1
|
Bennur PL, O’Brien M, Fernando SC, Doblin MS. Improving transformation and regeneration efficiency in medicinal plants: insights from other recalcitrant species. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:52-75. [PMID: 38652155 PMCID: PMC11659184 DOI: 10.1093/jxb/erae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Medicinal plants are integral to traditional medicine systems worldwide, being pivotal for human health. Harvesting plant material from natural environments, however, has led to species scarcity, prompting action to develop cultivation solutions that also aid conservation efforts. Biotechnological tools, specifically plant tissue culture and genetic transformation, offer solutions for sustainable, large-scale production and enhanced yield of valuable biomolecules. While these techniques are instrumental to the development of the medicinal plant industry, the challenge of inherent regeneration recalcitrance in some species to in vitro cultivation hampers these efforts. This review examines the strategies for overcoming recalcitrance in medicinal plants using a holistic approach, emphasizing the meticulous choice of explants (e.g. embryonic/meristematic tissues), plant growth regulators (e.g. synthetic cytokinins), and use of novel regeneration-enabling methods to deliver morphogenic genes (e.g. GRF/GIF chimeras and nanoparticles), which have been shown to contribute to overcoming recalcitrance barriers in agriculture crops. Furthermore, it highlights the benefit of cost-effective genomic technologies that enable precise genome editing and the value of integrating data-driven models to address genotype-specific challenges in medicinal plant research. These advances mark a progressive step towards a future where medicinal plant cultivation is not only more efficient and predictable but also inherently sustainable, ensuring the continued availability and exploitation of these important plants for current and future generations.
Collapse
Affiliation(s)
- Praveen Lakshman Bennur
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Martin O’Brien
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Shyama C Fernando
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| | - Monika S Doblin
- Australian Research Council (ARC) Industrial Transformation Research Hub for Medicinal Agriculture, La Trobe Institute for Sustainable Agriculture and Food (LISAF), Department of Animal, Plant and Soil Sciences, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
2
|
Ikram AU, Khan MSS, Islam F, Ahmed S, Ling T, Feng F, Sun Z, Chen H, Chen J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412223. [PMID: 39691979 DOI: 10.1002/advs.202412223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases. Recent developments in genetic engineering, including efficient gene manipulation and transformation methods, gene editing and synthetic biology, coupled with the understanding of microbial pathogenicity and plant immunity, both at molecular and genomic levels, have enhanced the capabilities to develop disease resistance in plants. This review comprehensively explains the fundamental mechanisms underlying the tug-of-war between pathogens and hosts, and provides a detailed overview of different strategies for developing disease resistance in plants. Additionally, it provides a summary of the potential genes that can be employed in resistance breeding for key crops to combat a wide range of potential pathogens and pests, including fungi, oomycetes, bacteria, viruses, nematodes, and insects. Furthermore, this review addresses the limitations associated with these strategies and their possible solutions. Finally, it discusses the future perspectives for producing plants with durable and broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | | | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Tengfang Ling
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Feng Feng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Huan Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
3
|
Manikandan A, Muthusamy S, Wang ES, Ivarson E, Manickam S, Sivakami R, Narayanan MB, Zhu LH, Rajasekaran R, Kanagarajan S. Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review. FRONTIERS IN PLANT SCIENCE 2024; 15:1468675. [PMID: 39588088 PMCID: PMC11586226 DOI: 10.3389/fpls.2024.1468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Global protein consumption is increasing exponentially, which requires efficient identification of potential, healthy, and simple protein sources to fulfil the demands. The existing sources of animal proteins are high in fat and low in fiber composition, which might cause serious health risks when consumed regularly. Moreover, protein production from animal sources can negatively affect the environment, as it often requires more energy and natural resources and contributes to greenhouse gas emissions. Thus, finding alternative plant-based protein sources becomes indispensable. Rapeseed is an important oilseed crop and the world's third leading oil source. Rapeseed byproducts, such as seed cakes or meals, are considered the best alternative protein source after soybean owing to their promising protein profile (30%-60% crude protein) to supplement dietary requirements. After oil extraction, these rapeseed byproducts can be utilized as food for human consumption and animal feed. However, anti-nutritional factors (ANFs) like glucosinolates, phytic acid, tannins, and sinapines make them unsuitable for direct consumption. Techniques like microbial fermentation, advanced breeding, and genome editing can improve protein quality, reduce ANFs in rapeseed byproducts, and facilitate their usage in the food and feed industry. This review summarizes these approaches and offers the best bio-nutrition breakthroughs to develop nutrient-rich rapeseed byproducts as plant-based protein sources.
