1
|
Cheng T, Li F, Zhang Z, Yuan Y, Zhou Y, Zhu X, Xi L, Dong Q, Luo D, Ma X, Fan L. Identification of a Vascular Endothelial Growth Factor Receptor-3 Binding Peptide TMVP1 for Enhancing Drug Delivery Efficiency and Therapeutic Efficacy Against Tumor Lymphangiogenesis. Cancer Biother Radiopharm 2024. [PMID: 39718836 DOI: 10.1089/cbr.2024.0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024] Open
Abstract
Background: Vascular endothelial growth factor receptor-3 (VEGFR-3) plays an indispensable role in lymphangiogenesis. Previous findings suggest that blocking the VEGFR-3 signaling pathway can inhibit lymph node metastasis effectively, thus reducing the incidence of distant metastasis. The development of new VEGFR-3-targeting drugs for early detection and effective treatments is, therefore, urgently required. Methods: In vitro biopanning of a phage-displayed peptide library was used to identify specific peptides binding to the extracellular domain of VEGFR-3. We obtained a novel VEGFR-3-targeting peptide, TMVP1 (LARGR). Our combined immunofluorescence and radiolabeling studies revealed that FITC-TMVP1 and 99mTc-labeled TMVP1 specifically accumulated in VEGFR-3-positive lymphatic vessels of tumors after intravenous administration in tumor xenograft models in vivo. To enhance the therapeutic efficacy of anticancer drugs, TMVP1 was fused to a proapoptotic peptide, D(KLAKLAK)2. Results: The fusion peptide strongly inhibited tumor lymphangiogenesis in vitro and in vivo and specifically suppressed lung metastasis in a 4T1 breast cancer xenograft model. The accumulation of the TMVP1 in lymphatic vessels was specific. Conclusions: Our results suggest that TMVP1 is a potential therapeutic strategy for developing new diagnostic tracers or alternative anticancer agents for tumor lymphangiogenesis and lymphatic metastasis.
Collapse
Affiliation(s)
- Teng Cheng
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Breast and Thyroid Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Li
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenzhong Zhang
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Gynecological Oncology, Henan Provincial Tumor Hospital, Affiliated Tumor Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yuan Yuan
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ying Zhou
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaohua Zhu
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Xi
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qingjian Dong
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Danfeng Luo
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiangyi Ma
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Liangsheng Fan
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Perera B, Wu Y, Pickett JR, Panagides N, Barretto FM, Fercher C, Sester DP, Jones ML, Ta HT, Zacchi LF. Isolation and Characterization of Antibodies Against Vascular Cell Adhesion Molecule-1 Reveals Putative Role for Ig-like Domains 2 and 3 in Cell-to-Cell Interaction. Int J Mol Sci 2024; 25:13650. [PMID: 39769411 PMCID: PMC11678699 DOI: 10.3390/ijms252413650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The vascular cell adhesion molecule-1 (VCAM-1) plays an important role in inflammation, where it facilitates the recruitment of leukocytes to the inflamed area via leukocytes' VLA-4 and endothelial cells' VCAM-1 interaction. VCAM-1 expression is also upregulated in certain cancers. VCAM-1 has seven Ig-like domains, with domains 1 and 4 shown to be critical for VLA-4 binding. However, the specific functions of individual VCAM-1 Ig-like domains remain poorly understood. In this study, we identified single-chain variable fragment (scFv) antibodies targeting domains 2, 3, and 5 of VCAM-1, and investigated the ability of these antibodies to block VCAM-1-mediated cell adhesion to macrophages. We show that scFv antibodies against Ig-like domains 2 and 3 interfere with the ability of macrophages to bind endothelial cells, suggesting that these domains also play a role in facilitating this interaction. These results emphasize the need to more carefully study the role of each domain on VCAM-1 function and highlight the potential of targeting these VCAM-1 domains for more tailored therapeutic interventions in inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Binura Perera
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Jessica R. Pickett
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nadya Panagides
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
| | - Francisca M. Barretto
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christian Fercher
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - David P. Sester
- Flow Cytometry Suite, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - Martina L. Jones
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Hang T. Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (Y.W.); (J.R.P.); (H.T.T.)
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Lucia F. Zacchi
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia; (B.P.); (N.P.); (C.F.); (M.L.J.)
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia;
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
De Plano LM, Oddo S, Bikard D, Caccamo A, Conoci S. Generation of a Biotin-Tagged Dual-Display Phage. Cells 2024; 13:1696. [PMID: 39451214 PMCID: PMC11506469 DOI: 10.3390/cells13201696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Phage display is widely used in biomedical research. One of the great advantages of phage display is the specificity of the connection of a foreign peptide exposed outside the capsid to the intended target. Secondary detection systems, which are often laborious and costly, are required to identify and quantify the peptide/target interaction. In this study, we generated a novel dual-display phage to facilitate the detection and quantification of the peptide/target interaction. First, we generated a biotin-tagged phage by adding a small biotin-accepting peptide (sBT) to gene-3 of the M13K07 helper phage. Subsequently, we enhanced the M13K07 biotin-tagged phage by incorporating a selective peptide on gene-8, which is then exposed to the phage capsid. The exposed peptide acts as a probe to bind to a selective molecular target, whose interaction can be readily visualized thanks to the biotinylated phage. Our versatile dual-display phage exhibits high flexibility; by swapping the displayed peptide/probe, one can change the phage target while retaining the sBT gene in-frame with the pIII. We expect the generated biotin-tagged dual phages to be used as a multifunctional probe to couple with several streptavidin-biotin-based systems.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - David Bikard
- Pasteur Institute, University of Paris, Synthetic Biology, 75015 Paris, France
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
- Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
- LAB Sense Beyond Nano-DSFTM CNR, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Sell DK, Bakhshinejad B, Sinkjaer AW, Dawoodi IM, Wiinholt MN, Sloth AB, Stavnsbjerg C, Kjaer A. Using NGS to Uncover the Corruption of a Peptide Phage Display Selection. Curr Issues Mol Biol 2024; 46:10590-10605. [PMID: 39329979 PMCID: PMC11431649 DOI: 10.3390/cimb46090627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Phage display has been widely used to identify peptides binding to a variety of biological targets. In the current work, we planned to select novel peptides targeting CD4 through screening of a commercial phage display library (New England Biolabs Ph.D.TM-7). After three rounds of biopanning, 57 phage clones were Sanger-sequenced. These clones represented 30 unique peptide sequences, which were subjected to phage ELISA, resulting in the identification of two potential target binders. Following peptide synthesis, downstream characterization was conducted using fluorescence plate-based assay, flow cytometry, SPR, and confocal microscopy. The results revealed that neither of the peptides identified in the Sanger-based phage display selection exhibited specific binding toward CD4. The naïve library and the phage pool recovered from the third round of biopanning were then subjected to next-generation sequencing (NGS). The results of NGS indicated corruption of the selection output by a phage already known as a fast-propagating clone whose target-unrelated enrichment can shed light on the misidentification of target-binding peptides through phage display. This work provides an in-depth insight into some of the challenges encountered in peptide phage display selection. Furthermore, our data highlight that NGS, by exploring a broader sequence space and providing a more precise picture of the composition of biopanning output, can be used to refine the selection protocol and avoid misleading the process of ligand identification. We hope that these findings can describe some of the complexities of phage display selection and offer help to fellow researchers who have faced similar situations.
Collapse
Affiliation(s)
- Danna Kamstrup Sell
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Babak Bakhshinejad
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anders Wilgaard Sinkjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ida Melissa Dawoodi
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mette Neiegaard Wiinholt
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ane Beth Sloth
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Camilla Stavnsbjerg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, 2100 Copenhagen, Denmark
- Cluster for Molecular Imaging, Copenhagen University Hospital-Rigshospitalet & Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Qiu M, Zou J, Yang Z, Yang D, Wang R, Guo H. Strategies for Targeting Peptide-Modified Exosomes and Their Applications in the Lungs. Int J Nanomedicine 2024; 19:8175-8188. [PMID: 39157733 PMCID: PMC11328869 DOI: 10.2147/ijn.s472038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024] Open
Abstract
Exosomes belong to a subgroup of extracellular vesicles secreted by various cells and are involved in intercellular communication and material transfer. In recent years, exosomes have been used as drug delivery carriers because of their natural origin, high stability, low immunogenicity and high engineering ability. However, achieving targeted drug delivery with exosomes remains challenging. In this paper, a phage display technology was used to screen targeted peptides, and different surface modification strategies of targeted peptide exosomes were reviewed. In addition, the application of peptide-targeted exosomes in pulmonary diseases was also summarised.
Collapse
Affiliation(s)
- Min Qiu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, People’s Republic of China
- College of Pharmacy, Baotou Medical College, Baotou, People’s Republic of China
| | - Jinru Zou
- College of Pharmacy, Baotou Medical College, Baotou, People’s Republic of China
| | - Zheng Yang
- The First Affiliated Hospital, Baotou Medical College, Baotou, People’s Republic of China
| | - Dan Yang
- College of Pharmacy, Baotou Medical College, Baotou, People’s Republic of China
| | - Rui Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, People’s Republic of China
| | - Haie Guo
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia, People’s Republic of China
- Agriculture, Animal Husbandry and Science and Technology Bureau of Liangcheng County, Ulanqab, Inner Mongolia, People’s Republic of China
| |
Collapse
|
6
|
Pierzynowska K, Morcinek-Orłowska J, Gaffke L, Jaroszewicz W, Skowron PM, Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol 2024; 50:450-490. [PMID: 37270791 DOI: 10.1080/1040841x.2023.2219741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/17/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
The phage display technology is based on the presentation of peptide sequences on the surface of virions of bacteriophages. Its development led to creation of sophisticated systems based on the possibility of the presentation of a huge variability of peptides, attached to one of proteins of bacteriophage capsids. The use of such systems allowed for achieving enormous advantages in the processes of selection of bioactive molecules. In fact, the phage display technology has been employed in numerous fields of biotechnology, as diverse as immunological and biomedical applications (in both diagnostics and therapy), the formation of novel materials, and many others. In this paper, contrary to many other review articles which were focussed on either specific display systems or the use of phage display in selected fields, we present a comprehensive overview of various possibilities of applications of this technology. We discuss an usefulness of the phage display technology in various fields of science, medicine and the broad sense of biotechnology. This overview indicates the spread and importance of applications of microbial systems (exemplified by the phage display technology), pointing to the possibility of developing such sophisticated tools when advanced molecular methods are used in microbiological studies, accompanied with understanding of details of structures and functions of microbial entities (bacteriophages in this case).
