s)
- Ching-Ching Wee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Vijay Kumar Subbiah
- Biotechnology Research Institute, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Masanori Arita
- National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | | | - Hoe-Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
14
|
Huang Y, Li J, Yang Z, An W, Xie C, Liu S, Zheng X. Comprehensive analysis of complete chloroplast genome and phylogenetic aspects of ten Ficus species. BMC PLANT BIOLOGY 2022; 22:253. [PMID: 35606691 PMCID: PMC9125854 DOI: 10.1186/s12870-022-03643-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. RESULTS The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. CONCLUSION The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Jing Li
- Traditional Chinese Medicine Gynecology Laboratory in Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510410, China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 232th Waihuangdong Road, Higher Education Mega Center, Panyu District, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Comparative Transcriptome Analysis of the Anthers from the Cytoplasmic Male-Sterile Pepper Line HZ1A and Its Maintainer Line HZ1B. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cytoplasmic male-sterility (CMS) is important for the utilization of crop heterosis and study of the molecular mechanisms involved in CMS could improve breeding programs. In the present study, anthers of the pepper CMS line HZ1A and its maintainer line HZ1B were collected from stages S1, S2, and S3 for transcriptome sequencing. A total of 47.95 million clean reads were obtained, and the reads were assembled into 31,603 unigenes. We obtained 42 (27 up-regulated and 15 down-regulated), 691 (346 up-regulated and 345 down-regulated), and 709 (281 up-regulated and 428 down-regulated) differentially expressed genes (DEGs) in stages S1, S2, and S3, respectively. Through Gene Ontology (GO) analysis, the DEGs were found to be composed of 46 functional groups. Two GO terms involved in photosynthesis, photosynthesis (GO:0015986) and photosystem I (GO:0009522), may be related to CMS. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, oxidative phosphorylation (ko00190) and phenylpropanoid biosynthesis (ko00940) were significantly enriched in the S1 and S2 stages, respectively. Through the analysis of 104 lipid metabolism-related DEGs, four significantly enriched KEGG pathways may help to regulate male sterility during anther development. The mitochondrial genes orf470 and atp6 were identified as candidate genes of male sterility for the CMS line HZ1A. Overall, the results will provide insights into the molecular mechanisms of pepper CMS.
Collapse
|
16
|
Chu D, Wei L. Systematic analysis reveals cis and trans determinants affecting C-to-U RNA editing in Arabidopsis thaliana. BMC Genet 2020; 21:98. [PMID: 32883207 PMCID: PMC7469343 DOI: 10.1186/s12863-020-00907-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Background C-to-U RNA editing is prevalent in the mitochondrial and chloroplast genes in plants. The biological functions of a fraction of C-to-U editing sites are continuously discovered by case studies. However, at genome-wide level, the cis and trans determinants affecting the occurrence or editing levels of these C-to-U events are relatively less studied. What is known is that the PPR (pentatricopeptide repeat) proteins are the main trans-regulatory elements responsible for the C-to-U conversion, but other determinants especially the cis-regulatory elements remain largely uninvestigated. Results By analyzing the transcriptome and translatome data in Arabidopsis thaliana roots and shoots, combined with RNA-seq data from hybrids of Arabidopsis thaliana and Arabidopsis lyrata, we perform genome-wide investigation on the cis elements and trans-regulatory elements that potentially affect C-to-U editing events. An upstream guanosine or double-stranded RNA (dsRNA) regions are unfavorable for editing events. Meanwhile, many genes including the transcription factors may indirectly play regulatory roles in trans. Conclusions The 5-prime thymidine facilitates editing and dsRNA structures prevent editing in cis. Many transcription factors affect editing in trans. Although the detailed molecular mechanisms underlying the cis and trans regulation remain to be experimentally verified, our findings provide novel aspects in studying the botanical C-to-U RNA editing events.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
17
|