Collapse
Affiliation(s)
- Anandhavalli Manikandan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saraladevi Muthusamy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eu Sheng Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajeswari Sivakami
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manikanda Boopathi Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ravikesavan Rajasekaran
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
4
|
Lao X, Jin P, Yang R, Liang Y, Zhang D, Zeng Y, Li X. Establishment of Agrobacterium-Mediated Transient Transformation System in Desert Legume Eremosparton songoricum (Litv.) Vass. Int J Mol Sci 2024; 25:11934. [PMID: 39596004 PMCID: PMC11593363 DOI: 10.3390/ijms252211934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Eremosparton songoricum (Litv.) Vass. is a desert legume exhibiting extreme drought tolerance and the ability to withstand various harsh environments, making it a good candidate for investigating stress tolerance mechanisms and exploring valuable stress-resistant genes. However, the absence of a genetic transformation system for E. songoricum poses significant limitations for functionally validating these stress-resistant genes in situ. In this study, we developed an Agrobacterium-mediated transient transformation system for E. songoricum utilizing the β-glucuronidase (GUS) gene as a reporter. We investigated three types of explants (seedlings, assimilated branches and callus) and the effects of different Agrobacterium strains, seedling ages, OD600 values, acetosyringone (AS) concentrations, sucrose concentrations and infection times on the transformation efficiency. The results reveal that the optimal transformation system was infecting one-month-old regenerating assimilated branches with the Agrobacterium strain C58C1. The infection solution comprised 1/2 MS medium with 3% sucrose and 200 μM AS at an OD600 of 0.8, infection for 3 h and then followed by 2 days of dark cultivation, which achieving a maximum transformation rate of 97%. The maximum transformation rates of the seedlings and calluses were 57.17% and 39.51%, respectively. Moreover, we successfully utilized the assimilated branch transient transformation system to confirm the role of the previously reported transcription factor EsDREB2B in E. songoricum. The overexpression of EsDREB2B enhanced drought tolerance by increasing the plant's reactive oxygen species (ROS) scavenging capacity in situ. This study established the first transient transformation system for a desert legume woody plant, E. songoricum. This efficient system can be readily applied to investigate gene functions in E. songoricum. It will expedite the exploration of genetic resources and stress tolerance mechanisms in this species, offering valuable insights and serving as a reference for the transformation of other desert plants and woody legumes.
Collapse
Affiliation(s)
- Xi’an Lao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
| | - Pei Jin
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (P.J.); (R.Y.); (Y.L.); (D.Z.)
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
5
|
Vargas-Almendra A, Ruiz-Medrano R, Núñez-Muñoz LA, Ramírez-Pool JA, Calderón-Pérez B, Xoconostle-Cázares B. Advances in Soybean Genetic Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:3073. [PMID: 39519991 PMCID: PMC11548167 DOI: 10.3390/plants13213073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The soybean (Glycine max) is a globally important crop due to its high protein and oil content, which serves as a key resource for human and animal nutrition, as well as bioenergy production. This review assesses recent advancements in soybean genetic improvement by conducting an extensive literature analysis focusing on enhancing resistance to biotic and abiotic stresses, improving nutritional profiles, and optimizing yield. We also describe the progress in breeding techniques, including traditional approaches, marker-assisted selection, and biotechnological innovations such as genetic engineering and genome editing. The development of transgenic soybean cultivars through Agrobacterium-mediated transformation and biolistic methods aims to introduce traits such as herbicide resistance, pest tolerance, and improved oil composition. However, challenges remain, particularly with respect to genotype recalcitrance to transformation, plant regeneration, and regulatory hurdles. In addition, we examined how wild soybean germplasm and polyploidy contribute to expanding genetic diversity as well as the influence of epigenetic processes and microbiome on stress tolerance. These genetic innovations are crucial for addressing the increasing global demand for soybeans, while mitigating the effects of climate change and environmental stressors. The integration of molecular breeding strategies with sustainable agricultural practices offers a pathway for developing more resilient and productive soybean varieties, thereby contributing to global food security and agricultural sustainability.