Collapse
Affiliation(s)
- Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Weronika Jaroszewicz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| |
Collapse
|
7
|
de Souza JB, Sommerfeld S, Almeida-Souza HO, Vaz ER, Bastos LM, Santos FDAA, Rodrigues AC, Medeiros-Ronchi AA, Goulart LR, Fonseca BB. A new standardization for the use of chicken embryo: selection of target from the phage display library and infection. Appl Microbiol Biotechnol 2024; 108:412. [PMID: 38985354 PMCID: PMC11236870 DOI: 10.1007/s00253-024-13227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
The filamentous bacteriophage M13KO7 (M13) is the most used in phage display (PD) technology and, like other phages, has been applied in several areas of medicine, agriculture, and in the food industry. One of the advantages is that they can modulate the immune response in the presence of pathogenic microorganisms, such as bacteria and viruses. This study evaluated the use of phage M13 in the chicken embryos model. We inoculated 13-day-old chicken embryos with Salmonella Pullorum (SP) and then evaluated survival for the presence of phage M13 or E. coli ER2738 (ECR) infected with M13. We found that the ECR bacterium inhibits SP multiplication in 0.32 (M13-infected ECR) or 0.44 log UFC/mL (M13-uninfected ECR) and that the ECR-free phage M13 from the PD library can be used in chicken embryo models. This work provides the use of the chicken embryo as a model to study systemic infection and can be employed as an analysis tool for various peptides that M13 can express from PD selection. KEY POINTS: • SP-infected chicken embryo can be a helpful model of systemic infection for different tests. • Phage M13 does not lead to embryonic mortality or cause serious injury to embryos. • Phage M13 from the PD library can be used in chicken embryo model tests.
Collapse
Affiliation(s)
- Jessica Brito de Souza
- Postgraduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Simone Sommerfeld
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Hebréia Oliveira Almeida-Souza
- Postgraduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Emília Rezende Vaz
- Postgraduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Luciana Machado Bastos
- Postgraduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Fabiana de Almeida Araújo Santos
- Postgraduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | - Alessandra Castro Rodrigues
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Luiz Ricardo Goulart
- Postgraduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Belchiolina Beatriz Fonseca
- Postgraduate Program in Genetics and Biochemistry, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
- Postgraduate Program in Veterinary Sciences, Faculty of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
8
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2024:10.1007/s12033-024-01195-6. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Mejias-Gomez O, Braghetto M, Sørensen MKD, Madsen AV, Guiu LS, Kristensen P, Pedersen LE, Goletz S. Deep mining of antibody phage-display selections using Oxford Nanopore Technologies and Dual Unique Molecular Identifiers. N Biotechnol 2024; 80:56-68. [PMID: 38354946 DOI: 10.1016/j.nbt.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Antibody phage-display technology identifies antibody-antigen interactions through multiple panning rounds, but traditional screening gives no information on enrichment or diversity throughout the process. This results in the loss of valuable binders. Next Generation Sequencing can overcome this problem. We introduce a high accuracy long-read sequencing method based on the recent Oxford Nanopore Technologies (ONT) Q20 + chemistry in combination with dual unique molecular identifiers (UMIs) and an optimized bioinformatic analysis pipeline to monitor the selections. We identified binders from two single-domain antibody libraries selected against a model protein. Traditional colony-picking was compared with our ONT-UMI method. ONT-UMI enabled monitoring of diversity and enrichment before and after each selection round. By combining phage antibody selections with ONT-UMIs, deep mining of output selections is possible. The approach provides an alternative to traditional screening, enabling diversity quantification after each selection round and rare binder recovery, even when the dominating binder was > 99% abundant. Moreover, it can give insights on binding motifs for further affinity maturation and specificity optimizations. Our results demonstrate a platform for future data guided selection strategies.
Collapse
Affiliation(s)
- Oscar Mejias-Gomez
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marta Braghetto
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten Kielsgaard Dziegiel Sørensen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas Visbech Madsen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Laura Salse Guiu
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Section for Bioscience and Engineering, Aalborg University, Aalborg, Denmark
| | - Lasse Ebdrup Pedersen
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Section for Protein Science and Biotherapeutics, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
10
|
Yuan Y, Li Y, Liu S, Gong P, Lin J, Zhang X. An overview of aptamer: Design strategy, prominent applications, and potential challenge in plants. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154235. [PMID: 38531181 DOI: 10.1016/j.jplph.2024.154235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
Aptamers, serving as highly efficient molecular recognition and biotechnology tools, have garnered increasing interest in the realm of plant science in recent years. Aptamers are synthetic single-stranded short nucleotides or peptides, that bind targets with high specificity and affinity, triggering precise biological responses. As an alternative to antibodies, aptamers present promising avenues for advancement in biological researches. Aptamers function in a range of fields, encompassing cell signaling, drug development, biosensor technology, as well as botany, agricultural and forestry sciences. In this review, we introduce classifications and screening methods of aptamers, as well as aptamer-based technologies, highlighting their significant contributions to recent advancements. With their powerful functionality and ability to bind targets with high specificity and affinity, aptamers offer promising opportunities for breakthroughs in plant research.
Collapse
Affiliation(s)
- Yanhui Yuan
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Yi Li
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Siying Liu
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Pichang Gong
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
11
|
Asar M, Newton-Northup J, Soendergaard M. Improving Pharmacokinetics of Peptides Using Phage Display. Viruses 2024; 16:570. [PMID: 38675913 PMCID: PMC11055145 DOI: 10.3390/v16040570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Phage display is a versatile method often used in the discovery of peptides that targets disease-related biomarkers. A major advantage of this technology is the ease and cost efficiency of affinity selection, also known as biopanning, to identify novel peptides. While it is relatively straightforward to identify peptides with optimal binding affinity, the pharmacokinetics of the selected peptides often prove to be suboptimal. Therefore, careful consideration of the experimental conditions, including the choice of using in vitro, in situ, or in vivo affinity selections, is essential in generating peptides with high affinity and specificity that also demonstrate desirable pharmacokinetics. Specifically, in vivo biopanning, or the combination of in vitro, in situ, and in vivo affinity selections, has been proven to influence the biodistribution and clearance of peptides and peptide-conjugated nanoparticles. Additionally, the marked difference in properties between peptides and nanoparticles must be considered. While peptide biodistribution depends primarily on physiochemical properties and can be modified by amino acid modifications, the size and shape of nanoparticles also affect both absorption and distribution. Thus, optimization of the desired pharmacokinetic properties should be an important consideration in biopanning strategies to enable the selection of peptides and peptide-conjugated nanoparticles that effectively target biomarkers in vivo.
Collapse
Affiliation(s)
- Mallika Asar
- College of Osteopathic Medicine, Kansas City University, Kansas City, MO 64106, USA;
| | | | - Mette Soendergaard
- Cell Origins LLC, 1601 South Providence Road Columbia, Columbia, MO 65203, USA;
- Department of Chemistry, Western Illinois University, Macomb, IL 61455, USA
| |
Collapse
|
12
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
13
|
Aljabali AAA, Aljbaly MBM, Obeid MA, Shahcheraghi SH, Tambuwala MM. The Next Generation of Drug Delivery: Harnessing the Power of Bacteriophages. Methods Mol Biol 2024; 2738:279-315. [PMID: 37966606 DOI: 10.1007/978-1-0716-3549-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The use of biomaterials, such as bacteriophages, as drug delivery vehicles (DDVs) has gained increasing interest in recent years due to their potential to address the limitations of conventional drug delivery systems. Bacteriophages offer several advantages as drug carriers, such as high specificity for targeting bacterial cells, low toxicity, and the ability to be engineered to express specific proteins or peptides for enhanced targeting and drug delivery. In addition, bacteriophages have been shown to reduce the development of antibiotic resistance, which is a major concern in the field of antimicrobial therapy. Many initiatives have been taken to take up various payloads selectively and precisely by surface functionalization of the outside or interior of self-assembling viral protein capsids. Bacteriophages have emerged as a promising platform for the targeted delivery of therapeutic agents, including drugs, genes, and imaging agents. They possess several properties that make them attractive as drug delivery vehicles, including their ability to specifically target bacterial cells, their structural diversity, their ease of genetic manipulation, and their biocompatibility. Despite the potential advantages of using bacteriophages as drug carriers, several challenges and limitations need to be addressed. One of the main challenges is the limited host range of bacteriophages, which restricts their use to specific bacterial strains. However, this can also be considered as an advantage, as it allows for precise and targeted drug delivery to the desired bacterial cells. The use of biomaterials, including bacteriophages, as drug delivery vehicles has shown promising potential to address the limitations of conventional drug delivery systems. Further research is needed to fully understand the potential of these biomaterials and address the challenges and limitations associated with their use.