Munyao JN, Dong X, Yang JX, Mbandi EM, Wanga VO, Oulo MA, Saina JK, Musili PM, Hu GW. Complete Chloroplast Genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome Structures, Comparative and Phylogenetic Analysis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E296. [PMID: 32121524 PMCID: PMC7154914 DOI: 10.3390/plants9030296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 11/16/2022]
Abstract
The genus Chlorophytum includes many economically important species well-known for medicinal, ornamental, and horticultural values. However, to date, few molecular genomic resources have been reported for this genus. Therefore, there is limited knowledge of phylogenetic studies, and the available chloroplast (cp) genome of Chlorophytum (C. rhizopendulum) does not provide enough information on this genus. In this study, we present genomic resources for C. comosum and C. gallabatense, which had lengths of 154,248 and 154,154 base pairs (bp), respectively. They had a pair of inverted repeats (IRa and IRb) of 26,114 and 26,254 bp each in size, separating the large single-copy (LSC) region of 84,004 and 83,686 bp from the small single-copy (SSC) region of 18,016 and 17,960 bp in C. comosum and C. gallabatense, respectively. There were 112 distinct genes in each cp genome, which were comprised of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative analysis with five other selected species displayed a generally high level of sequence resemblance in structural organization, gene content, and arrangement. Additionally, the phylogenetic analysis confirmed the previous phylogeny and produced a phylogenetic tree with similar topology. It showed that the Chlorophytum species (C. comosum, C. gallabatense and C. rhizopendulum) were clustered together in the same clade with a closer relationship than other plants to the Anthericum ramosum. This research, therefore, presents valuable records for further molecular evolutionary and phylogenetic studies which help to fill the gap in genomic resources and resolve the taxonomic complexes of the genus.
Collapse
Affiliation(s)
- Jacinta N. Munyao
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Dong
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Xin Yang
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Elijah M. Mbandi
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Vincent O. Wanga
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Millicent A. Oulo
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Josphat K. Saina
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Paul M. Musili
- East Africa Herbarium, National Museums of Kenya, P.O. Box 45166 00100 Nairobi, Kenya;
| | - Guang-Wan Hu
- CAS key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (J.N.M.); (X.D.); (J.-X.Y.); (E.M.M.); (V.O.W.); (M.A.O.); (J.K.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Kan SL, Shen TT, Gong P, Ran JH, Wang XQ. The complete mitochondrial genome of Taxus cuspidata (Taxaceae): eight protein-coding genes have transferred to the nuclear genome. BMC Evol Biol 2020; 20:10. [PMID: 31959109 PMCID: PMC6971862 DOI: 10.1186/s12862-020-1582-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Gymnosperms represent five of the six lineages of seed plants. However, most sequenced plant mitochondrial genomes (mitogenomes) have been generated for angiosperms, whereas mitogenomic sequences have been generated for only six gymnosperms. In particular, complete mitogenomes are available for all major seed plant lineages except Conifer II (non-Pinaceae conifers or Cupressophyta), an important lineage including six families, which impedes a comprehensive understanding of the mitogenomic diversity and evolution in gymnosperms. RESULTS Here, we report the complete mitogenome of Taxus cuspidata in Conifer II. In comparison with previously released gymnosperm mitogenomes, we found that the mitogenomes of Taxus and Welwitschia have lost many genes individually, whereas all genes were identified in the mitogenomes of Cycas, Ginkgo and Pinaceae. Multiple tRNA genes and introns also have been lost in some lineages of gymnosperms, similar to the pattern observed in angiosperms. In general, gene clusters could be less conserved in gymnosperms than in angiosperms. Moreover, fewer RNA editing sites were identified in the Taxus and Welwitschia mitogenomes than in other mitogenomes, which could be correlated with fewer introns and frequent gene losses in these two species. CONCLUSIONS We have sequenced the Taxus cuspidata mitogenome, and compared it with mitogenomes from the other four gymnosperm lineages. The results revealed the diversity in size, structure, gene and intron contents, foreign sequences, and mutation rates of gymnosperm mitogenomes, which are different from angiosperm mitogenomes.