Collapse
Affiliation(s)
- Adriana Vargas-Almendra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| |
Collapse
|
6
|
Do VG, Kim S, Win NM, Kwon SI, Kweon H, Yang S, Park J, Do G, Lee Y. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes. PLANTS (BASEL, SWITZERLAND) 2024; 13:2803. [PMID: 39409673 PMCID: PMC11478628 DOI: 10.3390/plants13192803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024]
Abstract
Genetic transformation is a critical tool for gene manipulation and functional analyses in plants, enabling the exploration of key phenotypes and agronomic traits at the genetic level. While dicotyledonous plants offer various tissues for in vitro culture and transformation, monocotyledonous plants, such as rice, have limited options. This study presents an efficient method for genetically transforming rice (Oryza sativa L.) using seed-derived embryogenic calli as explants. Two target genes were utilized to assess regeneration efficiency: green fluorescent protein (eGFP) and the apple FLOWERING LOCUS T (FT)-like gene (MdFT1). Antisense MdFT1 was cloned into a vector controlled by the rice α-amylase 3D (Ramy3D) promoter, while eGFP was fused to Cas9 under the Ubi promoter. These vectors were introduced separately into rice embryogenic calli from two Korean cultivars using Agrobacterium-mediated transformation. Transgenic seedlings were successfully regenerated via hygromycin selection using an in vitro cultivation system. PCR confirmed stable transgene integration in the transgenic calli and their progeny. Fluorescence microscopy revealed eGFP expression, and antisense MdFT1-expressing lines exhibited notable phenotypic changes, including variations in plant height and grain quality. High transformation efficiency and regeneration frequency were achieved for both tested cultivars. This study demonstrated the effective use of seed-derived embryogenic calli for rice transformation, offering a promising approach for developing transgenic plants in monocot species.
Collapse
Affiliation(s)
- Van Giap Do
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Seonae Kim
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Nay Myo Win
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Soon-Il Kwon
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Hunjoong Kweon
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Sangjin Yang
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Juhyeon Park
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| | - Gyungran Do
- Postharvest Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju-gun 55365, Republic of Korea;
| | - Youngsuk Lee
- Apple Research Center, National Institute of Horticultural and Herbal Science, Rural Development Administration, Daegu 43100, Republic of Korea; (S.K.); (N.M.W.); (S.-I.K.); (H.K.); (S.Y.); (J.P.)
| |
Collapse
|
7
|
Hu Q, Li X, Xi W, Xu J, Xu C, Ausin I, Wang Y. Arabidopsis F-box proteins D5BF1 and D5BF2 negatively regulate Agrobacterium-mediated transformation and tumorigenesis. MOLECULAR PLANT PATHOLOGY 2024; 25:e70006. [PMID: 39267531 PMCID: PMC11393451 DOI: 10.1111/mpp.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
The pathogen Agrobacterium tumefaciens is known for causing crown gall tumours in plants. However, it has also been harnessed as a valuable tool for plant genetic transformation. Apart from the T-DNA, Agrobacterium also delivers at least five virulence proteins into the host plant cells, which are required for an efficient infection. One of these virulence proteins is VirD5. F-box proteins, encoded in the host plant genome or the Ti plasmid, and the ubiquitin/26S proteasome system (UPS) also play an important role in facilitating Agrobacterium infection. Our study identified two Arabidopsis F-box proteins, D5BF1 and D5BF2, that bind VirD5 and facilitate its degradation via the UPS. Additionally, we found that Agrobacterium partially suppresses the expression of D5BF1 and D5BF2. Lastly, stable transformation and tumorigenesis efficiency assays revealed that D5BF1 and D5BF2 negatively regulate the Agrobacterium infection process, showing that the plant F-box proteins and UPS play a role in defending against Agrobacterium infection.