Collapse
Affiliation(s)
- Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan.
| | | | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Seyed Hossein Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln, UK.
| |
Collapse
|
14
|
Teodori L, Omer M, Kjems J. RNA nanostructures for targeted drug delivery and imaging. RNA Biol 2024; 21:1-19. [PMID: 38555519 PMCID: PMC10984137 DOI: 10.1080/15476286.2024.2328440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
The RNA molecule plays a pivotal role in many biological processes by relaying genetic information, regulating gene expression, and serving as molecular machines and catalyzers. This inherent versatility of RNA has fueled significant advancements in the field of RNA nanotechnology, driving the engineering of complex nanoscale architectures toward biomedical applications, including targeted drug delivery and bioimaging. RNA polymers, serving as building blocks, offer programmability and predictability of Watson-Crick base pairing, as well as non-canonical base pairing, for the construction of nanostructures with high precision and stoichiometry. Leveraging the ease of chemical modifications to protect the RNA from degradation, researchers have developed highly functional and biocompatible RNA architectures and integrated them into preclinical studies for the delivery of payloads and imaging agents. This review offers an educational introduction to the use of RNA as a biopolymer in the design of multifunctional nanostructures applied to targeted delivery in vivo, summarizing physical and biological barriers along with strategies to overcome them. Furthermore, we highlight the most recent progress in the development of both small and larger RNA nanostructures, with a particular focus on imaging reagents and targeted cancer therapeutics in pre-clinical models and provide insights into the prospects of this rapidly evolving field.
Collapse
Affiliation(s)
- Laura Teodori
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
| | - Marjan Omer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Center for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark
- Center for RNA Therapeutics towards Metabolic Diseases (RNA-META), Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
15
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
16
|
Afsharnoori F, Forouzandeh Moghadam M. Isolation and characterization of a novel single-chain variable fragment (scFv) against Lymphocyte function-associated antigen-1 (LFA-1) using phage display method. Med Oncol 2023; 41:15. [PMID: 38078968 DOI: 10.1007/s12032-023-02242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023]
Abstract
Lymphocyte function-associated antigene-1 (LFA-1) is a well-described integrin found on lymphocytes and other leukocytes, which is known to be overexpressed in leukemias and lymphomas. This receptor plays a significant role in immune responses such as T-cell activation, leukocyte cell-cell interactions, and trafficking of leukocyte populations. Subsequently, binders of LFA-1 emerge as potential candidates for cancer and autoimmune therapy. This study used the phage display technique to construct and characterize a high-affinity single-chain fragment variable (scFv) antibody against LFA-1. After expression, purification, dialysis, and concentration of the recombinant LFA-1 protein, four female BALB/c mice were immunized, splenocyte's mRNA was extracted, and cDNA was synthesized. A scFv library was constructed by linking the amplified VH/Vκ fragments through a 72-bp linker using SOEing PCR. Next, the scFv gene fragments were cloned into the pComb-3XSS phagemid vector; thus, the phage library was developed. The selection process involved three rounds of phage-bio-panning, polyclonal, and monoclonal phage ELISA. AF17 was chosen and characterized among the positive clones through SDS-PAGE, Western blotting, indirect ELISA, and in-silico analyses. The results of the study showed the successful construction of a high-affinity scFv library against LFA-1. The accuracy of the AF17 production and its ability to bind to the LFA-1 were confirmed through SDS-PAGE, Western blot, and ELISA. This study highlights the potential application of the high-affinity AF17 against LFA-1 for targeting T lymphocytes for therapeutic purposes.
Collapse
Affiliation(s)
- Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran
| | - Mehdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-111, Tehran, Iran.
| |
Collapse
|
17
|
Fadaie M, Dianat-Moghadam H, Ghafouri E, Naderi S, Darvishali MH, Ghovvati M, Khanahmad H, Boshtam M, Makvandi P. Unraveling the potential of M13 phages in biomedicine: Advancing drug nanodelivery and gene therapy. ENVIRONMENTAL RESEARCH 2023; 238:117132. [PMID: 37714365 DOI: 10.1016/j.envres.2023.117132] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
M13 phages possessing filamentous phage genomes offer the benefits of selective display of molecular moieties and delivery of therapeutic agent payloads with a tolerable safety profile. M13 phage-displayed technology for resembling antigen portions led to the discovery of mimetic epitopes that applied to antibody-based therapy and could be useful in the design of anticancer vaccines. To date, the excremental experiences have engaged the M13 phage in the development of innovative biosensors for detecting biospecies, biomolecules, and human cells with an acceptable limit of detection. Addressing the emergence of antibiotic-resistant bacteria, M13 phages are potent for packaging the programmed gene editing tools, such as CRISPR/Cas, to target multiple antimicrobial genes. Moreover, their display potential in combination with nanoparticles inspires new approaches for engineering targeted theragnostic platforms targeting multiple cellular biomarkers in vivo. In this review, we present the available data on optimizing the use of bacteriophages with a focus on the to date experiences with M13 phages, either as monoagent or as part of combination regimens in the practices of biosensors, vaccines, bactericidal, modeling of specific antigen epitopes, and phage-guided nanoparticles for drug delivery systems. Despite increasing research interest, a deep understanding of the underlying biological and genetic behaviors of M13 phages is needed to enable the full potential of these bioagents in biomedicine, as discussed here. We also discuss some of the challenges that have thus far limited the development and practical marketing of M13 phages.
Collapse
Affiliation(s)
- Mahmood Fadaie
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shamsi Naderi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Darvishali
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Ghovvati
- Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China.
| |
Collapse
|
18
|
De Plano LM, Oddo S, Guglielmino SPP, Caccamo A, Conoci S. Generation of a helper phage for the fluorescent detection of peptide-target interactions by dual-display phages. Sci Rep 2023; 13:18927. [PMID: 37919374 PMCID: PMC10622537 DOI: 10.1038/s41598-023-45087-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023] Open
Abstract
Phage display is a molecular biology technique that allows the presentation of foreign peptides on the surface of bacteriophages. It is widely utilized for applications such as the discovery of biomarkers, the development of therapeutic antibodies, and the investigation of protein-protein interactions. When employing phages in diagnostic and therapeutic monitoring assays, it is essential to couple them with a detection system capable of revealing and quantifying the interaction between the peptide displayed on the phage capsid and the target of interest. This process is often technically challenging and costly. Here, we generated a fluorescent helper phage vector displaying sfGFP in-frame to the pIII of the capsid proteins. Further, we developed an exchangeable dual-display phage system by combining our newly developed fluorescent helper phage vector with a phagemid vector harboring the engineered pVIII with a peptide-probe. By doing so, the sfGFP and a peptide-probe are displayed on the same phage particle. Notably, our dual-display approach is highly flexible as it allows for easy exchange of the displayed peptide-probe on the pVIII to gain the desired selectivity, while maintaining the sfGFP gene, which allows easy visualization and quantification of the interaction peptide-probe. We anticipate that this system will reduce time and costs compared to the current phage-based detection systems.
Collapse
Affiliation(s)
- Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Salvatore Oddo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Salvatore P P Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina, Italy.
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, Messina, Italy
- Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, Bologna, Italy
- LAB Sense Beyond Nano-DSFTM CNR, Viale F. Stagno d'Alcontres 31, Messina, Italy
- CNR Institute for Microelectronics and Microsystems, Strada VIII, 5, Catania, Italy
- STMicroelectronics, Stradale Primosole 50, 95121, Catania, Italy
| |
Collapse
|
19
|
Alamdari-Palangi V, Jaberi KR, Shahverdi M, Naeimzadeh Y, Tajbakhsh A, Khajeh S, Razban V, Fallahi J. Recent advances and applications of peptide-agent conjugates for targeting tumor cells. J Cancer Res Clin Oncol 2023; 149:15249-15273. [PMID: 37581648 DOI: 10.1007/s00432-023-05144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/08/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Cancer, being a complex disease, presents a major challenge for the scientific and medical communities. Peptide therapeutics have played a significant role in different medical practices, including cancer treatment. METHOD This review provides an overview of the current situation and potential development prospects of anticancer peptides (ACPs), with a particular focus on peptide vaccines and peptide-drug conjugates for cancer treatment. RESULTS ACPs can be used directly as cytotoxic agents (molecularly targeted peptides) or can act as carriers (guiding missile) of chemotherapeutic agents and radionuclides by specifically targeting cancer cells. More than 60 natural and synthetic cationic peptides are approved in the USA and other major markets for the treatment of cancer and other diseases. Compared to traditional cancer treatments, peptides exhibit anticancer activity with high specificity and the ability to rapidly kill target cancer cells. ACP's target and kill cancer cells via different mechanisms, including membrane disruption, pore formation, induction of apoptosis, necrosis, autophagy, and regulation of the immune system. Modified peptides have been developed as carriers for drugs, vaccines, and peptide-drug conjugates, which have been evaluated in various phases of clinical trials for the treatment of different types of solid and leukemia cancer. CONCLUSIONS This review highlights the potential of ACPs as a promising therapeutic option for cancer treatment, particularly through the use of peptide vaccines and peptide-drug conjugates. Despite the limitations of peptides, such as poor metabolic stability and low bioavailability, modified peptides show promise in addressing these challenges. Various mechanism of action of anticancer peptides. Modes of action against cancer cells including: inducing apoptosis by cytochrome c release, direct cell membrane lysis (necrosis), inhibiting angiogenesis, inducing autophagy-mediated cell death and immune cell regulation.