Collapse
Affiliation(s)
- Sheng-Long Kan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ping Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jin-Hua Ran
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
19
|
Chu D, Wei L. Reduced C-to-U RNA editing rates might play a regulatory role in stress response of Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2020; 244:153081. [PMID: 31783167 DOI: 10.1016/j.jplph.2019.153081] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
C-to-U RNA editing is prevalent in the mitochondrial and chloroplast genes in plants. The C-to-U editing rates are constantly very high. During genome evolution, those edited cytidines are likely to be replaced with thymidines at the DNA level. C-to-U editing events are suggested to be designed for reversing the unfavorable T-to-C DNA mutations. Despite the existing theory showing the importance of editing mechanisms, few studies have investigated the genome-wide adaptive signals of the C-to-U editome or the potential function of C-to-U editing events in the stress response. By analyzing the transcriptome and translatome data of normal and heat-shocked Arabidopsis thaliana and the RNA-seq from cold-stressed plants, combined with genome-wide comparison of mitochondrial/chloroplast genes and nuclear genes from multiple aspects, we present the conservational and translational features of each gene and depict the dynamic mitochondrial/chloroplast C-to-U RNA editome. We found that the tAI (tRNA adaptation index) and basic translation levels are lower for mitochondrial/chloroplast genes than for nuclear genes. Interestingly, although we found adaptive signals for the global C-to-U RNA editome in mitochondrial/chloroplast genes, the C-to-U (T) alteration would usually cause a reduction in the codon tAI value. Moreover, the C-to-U editing rates are significantly reduced under heat or cold stress when compared to the normal condition. This reduction is irrelevant to the temperature-sensitive RNA structures. Several cases have illustrated that under heat stress, the reduced C-to-U editing rates alleviate ribosome stalling and consequently facilitate the local translation. Our study reveals that in Arabidopsis thaliana the mitochondrial/chloroplast C-to-U RNA editing rates are reduced under heat or cold stress. This reduction is associated with the alleviation of decreased tAI/translation rate of edited codons. The regulation of C-to-U editing rates could be the tradeoff between quantity and quality. We profile the dynamic change of C-to-U RNA editome under heat stress and propose a potential role of editing sites in the heat response. Our work should be appealing to the plant physiologists as well as the RNA editing community.
Collapse
Affiliation(s)
- Duan Chu
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China
| | - Lai Wei
- College of Life Sciences, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing, China.
| |
Collapse
|
20
|
Varré JS, D'Agostino N, Touzet P, Gallina S, Tamburino R, Cantarella C, Ubrig E, Cardi T, Drouard L, Gualberto JM, Scotti N. Complete Sequence, Multichromosomal Architecture and Transcriptome Analysis of the Solanum tuberosum Mitochondrial Genome. Int J Mol Sci 2019; 20:E4788. [PMID: 31561566 PMCID: PMC6801519 DOI: 10.3390/ijms20194788] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/01/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) in higher plants can induce cytoplasmic male sterility and be somehow involved in nuclear-cytoplasmic interactions affecting plant growth and agronomic performance. They are larger and more complex than in other eukaryotes, due to their recombinogenic nature. For most plants, the mitochondrial DNA (mtDNA) can be represented as a single circular chromosome, the so-called master molecule, which includes repeated sequences that recombine frequently, generating sub-genomic molecules in various proportions. Based on the relevance of the potato crop worldwide, herewith we report the complete mtDNA sequence of two S. tuberosum cultivars, namely Cicero and Désirée, and a comprehensive study of its expression, based on high-coverage RNA sequencing data. We found that the potato mitogenome has a multi-partite architecture, divided in at least three independent molecules that according to our data should behave as autonomous chromosomes. Inter-cultivar variability was null, while comparative analyses with other species of the Solanaceae family allowed the investigation of the evolutionary history of their mitogenomes. The RNA-seq data revealed peculiarities in transcriptional and post-transcriptional processing of mRNAs. These included co-transcription of genes with open reading frames that are probably expressed, methylation of an rRNA at a position that should impact translation efficiency and extensive RNA editing, with a high proportion of partial editing implying frequent mis-targeting by the editing machinery.