Collapse
Affiliation(s)
- Qin Hu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xueying Li
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Weijie Xi
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Junjie Xu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Chao Xu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Israel Ausin
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yafei Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency ProductionCollege of Life Sciences, Northwest A&F UniversityYanglingShaanxiChina
- Institute of Future AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
8
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
9
|
Yuan C, Zeng J, Liu Y, Yu H, Tong Z, Zhang J, Gao Q, Wang Z, Sui X, Xiao B, Huang C. Establishment and application of Agrobacterium-delivered CRISPR/Cas9 system for wild tobacco ( Nicotiana alata) genome editing. FRONTIERS IN PLANT SCIENCE 2024; 15:1329697. [PMID: 38501140 PMCID: PMC10944875 DOI: 10.3389/fpls.2024.1329697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) system has been widely applied in cultivated crops, but limited in their wild relatives. Nicotiana alata is a typical wild species of genus Nicotiana that is globally distributed as a horticultural plant and well-studied as a self-incompatibility model. It also has valuable genes for disease resistance and ornamental traits. However, it lacks an efficient genetic transformation and genome editing system, which hampers its gene function and breeding research. In this study, we developed an optimized hypocotyl-mediated transformation method for CRISPR-Cas9 delivery. The genetic transformation efficiency was significantly improved from approximately 1% to over 80%. We also applied the CRISPR-Cas9 system to target the phytoene desaturase (NalaPDS) gene in N. alata and obtained edited plants with PDS mutations with over 50% editing efficiency. To generate self-compatible N. alata lines, a polycistronic tRNA-gRNA (PTG) strategy was used to target exonic regions of allelic S-RNase genes and generate targeted knockouts simultaneously. We demonstrated that our system is feasible, stable, and high-efficiency for N. alata genome editing. Our study provides a powerful tool for basic research and genetic improvement of N. alata and an example for other wild tobacco species.
Collapse
Affiliation(s)
- Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Jianmin Zeng
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Zhijun Tong
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Jianduo Zhang
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, Kunming, China
| | - Qian Gao
- Technology Center, China Tobacco Yunnan Industrial Co. LTD, Kunming, China
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xueyi Sui
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Bingguang Xiao
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Kunming, China
| |
Collapse
|
10
|
Kovalev MA, Gladysh NS, Bogdanova AS, Bolsheva NL, Popchenko MI, Kudryavtseva AV. Editing Metabolism, Sex, and Microbiome: How Can We Help Poplar Resist Pathogens? Int J Mol Sci 2024; 25:1308. [PMID: 38279306 PMCID: PMC10816636 DOI: 10.3390/ijms25021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Poplar (Populus) is a genus of woody plants of great economic value. Due to the growing economic importance of poplar, there is a need to ensure its stable growth by increasing its resistance to pathogens. Genetic engineering can create organisms with improved traits faster than traditional methods, and with the development of CRISPR/Cas-based genome editing systems, scientists have a new highly effective tool for creating valuable genotypes. In this review, we summarize the latest research data on poplar diseases, the biology of their pathogens and how these plants resist pathogens. In the final section, we propose to plant male or mixed poplar populations; consider the genes of the MLO group, transcription factors of the WRKY and MYB families and defensive proteins BbChit1, LJAMP2, MsrA2 and PtDef as the most promising targets for genetic engineering; and also pay attention to the possibility of microbiome engineering.
Collapse
Affiliation(s)
- Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Department of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Natalya S. Gladysh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Alina S. Bogdanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 127434 Moscow, Russia
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Mikhail I. Popchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
| | - Anna V. Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (M.A.K.); (N.S.G.); (A.S.B.); (N.L.B.); (M.I.P.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|