Collapse
Affiliation(s)
- Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Khojaste Rahimi Jaberi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Shahverdi
- Medical Biotechnology Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran.
| |
Collapse
|
20
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
21
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
22
|
Wang Y, Gao Y, Duan Y, Wu X, Huang P, Shui T, Xi J. Localization and identification of denatured antigenic sites of glycinin A3 subunit after using two processing technologies. Food Res Int 2023; 171:113082. [PMID: 37330838 DOI: 10.1016/j.foodres.2023.113082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/19/2023]
Abstract
Glycinin is an important allergen in soybeans. In this study, molecular cloning and recombinant phage construction were performed to explore the antigenic sites of the glycinin A3 subunit that were denatured during processing. Next, the A-1-a fragment was located as the denatured antigenic sites by indirect ELISA. The combined UHP heat treatment showed better denaturation of this subunit than the single heat treatment assay. In addition, identification of the synthetic peptide showed that the A-1-a fragment was an amino acid sequence containing a conformational and linear IgE site, in which the first synthetic peptide (P1) being both an antigenic and allergenic site. The results of alanine-scanning showed that the key amino acids affecting antigenicity and allergenicity of A3 subunit were S28, K29, E32, L35 and N13. Our results could provide the basis for further development of more efficient methods to reduce the allergenicity of soybeans.
Collapse
Affiliation(s)
- Yichao Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yida Gao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Yuying Duan
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Xiao Wu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Pengbo Huang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Tianjiao Shui
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jun Xi
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| |
Collapse
|
23
|
Kumari S, Singh K, Singh N, Khan S, Kumar A. Phage display and human disease detection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:151-172. [PMID: 37770169 DOI: 10.1016/bs.pmbts.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage display is a significant and active molecular method and has continued crucial for investigative sector meanwhile its unearthing in 1985. This practice has numerous benefits: the association among physiology and genome, the massive variety of variant proteins showed in sole collection and the elasticity of collection that can be achieved. It suggests a diversity of stages for manipulating antigen attachment; yet, variety and steadiness of exhibited library are an alarm. Additional improvements, like accumulation of non-canonical amino acids, resulting in extension of ligands that can be recognized through collection, will support in expansion of the probable uses and possibilities of technology. Epidemic of COVID-19 had taken countless lives, and while indicative prescriptions were provided to diseased individuals, still no prevention was observed for the contamination. Phage demonstration has presented an in-depth understanding into protein connections included in pathogenesis. Phage display knowledge is developing as an influential, inexpensive, quick, and effectual method to grow novel mediators for the molecular imaging and analysis of cancer.
Collapse
Affiliation(s)
- Sonu Kumari
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Krati Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Neha Singh
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Suphiya Khan
- Department of Biotechnology, Banasthali University, Newai, Rajasthan, India
| | - Ajay Kumar
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
24
|
Sultan-Alolama MI, Amin A, Vijayan R, El-Tarabily KA. Isolation, Characterization, and Comparative Genomic Analysis of Bacteriophage Ec_MI-02 from Pigeon Feces Infecting Escherichia coli O157:H7. Int J Mol Sci 2023; 24:ijms24119506. [PMID: 37298457 DOI: 10.3390/ijms24119506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
The most significant serotype of Shiga-toxigenic Escherichia coli that causes foodborne illnesses is Escherichia coli O157:H7. Elimination of E. coli O157:H7 during food processing and storage is a possible solution. Bacteriophages have a significant impact on bacterial populations in nature due to their ability to lyse their bacterial host. In the current study, a virulent bacteriophage, Ec_MI-02, was isolated from the feces of a wild pigeon in the United Arab Emirates (UAE) for potential future use as a bio-preservative or in phage therapy. Using a spot test and an efficiency of plating analysis, Ec_MI-02 was found to infect in addition to the propagation host, E. coli O157:H7 NCTC 12900, five different serotypes of E. coli O157:H7 (three clinical samples from infected patients, one from contaminated green salad, and one from contaminated ground beef). Based on morphology and genome analysis, Ec_MI-02 belongs to the genus Tequatrovirus under the order Caudovirales. The adsorption rate constant (K) of Ec_MI-02 was found to be 1.55 × 10-8 mL/min. The latent period was 50 min with a burst size of almost 10 plaque forming units (pfu)/host cell in the one-step growth curve when the phage Ec_MI-02 was cultivated using the propagation host E. coli O157:H7 NCTC 12900. Ec_MI-02 was found to be stable at a wide range of pH, temperature, and commonly used laboratory disinfectants. Its genome is 165,454 bp long with a GC content of 35.5% and encodes 266 protein coding genes. Ec_MI-02 has genes encoding for rI, rII, and rIII lysis inhibition proteins, which supports the observation of delayed lysis in the one-step growth curve. The current study provides additional evidence that wild birds could also be a good natural reservoir for bacteriophages that do not carry antibiotic resistance genes and could be good candidates for phage therapy. In addition, studying the genetic makeup of bacteriophages that infect human pathogens is crucial for ensuring their safe usage in the food industry.
Collapse
Affiliation(s)
- Mohamad Ismail Sultan-Alolama
- Zayed Complex for Herbal Research and Traditional Medicine, Research and Innovation Center, Department of Health, Abu Dhabi 5674, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
25
|
Wang X, Zhu X, Wang D, Li X, Wang J, Yin G, Huang Z, Pu X. Identification of a Specific Phage as Growth Factor Alternative Promoting the Recruitment and Differentiation of MSCs in Bone Tissue Regeneration. ACS Biomater Sci Eng 2023; 9:2426-2437. [PMID: 37023478 DOI: 10.1021/acsbiomaterials.2c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Inefficient use and loss of exogenously implanted mesenchymal stem cells (MSCs) are major concerns in MSCs-based bone tissue engineering. It is a promising approach to overcome the above issues by recruiting and regulation of endogenous MSCs. However, there are few substances that can recruit MSCs effectively and specifically to the site of bone injury. In this study, we identified a phage clone (termed P11) with specific affinity for MSCs through phage display biopanning, and further investigated the effects of P11 on the cytological behavior of MSCs and macrophages. The results showed that P11 could bind MSCs specifically and promote the proliferation and migration of MSCs. Meanwhile, P11 could polarize macrophages to the M1 phenotype and significantly changed their morphology, which further enhanced the chemotaxis of MSCs. Additionally, RNA-seq results revealed that P11 could promote the secretion of osteogenesis-related markers in MSCs through the TPL2-MEK-ERK signaling pathway. Altogether, P11 has great potential to be used as growth factor alternatives in bone tissue engineering, with the advantages of cheaper and stable activity. Our study also advances the understanding of the effects of phages on macrophages and MSCs, and provides a new idea for the development in the field of phage-based tissue engineering.
Collapse
Affiliation(s)
- Xingming Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiupeng Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Danni Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xiaoxu Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
26
|
Sioud M, Zhang Q. Precision Killing of M2 Macrophages with Phage-Displayed Peptide-Photosensitizer Conjugates. Cancers (Basel) 2023; 15:cancers15072009. [PMID: 37046671 PMCID: PMC10093000 DOI: 10.3390/cancers15072009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Among the immunosuppressive cells recruited to the tumor microenvironment, macrophages are particularly abundant and involved in angiogenesis, metastasis, and resistance to current cancer therapies. A strategy that simultaneously targets tumor cells and macrophages, particularly pro-tumoral M2 macrophages, would have significant clinical impact for various types of solid malignancies. By the use of phage display technology, we have recently developed a synthetic peptide, named NW, which binds to M1 and M2 macrophages with high affinity. Additional affinity selection on M2 macrophages identified only dominant peptides whose binding motifs are similar to that of the NW peptide. To reduce the frequency of selecting such dominating peptides, the peptide library was affinity selected on M2 macrophages blocked with NW peptide. This approach resulted in the selection of peptides that bind to M2, but not M1 macrophages. To explore the therapeutic potential of the selected peptides, the M13 phage-displayed peptides were conjugated to the photosensitizer IR700, which has been used for cancer photoimmunotherapy. The phage displaying a dominant peptide (SPILWLNAPPWA) killed both M1 and M2 macrophages, while those displaying the M2-specific peptides killed M2 macrophages only upon near-infrared light exposure. A significant fraction of the M2 macrophages were also killed with the untargeted M13 phage-IR700 conjugates. Hence, M2 macrophages can also be selectively targeted by the wild type M13 phage, which displayed a significant tropism to these cells. The benefits of this photoimmunotherapy include an automatic self-targeting ability of the wild type M13 phage, and the option of genetic manipulation of the phage genome to include tumor targeting peptides, allowing the killing of both M2 macrophages and cancer cells.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
- Correspondence:
| | - Qindong Zhang
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital, Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Blindern, 0316 Oslo, Norway
| |
Collapse
|
27
|
Sioud M, Olberg A. Antibody Surface Profiling Identifies Glycoforms in Multiple Myeloma as Targets for Immunotherapy: From Antibody Derivatives to Mimetic Peptides for Killing Tumor Cells. Cancers (Basel) 2023; 15:cancers15071934. [PMID: 37046595 PMCID: PMC10093763 DOI: 10.3390/cancers15071934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Despite therapeutic advances in recent years, there are still unmet medical needs for patients with multiple myeloma (MM). Hence, new therapeutic strategies are needed. Using phage display for screening a large repertoire of single chain variable fragments (scFvs), we isolated several candidates that recognize a heavily sulfated MM-specific glycoform of the surface antigen syndecan-1 (CD138). One of the engineered scFv-Fc antibodies, named MM1, activated NK cells and induced antibody-dependent cellular cytotoxicity against MM cells. Analysis of the binding specificity by competitive binding assays with various glycan ligands identified N-sulfation of glucosamine units as essential for binding. Additionally, site-directed mutagenesis revealed that the amino acids arginine and histidine in the complementarily determining regions (CDRs) 2 and 3 of the heavy chain are important for binding. Based on this observation, a heavy-chain antibody, known as a nanobody, and a peptide mimicking the CDR loop sequences were designed. Both variants exhibited high affinity and specificity to MM cells as compared to blood lymphocytes. Specific killing of MM cells was achieved by conjugating the CDR2/3 mimic peptide to a pro-apoptotic peptide (KLAKLAK)2. In a co-culture model, the fusion peptide killed MM cells, while leaving normal peripheral blood mononuclear cells unaffected. Collectively, the development of antibodies and peptides that detect tumor-specific glycoforms of therapeutic targets holds promise for improving targeted therapies and tumor imaging.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
| | - Anniken Olberg
- Department of Cancer Immunology, Division of Cancer Medicine, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway
| |
Collapse
|
28
|
Cui J, Shi X, Wang X, Sun H, Yan Y, Zhao F, Zhang C, Liu W, Zou L, Han L, Pan Q, Ren H. Characterization of a lytic Pseudomonas aeruginosa phage vB_PaeP_ASP23 and functional analysis of its lysin LysASP and holin HolASP. Front Microbiol 2023; 14:1093668. [PMID: 36998407 PMCID: PMC10045481 DOI: 10.3389/fmicb.2023.1093668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/23/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, we isolated a lytic Pseudomonas aeruginosa phage (vB_PaeP_ASP23) from the sewage of a mink farm, characterized its complete genome and analyzed the function of its putative lysin and holin. Morphological characterization and genome annotation showed that phage ASP23 belonged to the Krylovirinae family genus Phikmvvirus, and it had a latent period of 10 min and a burst size of 140 pfu/infected cell. In minks challenged with P. aeruginosa, phage ASP23 significantly reduced bacterial counts in the liver, lung, and blood. The whole-genome sequencing showed that its genome was a 42,735-bp linear and double-stranded DNA (dsDNA), with a G + C content of 62.15%. Its genome contained 54 predicted open reading frames (ORFs), 25 of which had known functions. The lysin of phage ASP23 (LysASP), in combination with EDTA, showed high lytic activity against P. aeruginosa L64. The holin of phage ASP23 was synthesized by M13 phage display technology, to produce recombinant phages (HolASP). Though HolASP exhibited a narrow lytic spectrum, it was effective against Staphylococcus aureus and Bacillus subtilis. However, these two bacteria were insensitive to LysASP. The findings highlight the potential of phage ASP23 to be used in the development of new antibacterial agents.