Collapse
Affiliation(s)
- Jean-Stéphane Varré
- Univ. Lille, CNRS, Centrale Lille, UMR 9189-CRIStAL-Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France.
| | - Nunzio D'Agostino
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Pascal Touzet
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Sophie Gallina
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000 Lille, France.
| | - Rachele Tamburino
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| | - Concita Cantarella
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Elodie Ubrig
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Teodoro Cardi
- CREA Research Centre for Vegetable and Ornamental Crops, 84098 Pontecagnano Faiano, SA, Italy.
| | - Laurence Drouard
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - José Manuel Gualberto
- Institut de Biologie Moléculaire des Plantes-CNRS, Université de Strasbourg, Strasbourg 67084, France.
| | - Nunzia Scotti
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and BioResources, 80055 Portici, NA, Italy.
| |
Collapse
|
21
|
Chu D, Wei L. The chloroplast and mitochondrial C-to-U RNA editing in Arabidopsis thaliana shows signals of adaptation. PLANT DIRECT 2019; 3:e00169. [PMID: 31517178 PMCID: PMC6732656 DOI: 10.1002/pld3.169] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/18/2019] [Accepted: 08/23/2019] [Indexed: 05/20/2023]
Abstract
C-to-U RNA editing is the conversion from cytidine to uridine at RNA level. In plants, the genes undergo C-to-U RNA modification are mainly chloroplast and mitochondrial genes. Case studies have identified the roles of C-to-U editing in various biological processes, but the functional consequence of the majority of C-to-U editing events is still undiscovered. We retrieved the deep sequenced transcriptome data in roots and shoots of Arabidopsis thaliana and profiled their C-to-U RNA editomes and gene expression patterns. We investigated the editing level and conservation pattern of these C-to-U editing sites. The levels of nonsynonymous C-to-U editing events are higher than levels of synonymous events. The fraction of nonsynonymous editing sites is higher than neutral expectation. Highly edited cytidines are more conserved at DNA level, and the gene expression levels are correlated with C-to-U editing levels. Our results demonstrate that the global C-to-U editome is shaped by natural selection and that many nonsynonymous C-to-U editing events are adaptive. The editing mechanism might be positively selected and maintained and could have profound effects on the modified RNAs.
Collapse
Affiliation(s)
- Duan Chu
- College of Life SciencesBeijing Normal UniversityBeijingChina
| | - Lai Wei
- College of Life SciencesBeijing Normal UniversityBeijingChina
| |
Collapse
|
22
|
Comprehensive Analysis of Rhodomyrtus tomentosa Chloroplast Genome. PLANTS 2019; 8:plants8040089. [PMID: 30987338 PMCID: PMC6524380 DOI: 10.3390/plants8040089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
In the last decade, several studies have relied on a small number of plastid genomes to deduce deep phylogenetic relationships in the species-rich Myrtaceae. Nevertheless, the plastome of Rhodomyrtus tomentosa, an important representative plant of the Rhodomyrtus (DC.) genera, has not yet been reported yet. Here, we sequenced and analyzed the complete chloroplast (CP) genome of R. tomentosa, which is a 156,129-bp-long circular molecule with 37.1% GC content. This CP genome displays a typical quadripartite structure with two inverted repeats (IRa and IRb), of 25,824 bp each, that are separated by a small single copy region (SSC, 18,183 bp) and one large single copy region (LSC, 86,298 bp). The CP genome encodes 129 genes, including 84 protein-coding genes, 37 tRNA genes, eight rRNA genes and three pseudogenes (ycf1, rps19, ndhF). A considerable number of protein-coding genes have a universal ATG start codon, except for psbL and ndhD. Premature termination codons (PTCs) were found in one protein-coding gene, namely atpE, which is rarely reported in the CP genome of plants. Phylogenetic analysis revealed that R. tomentosa has a sister relationship with Eugenia uniflora and Psidium guajava. In conclusion, this study identified unique characteristics of the R. tomentosa CP genome providing valuable information for further investigations on species identification and the phylogenetic evolution between R. tomentosa and related species.
Collapse
|