Collapse
Affiliation(s)
- Jiaqi Cui
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xinwei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Huzhi Sun
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Yanxin Yan
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Feiyang Zhao
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Qiang Pan
- Qingdao Phagepharm Bio-Tech Co., Ltd., Qingdao, Shandong, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
29
|
Challenges and Perspectives in Target Identification and Mechanism Illustration for Chinese Medicine. Chin J Integr Med 2023:10.1007/s11655-023-3629-9. [PMID: 36809500 DOI: 10.1007/s11655-023-3629-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 02/23/2023]
Abstract
Chinese medicine (CM) is an important resource for human life understanding and discovery of drugs. However, due to the unclear pharmacological mechanism caused by unclear target, research and international promotion of many active components have made little progress in the past decades of years. CM is mainly composed of multi-ingredients with multi-targets. The identification of targets of multiple active components and the weight analysis of multiple targets in a specific pathological environment, that is, the determination of the most important target is the main obstacle to the mechanism clarification and thus hinders its internationalization. In this review, the main approach to target identification and network pharmacology were summarized. And BIBm (Bayesian inference modeling), a powerful method for drug target identification and key pathway determination was introduced. We aim to provide a new scientific basis and ideas for the development and international promotion of new drugs based on CM.
Collapse
|
30
|
Huang CY, Lok YY, Lin CH, Lai SL, Wu YY, Hu CY, Liao CB, Ho CH, Chou YP, Hsu YH, Lo YH, Chern E. Highly reliable GIGA-sized synthetic human therapeutic antibody library construction. Front Immunol 2023; 14:1089395. [PMID: 37180155 PMCID: PMC10174300 DOI: 10.3389/fimmu.2023.1089395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/15/2023] Open
Abstract
Background Monoclonal antibodies (mAbs) and their derivatives are the fastest expanding category of pharmaceuticals. Efficient screening and generation of appropriate therapeutic human antibodies are important and urgent issues in the field of medicine. The successful in vitro biopanning method for antibody screening largely depends on the highly diverse, reliable and humanized CDR library. To rapidly obtain potent human antibodies, we designed and constructed a highly diverse synthetic human single-chain variable fragment (scFv) antibody library greater than a giga in size by phage display. Herein, the novel TIM-3-neutralizing antibodies with immunomodulatory functions derived from this library serve as an example to demonstrate the library's potential for biomedical applications. Methods The library was designed with high stability scaffolds and six complementarity determining regions (CDRs) tailored to mimic human composition. The engineered antibody sequences were optimized for codon usage and subjected to synthesis. The six CDRs with variable length CDR-H3s were individually subjected to β-lactamase selection and then recombined for library construction. Five therapeutic target antigens were used for human antibody generation via phage library biopanning. TIM-3 antibody activity was verified by immunoactivity assays. Results We have designed and constructed a highly diverse synthetic human scFv library named DSyn-1 (DCB Synthetic-1) containing 2.5 × 1010 phage clones. Three selected TIM-3-recognizing antibodies DCBT3-4, DCBT3-19, and DCBT3-22 showed significant inhibition activity by TIM-3 reporter assays at nanomolar ranges and binding affinities in sub-nanomolar ranges. Furthermore, clone DCBT3-22 was exceptionally superior with good physicochemical property and a purity of more than 98% without aggregation. Conclusion The promising results illustrate not only the potential of the DSyn-1 library for biomedical research applications, but also the therapeutic potential of the three novel fully human TIM-3-neutralizing antibodies.
Collapse
Affiliation(s)
- Chao-Yang Huang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Ying-Yung Lok
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chia-Hui Lin
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Szu-Liang Lai
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yen-Yu Wu
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chih-Yung Hu
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chu-Bin Liao
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Chen-Hsuan Ho
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yu-Ping Chou
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yi-Hsuan Hsu
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yu-Hsun Lo
- Development Center for Biotechnology, New Taipei City, Taiwan
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Edward Chern,
| |
Collapse
|
31
|
Ch'ng ACW, Konthur Z, Lim TS. Magnetic Nanoparticle-Based Semi-automated Panning for High-Throughput Antibody Selection. Methods Mol Biol 2023; 2702:291-313. [PMID: 37679626 DOI: 10.1007/978-1-0716-3381-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Bio-panning is a common process involved in recombinant antibody selection against defined targets. The biopanning process aims to isolate specific antibodies against an antigen via affinity selection from a phage display library. In general, antigens are immobilized on solid surfaces such as polystyrene plastic, magnetic beads, and nitrocellulose. For high-throughput selection, semi-automated panning selection allows simultaneous panning against multiple target antigens adapting automated particle processing systems such as the KingFisher Flex. The system setup allows for minimal human intervention for pre- and post-panning steps such as antigen immobilization, phage rescue, and amplification. In addition, the platform is also adaptable to perform polyclonal and monoclonal ELISA for the evaluation process. This chapter will detail the protocols involved from the selection stage until the monoclonal ELISA evaluation with important notes attached at the end of this chapter for optimization and troubleshooting purposes.
Collapse
Affiliation(s)
- Angela Chiew Wen Ch'ng
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Zoltán Konthur
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Theam Soon Lim
- Institute for Reseach in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
32
|
Colombarolli SG, Vitali A, Sciandra F. Extracellular Vesicle Molecular Profiling for Diagnostic Purposes: An Application of Phage Display Technology. Methods Mol Biol 2023; 2578:237-247. [PMID: 36152292 DOI: 10.1007/978-1-0716-2732-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phage display is a molecular biology cloning technique that allows the expression of genes of interest along with the phage surface protein. The technique described for the following method used a genomic library for the expression of peptides composed of 12 amino acids, with the objective of selecting peptides which presented specific affinity to the molecules of interest. As a target, purified extracellular vesicles from cell cultures of cells 5637 and RT4 were chosen, which in turn have enormous application and can help to understand the functioning of bladder cancer, allowing the development of new vaccines, drugs, therapies, and diagnoses.
Collapse
Affiliation(s)
- Stella Garcia Colombarolli
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Rome, Italy.
| | - Alberto Vitali
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Rome, Italy
| | - Francesca Sciandra
- National Research Council of Italy, Istituto di Scienze e Tecnologie Chimiche (SCITEC-CNR), Rome, Italy
| |
Collapse
|
33
|
Condelipes PGM, Fontes PM, Godinho-Santos A, Brás EJS, Marques V, Afonso MB, Rodrigues CMP, Chu V, Gonçalves J, Conde JP. Towards personalized antibody cancer therapy: development of a microfluidic cell culture device for antibody selection. LAB ON A CHIP 2022; 22:4717-4728. [PMID: 36349999 DOI: 10.1039/d2lc00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibody therapy has been one of the most successful therapies for a wide range of diseases, including cancer. One way of expediting antibody therapy development is through phage display technology. Here, by screening thousands of randomly assembled peptide sequences, it is possible to identify potential therapeutic candidates. Conventional screening technologies do not accommodate perfusion through the system, as is the case of standard plate-based cultures. This leads to a poor translation of the experimental results obtained in vitro when moving to a more physiologically relevant setting, such as the case of preclinical animal models or clinical trials. Microfluidics is a technology that can improve screening efficacy by replicating more physiologically relevant conditions such as shear stress. In this work, a polydimethylsiloxane/polystyrene-based microfluidic system for a continuously perfused culture of cancer cells is reported. Human colorectal adenocarcinoma cells (HCT116) expressing CXCR4 were used as a cell target. Fluorescently labeled M13 phages anti-CXCR4 were used to study the efficiency of the microfluidic system as a tool to study the binding kinetics of the engineered bacteriophages. Using our microfluidic platform, we estimated a dissociation constant of 0.45 pM for the engineered phage. Additionally, a receptor internalization assay was developed using SDF-1α to verify phage specificity to the CXCR4 receptor. Upon receptor internalization there was a signal reduction, proving that the anti-CXCR4 fluorescently labelled M13 phages bound specifically to the CXCR4 receptor. The simplicity and ease of use of the microfluidic device design presented in this work can form the basis of a generic platform that facilitates the study and optimization of therapies based on interaction with biological entities such as mammalian cells.
Collapse
Affiliation(s)
- Pedro G M Condelipes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| | - Pedro Mendes Fontes
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Godinho-Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eduardo J S Brás
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta B Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Virginia Chu
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - João Pedro Conde
- Instituto de Engenharia de Sistemas e Computadores - Microsistemas e Nanotecnologias (INESC MN), Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
34
|
Wei T, Li D, Zhang Y, Tang Y, Zhou H, Liu H, Li X. Thiophene-2,3-Dialdehyde Enables Chemoselective Cyclization on Unprotected Peptides, Proteins, and Phage Displayed Peptides. SMALL METHODS 2022; 6:e2201164. [PMID: 36156489 DOI: 10.1002/smtd.202201164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/1912] [Indexed: 06/16/2023]
Abstract
Ortho-phthalaldehyde has recently found wide potentials for protein bioconjugation and peptide cyclization. Herein, the second-generation dialdehyde-based peptide cyclization method is reported. The thiophene-2,3-dialdehyde (TDA) reacts specifically with the primary amine (from Lys side chain or peptide N-terminus) and thiol (from Cys side chain) within unprotected peptides to generate a highly stable thieno[2,3-c]pyrrole-bridged cyclic structure, while it does not react with primary amine alone. This reaction is carried out in the aqueous buffer and features tolerance of diverse functionalities, rapid and clean transformation, and operational simplicity. The features allow TDA to be used for protein stapling and phage displayed peptide cyclization.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| |
Collapse
|
35
|
HER2-Displaying M13 Bacteriophages induce Therapeutic Immunity against Breast Cancer. Cancers (Basel) 2022; 14:cancers14164054. [PMID: 36011047 PMCID: PMC9406369 DOI: 10.3390/cancers14164054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The high incidence and death rates of breast cancer make the development of new therapies an urgent need. The introduction into the clinic of the anti-HER2 monoclonal antibody trastuzumab considerably improved the overall survival and time-to-disease progression of patients with HER2-positive breast cancer. However, many patients do not benefit from it because of resistance to therapy. Cancer vaccines, by inducing into the patient an anti-cancer specific immunity, might represent an alternative immunotherapeutic approach, but despite promises, so far no anti-HER2 cancer vaccine has been approved for human use. In this study, we propose therapeutic phage-based vaccines, against HER2 and its aggressive isoform Δ16HER2, able to elicit a protective immunity and potentially capable of preventing relapse in HER2-positive breast cancer patients, even in those who develop trastuzumab resistance. Abstract The advent of trastuzumab has significantly improved the prognosis of HER2-positive (HER2+) breast cancer patients; nevertheless, drug resistance limits its clinical benefit. Anti-HER2 active immunotherapy represents an attractive alternative strategy, but effective immunization needs to overcome the patient’s immune tolerance against the self-HER2. Phage display technology, taking advantage of phage intrinsic immunogenicity, permits one to generate effective cancer vaccines able to break immune tolerance to self-antigens. In this study, we demonstrate that both preventive and therapeutic vaccination with M13 bacteriophages, displaying the extracellular (EC) and transmembrane (TM) domains of human HER2 or its Δ16HER2 splice variant on their surface (ECTM and Δ16ECTM phages), delayed mammary tumor onset and reduced tumor growth rate and multiplicity in ∆16HER2 transgenic mice, which are tolerant to human ∆16HER2. This antitumor protection correlated with anti-HER2 antibody production. The molecular mechanisms underlying the anticancer effect of vaccine-elicited anti-HER2 antibodies were analyzed in vitro against BT-474 human breast cancer cells, sensitive or resistant to trastuzumab. Immunoglobulins (IgG) purified from immune sera reduced cell viability mainly by impairing ERK phosphorylation and reactivating retinoblastoma protein function in both trastuzumab-sensitive and -resistant BT-474 cells. In conclusion, we demonstrated that phage-based HER2 vaccines impair mammary cancer onset and progression, opening new perspectives for HER2+ breast cancer treatment.
Collapse
|
36
|
Evaluation of Phage Display Biopanning Strategies for the Selection of Anti-Cell Surface Receptor Antibodies. Int J Mol Sci 2022; 23:ijms23158470. [PMID: 35955604 PMCID: PMC9369378 DOI: 10.3390/ijms23158470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.
Collapse
|
37
|
Zhang Q, Olberg A, Sioud M. Structural Requirements for the Binding of a Peptide to Prohibitins on the Cell Surface of Monocytes/Macrophages. Int J Mol Sci 2022; 23:ijms23084282. [PMID: 35457098 PMCID: PMC9029656 DOI: 10.3390/ijms23084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022] Open
Abstract
The screening of phage peptide libraries resulted in the identification of a sequence (named NW peptide, NWYLPWLGTNDW) that specifically binds to human monocytes and macrophages. Although the NW peptide can be used for the targeted delivery of therapeutics without knowledge of its receptor(s), the identification of-its binding partners will support future clinical applications-Here, we used the biotinylated NW peptide for cross-linking cell surface receptor(s) on live cells or as bait in pull-down assays with membrane proteins isolated from monocytes or human THP-1 cells differentiated into macrophages. Proteomic analysis of the captured proteins identified cell surface prohibitins (PHB1 and PHB2) and modified albumin as binding partners. Using flow cytometry and pull-down methods, we demonstrated that PHB1 and PHB2 interact directly with the NW peptide. Confocal imaging showed co-localization of the peptide with PHB1 on the surface of monocytes. Single replacement of either tryptophan or leucine with alanine completely inhibited binding, whereas the replacement of asparagine at position 1 or 10 and aspartic acid at position 11 with alanine did not affect the binding of the peptide variants. Neutral amino acid replacement of tryptophan at positions 2, 6, and 12 with tyrosine or phenylalanine also abolished the binding, implying that the indole ring of tryptophan is indispensable for the NW peptide to bind. Overall, the data suggest that membrane-associated prohibitins might be a useful target for the delivery of therapeutics to monocytes/macrophages and that tryptophan and leucine are key residues for peptide binding.
Collapse
Affiliation(s)
- Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, P.O. Box. 1068, Blindern, 0316 Oslo, Norway
| | - Anniken Olberg
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
| | - Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway; (Q.Z.); (A.O.)
- Correspondence:
| |
Collapse
|
38
|
Ye J, Guo J, Li T, Tian J, Yu M, Wang X, Majeed U, Song W, Xiao J, Luo Y, Yue T. Phage-based technologies for highly sensitive luminescent detection of foodborne pathogens and microbial toxins: A review. Compr Rev Food Sci Food Saf 2022; 21:1843-1867. [PMID: 35142431 DOI: 10.1111/1541-4337.12908] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023]
Abstract
Foodborne pathogens and microbial toxins are the main causes of foodborne illness. However, trace pathogens and toxins in foods are difficult to detect. Thus, techniques for their rapid and sensitive identification and quantification are urgently needed. Phages can specifically recognize and adhere to certain species of microbes or toxins due to molecular complementation between capsid proteins of phages and receptors on the host cell wall or toxins, and thus they have been successfully developed into a detection platform for pathogens and toxins. This review presents an update on phage-based luminescent detection technologies as well as their working principles and characteristics. Based on phage display techniques of temperate phages, reporter gene detection assays have been designed to sensitively detect trace pathogens by luminous intensity. By the host-specific lytic effects of virulent phages, enzyme-catalyzed chemiluminescent detection technologies for pathogens have been exploited. Notably, these phage-based luminescent detection technologies can discriminate viable versus dead microbes. Further, highly selective and sensitive immune-based assays have been developed to detect trace toxins qualitatively and quantitatively via antibody analogs displayed by phages, such as phage-ELISA (enzyme-linked immunosorbent assay) and phage-IPCR (immuno-polymerase chain reaction). This literature research may lead to novel and innocuous phage-based rapid detection technologies to ensure food safety.
Collapse
Affiliation(s)
- Jianming Ye
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaqing Guo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Tairan Li
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jiaxin Tian
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Mengxi Yu
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Xiaochen Wang
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Usman Majeed
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Wei Song
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| | - Yane Luo
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China.,Laboratory of Nutritional and Healthy Food-Individuation Manufacturing Engineering, Xi'an, Shaanxi, China.,Research Center of Food Safety Risk Assessment and Control, Xi'an, Shaanxi, China
| |
Collapse
|
39
|
Xu HM, Xu WM, Zhang L. Current Status of Phage Therapy against Infectious Diseases and Potential Application beyond Infectious Diseases. Int J Clin Pract 2022; 2022:4913146. [PMID: 36263241 PMCID: PMC9550513 DOI: 10.1155/2022/4913146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Intestinal microbiota plays a key role in regulating the pathogenesis of human disease and maintaining health. Many diseases, mainly induced by bacteria, are on the rise due to the emergence of antibiotic-resistant strains. Intestinal microorganisms include organisms such as bacteria, viruses, and fungi. They play an important role in maintaining human health. Among these microorganisms, phages are the main members of intestinal viromes. In particular, the viral fraction, composed essentially of phages, affects homeostasis by exerting selective pressure on bacterial communities living in the intestinal tract. In recent years, with the widespread use and even abuse of antibacterial drugs, more and more drug-resistant bacteria have been found, and they show a trend of high drug resistance and multidrug resistance. Therefore, it has also become increasingly difficult to treat serious bacterial infections. Phages, a natural antibacterial agent with strong specificity and rapid proliferation, have come back to the field of vision of clinicians and scholars. In this study, the current state of research on intestinal phages was discussed, with an exploration of the impact of phage therapy against infectious diseases, as well as potential application beyond infectious diseases.
Collapse
Affiliation(s)
- Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Wen-Min Xu
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| | - Long Zhang
- Department of Endoscopy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510091, China
| |
Collapse
|
40
|
Jaroszewicz W, Morcinek-Orłowska J, Pierzynowska K, Gaffke L, Węgrzyn G. Phage display and other peptide display technologies. FEMS Microbiol Rev 2021; 46:6407522. [PMID: 34673942 DOI: 10.1093/femsre/fuab052] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
Phage display technology, which is based on the presentation of peptide sequences on the surface of bacteriophage virions, was developed over 30 years ago. Improvements in phage display systems have allowed us to employ this method in numerous fields of biotechnology, as diverse as immunological and biomedical applications, the formation of novel materials and many others. The importance of phage display platforms was recognized by awarding the Nobel Prize in 2018 "for the phage display of peptides and antibodies". In contrast to many review articles concerning specific applications of phage display systems published in recent years, we present an overview of this technology, including a comparison of various display systems, their advantages and disadvantages, and examples of applications in various fields of science, medicine, and the broad sense of biotechnology. Other peptide display technologies, which employ bacterial, yeast and mammalian cells, as well as eukaryotic viruses and cell-free systems, are also discussed. These powerful methods are still being developed and improved; thus, novel sophisticated tools based on phage display and other peptide display systems are constantly emerging, and new opportunities to solve various scientific, medical and technological problems can be expected to become available in the near future.
Collapse
Affiliation(s)
- Weronika Jaroszewicz
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | | | - Karolina Pierzynowska
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
41
|
Saw PE, Xu X, Kim S, Jon S. Biomedical Applications of a Novel Class of High-Affinity Peptides. Acc Chem Res 2021; 54:3576-3592. [PMID: 34406761 DOI: 10.1021/acs.accounts.1c00239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most therapeutic peptides available on the market today are naturally occurring hormones or protein fragments that were serendipitously discovered to possess therapeutic effects. However, the limited repertoire of available natural resources presents difficulties for the development of new peptide drug candidates. Traditional peptides possess several shortcomings that must be addressed for biomedical applications, including relatively low affinity or specificity toward biological targets compared to antibody- and protein scaffold-based affinity molecules, poor in vivo stability owing to rapid enzymatic degradation, and rapid clearance from circulation owing to their small size. Going forward, it will be increasingly important for scientists to develop novel classes of high-affinity and -specificity peptides against desired targets that mitigate these limitations while remaining compatible with pharmaceutical manufacturing processes. Recently, several highly constrained, artificial cyclic peptides have emerged as platforms capable of generating high-affinity peptide binders against various disease-associated protein targets by combining with phage or mRNA display method, some of which have entered clinical trials. In contrast, although linear peptides are relatively easy to synthesize cost-effectively and modify site-specifically at either N- or C-termini compared to cyclic peptides, there have been few linear peptide-based platforms that can provide high-affinity and -specificity peptide binders.In this Account, we describe the creation and development of a novel class of high-affinity peptides, termed "aptide"-from the Latin word "aptus" meaning "to fit" and "peptide"-and summarize their biomedical applications. In the first part, we consider the design and creation of aptides, with a focus on their unique structural features and binding mode, and address screening and identification of target protein-specific aptides. We also discuss advantages of the aptide platform over ordinary linear peptides lacking preorganized structures in terms of the affinity and specificity of identified peptide binders against target molecules. In the second part, we describe the potential biomedical applications of various target-specific aptides, ranging from imaging and therapy to theranostics, according to the types of aptides and diseases. We show that certain aptides can not only bind to a target protein but also inhibit its biological function, thereby showing potential as therapeutics per se. Further, aptides specific for cancer-associated protein antigens can be used as escort molecules or targeting ligands for delivery of chemotherapeutics, cytokine proteins, and nanomedicines, such as liposomes and magnetic particles, to tumors, thereby substantially improving therapeutic effects. Finally, we present a strategy capable of overcoming the critical issue of short blood circulation time associated with most peptides by constructing a hybrid system between an aptide and a hapten cotinine-specific antibody.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
- Biomedical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, P.R. China
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials, Korea Institute of Ceramic Engineering and Technology (KICET), Cheongju-si 28160, Republic of Korea
| | - Sangyong Jon
- Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, South Korea
| |
Collapse
|
42
|
Gironda-Martínez A, Donckele EJ, Samain F, Neri D. DNA-Encoded Chemical Libraries: A Comprehensive Review with Succesful Stories and Future Challenges. ACS Pharmacol Transl Sci 2021; 4:1265-1279. [PMID: 34423264 PMCID: PMC8369695 DOI: 10.1021/acsptsci.1c00118] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 12/27/2022]
Abstract
DNA-encoded chemical libraries (DELs) represent a versatile and powerful technology platform for the discovery of small-molecule ligands to protein targets of biological and pharmaceutical interest. DELs are collections of molecules, individually coupled to distinctive DNA tags serving as amplifiable identification barcodes. Thanks to advances in DNA-compatible reactions, selection methodologies, next-generation sequencing, and data analysis, DEL technology allows the construction and screening of libraries of unprecedented size, which has led to the discovery of highly potent ligands, some of which have progressed to clinical trials. In this Review, we present an overview of diverse approaches for the generation and screening of DEL molecular repertoires. Recent success stories are described, detailing how novel ligands were isolated from DEL screening campaigns and were further optimized by medicinal chemistry. The goal of the Review is to capture some of the most recent developments in the field, while also elaborating on future challenges to further improve DEL technology as a therapeutic discovery platform.
Collapse
Affiliation(s)
| | | | - Florent Samain
- Philochem
AG, Libernstrasse 3, CH-8112 Otelfingen, Switzerland
| | - Dario Neri
- Department
of Chemistry and Applied Biosciences, Swiss
Federal Institute of Technology, CH-8093 Zürich, Switzerland
- Philogen
S.p.A, 53100 Siena, Italy
| |
Collapse
|
43
|
Sioud M, Juzenas P, Zhang Q, Kleinauskas A, Peng Q. Evaluation of In Vitro Phototoxicity of a Minibody-IR700 Conjugate Using Cell Monolayer and Multicellular Tumor Spheroid Models. Cancers (Basel) 2021; 13:cancers13133356. [PMID: 34283089 PMCID: PMC8269338 DOI: 10.3390/cancers13133356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022] Open
Abstract
Photodynamic therapy (PDT) is a treatment strategy that utilizes photosensitizers (PSs) and light of a specific wavelength to kill cancer cells. However, limited tumor specificity is still a drawback for the clinical application of PDT. To increase the therapeutic efficacy and specificity of PDT, a novel human minibody (MS5) that recognizes a cell surface receptor expressed on various cancer cells was labeled with the hydrophilic phthalocyanine PS IR700 to generate an MS5-IR700 conjugate that is activated by near-infrared (NIR) light. The phototoxicity of the conjugate was mainly tested against the PC3 prostate cancer cell line. The MS5-IR700 conjugate killed PC3 cells after NIR light irradiation as compared to untreated cells or cells treated with IR700 alone. Time-course analysis of cell viability revealed a high percentage of cell death during the first hour in PC3 cells exposed to the MS5-IR700 conjugate and NIR light irradiation. After irradiation, the MS5-IR700 conjugate-treated PC3 cells displayed cellular swelling, round shape, and rupture of the cell and nuclear membranes. In a co-culture model, the MS5-IR700 conjugate killed MS5-positive Ramos lymphoma cells specifically, while leaving MS5-negative cells unaffected. In line with the data obtained with the monolayer cultures, the MS5-IR700 conjugate also killed PC3 cancer cell spheroids. The treatment induced relocation of heat shock protein 70 and calreticulin to the cell surface, implying the induction of immunogenic cell death. Overall, the data suggest that the developed MS5-IR700 conjugate is a promising therapeutic agent that warrants further preclinical studies.
Collapse
Affiliation(s)
- Mouldy Sioud
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway;
- Correspondence:
| | - Petras Juzenas
- Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway; (P.J.); (A.K.); (Q.P.)
| | - Qindong Zhang
- Division of Cancer Medicine, Department of Cancer Immunology, Oslo University Hospital, University of Oslo, Ullernchausseen 70, 0379 Oslo, Norway;
| | - Andrius Kleinauskas
- Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway; (P.J.); (A.K.); (Q.P.)
| | - Qian Peng
- Division of Laboratory Medicine, Department of Pathology, Oslo University Hospital-Radiumhospitalet, Ullernchausseen 70, 0379 Oslo, Norway; (P.J.); (A.K.); (Q.P.)
| |
Collapse
|
44
|
Sokullu E, Gauthier MS, Coulombe B. Discovery of Antivirals Using Phage Display. Viruses 2021; 13:v13061120. [PMID: 34200959 PMCID: PMC8230593 DOI: 10.3390/v13061120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
The latest coronavirus disease outbreak, COVID-19, has brought attention to viral infections which have posed serious health threats to humankind throughout history. The rapid global spread of COVID-19 is attributed to the increased human mobility of today's world, yet the threat of viral infections to global public health is expected to increase continuously in part due to increasing human-animal interface. Development of antiviral agents is crucial to combat both existing and novel viral infections. Recently, there is a growing interest in peptide/protein-based drug molecules. Antibodies are becoming especially predominant in the drug market. Indeed, in a remarkably short period, four antibody therapeutics were authorized for emergency use in COVID-19 treatment in the US, Russia, and India as of November 2020. Phage display has been one of the most widely used screening methods for peptide/antibody drug discovery. Several phage display-derived biologics are already in the market, and the expiration of intellectual property rights of phage-display antibody discovery platforms suggests an increment in antibody drugs in the near future. This review summarizes the most common phage display libraries used in antiviral discovery, highlights the approaches employed to enhance the antiviral potency of selected peptides/antibody fragments, and finally provides a discussion about the present status of the developed antivirals in clinic.
Collapse
Affiliation(s)
- Esen Sokullu
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| | - Marie-Soleil Gauthier
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
| | - Benoit Coulombe
- Department of Translational Proteomics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada;
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Correspondence: (E.S.); (B.C.)
| |
Collapse
|
45
|
Mosca MG, Mangini M, Cioffi S, Barba P, Mariggiò S. Peptide targeting of lysophosphatidylinositol-sensing GPR55 for osteoclastogenesis tuning. Cell Commun Signal 2021; 19:48. [PMID: 33902596 PMCID: PMC8073907 DOI: 10.1186/s12964-021-00727-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The G-protein-coupled receptor GPR55 has been implicated in multiple biological activities, which has fuelled interest in its functional targeting. Its controversial pharmacology and often species-dependent regulation have impacted upon the potential translation of preclinical data involving GPR55. RESULTS With the aim to identify novel GPR55 regulators, we have investigated lysophosphatidylinositol (LPI)-induced GPR55-mediated signal transduction. The expression system for wild-type and mutated GPR55 was HeLa cells silenced for their endogenous receptor by stable expression of a short-hairpin RNA specific for GPR55 5'-UTR, which allowed definition of the requirement of GPR55 Lys80 for LPI-induced MAPK activation and receptor internalisation. In RAW264.7 macrophages, GPR55 pathways were investigated by Gpr55 silencing using small-interfering RNAs, which demonstrated that LPI increased intracellular Ca2+ levels and induced actin filopodium formation through GPR55 activation. Furthermore, the LPI/GPR55 axis was shown to have an active role in osteoclastogenesis of precursor RAW264.7 cells induced by 'receptor-activator of nuclear factor kappa-β ligand' (RANKL). Indeed, this differentiation into mature osteoclasts was associated with a 14-fold increase in Gpr55 mRNA levels. Moreover, GPR55 silencing and antagonism impaired RANKL-induced transcription of the osteoclastogenesis markers: 'nuclear factor of activated T-cells, cytoplasmic 1', matrix metalloproteinase-9, cathepsin-K, tartrate-resistant acid phosphatase, and the calcitonin receptor, as evaluated by real-time PCR. Phage display was previously used to identify peptides that bind to GPR55. Here, the GPR55-specific peptide-P1 strongly inhibited osteoclast maturation of RAW264.7 macrophages, confirming its activity as a blocker of GPR55-mediated functions. Although osteoclast syncytium formation was not affected by pharmacological regulation of GPR55, osteoclast activity was dependent on GPR55 signalling, as shown with resorption assays on bone slices, where LPI stimulated and GPR55 antagonists inhibited bone erosion. CONCLUSIONS Our data indicate that GPR55 represents a target for development of novel therapeutic approaches for treatment of pathological conditions caused by osteoclast-exacerbated bone degradation, such as in osteoporosis or during establishment of bone metastases. Video abstract.
Collapse
Affiliation(s)
| | - Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Stefania Cioffi
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy. .,Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.
| |
Collapse
|
46
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
48
|
Qi H, Ma M, Lai D, Tao SC. Phage display: an ideal platform for coupling protein to nucleic acid. Acta Biochim Biophys Sin (Shanghai) 2021; 53:389-399. [PMID: 33537750 DOI: 10.1093/abbs/gmab006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/07/2023] Open
Abstract
Display technology, especially phage display technology, has been widely applied in many fields. The theoretical core of display technology is the physical linkage between the protein/peptide on the surface of a phage and the coding DNA sequence inside the same phage. Starting from phage-displayed peptide/protein/antibody libraries and taking advantage of the ever-growing power of next-generation sequencing (NGS) for DNA sequencing/decoding, rich protein-related information can easily be obtained in a high-throughput way. Based on this information, many scientific and clinical questions can be readily addressed. In the past few years, aided by the development of NGS, droplet technology, and massive oligonucleotide synthesis, we have witnessed and continue to witness large advances of phage display technology, in both technology development and application. The aim of this review is to summarize and discuss these recent advances.
Collapse
Affiliation(s)
- Huan Qi
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingliang Ma
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Danyun Lai
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng-ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
49
|
Dmitrieva MD, Voitova AA, Dymova MA, Richter VA, Kuligina EV. Tumor-Targeting Peptides Search Strategy for the Delivery of Therapeutic and Diagnostic Molecules to Tumor Cells. Int J Mol Sci 2020; 22:ijms22010314. [PMID: 33396774 PMCID: PMC7796297 DOI: 10.3390/ijms22010314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/04/2023] Open
Abstract
Background: The combination of the unique properties of cancer cells makes it possible to find specific ligands that interact directly with the tumor, and to conduct targeted tumor therapy. Phage display is one of the most common methods for searching for specific ligands. Bacteriophages display peptides, and the peptides themselves can be used as targeting molecules for the delivery of diagnostic and therapeutic agents. Phage display can be performed both in vitro and in vivo. Moreover, it is possible to carry out the phage display on cells pre-enriched for a certain tumor marker, for example, CD44 and CD133. Methods: For this work we used several methods, such as phage display, sequencing, cell sorting, immunocytochemistry, phage titration. Results: We performed phage display using different screening systems (in vitro and in vivo), different phage libraries (Ph.D-7, Ph.D-12, Ph.D-C7C) on CD44+/CD133+ and without enrichment U-87 MG cells. The binding efficiency of bacteriophages displayed tumor-targeting peptides on U-87 MG cells was compared in vitro. We also conducted a comparative analysis in vivo of the specificity of the accumulation of selected bacteriophages in the tumor and in the control organs (liver, brain, kidney and lungs). Conclusions: The screening in vivo of linear phage peptide libraries for glioblastoma was the most effective strategy for obtaining tumor-targeting peptides providing targeted delivery of diagnostic and therapeutic agents to glioblastoma.
Collapse
|
50
|
Puentes PR, Henao MC, Torres CE, Gómez SC, Gómez LA, Burgos JC, Arbeláez P, Osma JF, Muñoz-Camargo C, Reyes LH, Cruz JC. Design, Screening, and Testing of Non-Rational Peptide Libraries with Antimicrobial Activity: In Silico and Experimental Approaches. Antibiotics (Basel) 2020; 9:E854. [PMID: 33265897 PMCID: PMC7759991 DOI: 10.3390/antibiotics9120854] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
One of the challenges of modern biotechnology is to find new routes to mitigate the resistance to conventional antibiotics. Antimicrobial peptides (AMPs) are an alternative type of biomolecules, naturally present in a wide variety of organisms, with the capacity to overcome the current microorganism resistance threat. Here, we reviewed our recent efforts to develop a new library of non-rationally produced AMPs that relies on bacterial genome inherent diversity and compared it with rationally designed libraries. Our approach is based on a four-stage workflow process that incorporates the interplay of recent developments in four major emerging technologies: artificial intelligence, molecular dynamics, surface-display in microorganisms, and microfluidics. Implementing this framework is challenging because to obtain reliable results, the in silico algorithms to search for candidate AMPs need to overcome issues of the state-of-the-art approaches that limit the possibilities for multi-space data distribution analyses in extremely large databases. We expect to tackle this challenge by using a recently developed classification algorithm based on deep learning models that rely on convolutional layers and gated recurrent units. This will be complemented by carefully tailored molecular dynamics simulations to elucidate specific interactions with lipid bilayers. Candidate AMPs will be recombinantly-expressed on the surface of microorganisms for further screening via different droplet-based microfluidic-based strategies to identify AMPs with the desired lytic abilities. We believe that the proposed approach opens opportunities for searching and screening bioactive peptides for other applications.
Collapse
Affiliation(s)
- Paola Ruiz Puentes
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - María C. Henao
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carlos E. Torres
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Saúl C. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Laura A. Gómez
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Juan C. Burgos
- Chemical Engineering Program, Universidad de Cartagena, Cartagena 130015, Colombia;
| | - Pablo Arbeláez
- Center for Research and Formation in Artificial Intelligence, Universidad de los Andes, Bogota DC 111711, Colombia; (P.R.P.); (P.A.)
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Johann F. Osma
- Department of Electrical and Electronic Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Carolina Muñoz-Camargo
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos, Department of Chemical and Food Engineering, Universidad de los Andes, Bogota DC 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogota DC 111711, Colombia; (C.E.T.); (S.C.G.); (L.A.G.); (C.M.-C.)
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|