1
|
Joly-Amado A, Kulkarni N, Nash KR. Reelin Signaling in Neurodevelopmental Disorders and Neurodegenerative Diseases. Brain Sci 2023; 13:1479. [PMID: 37891846 PMCID: PMC10605156 DOI: 10.3390/brainsci13101479] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Reelin is an extracellular matrix glycoprotein involved in neuronal migration during embryonic brain development and synaptic plasticity in the adult brain. The role of Reelin in the developing central nervous system has been extensively characterized. Indeed, a loss of Reelin or a disruption in its signaling cascade leads to neurodevelopmental defects and is associated with ataxia, intellectual disability, autism, and several psychiatric disorders. In the adult brain, Reelin is critically involved in neurogenesis and synaptic plasticity. Reelin's signaling potentiates glutamatergic and GABAergic neurotransmission, induces synaptic maturation, and increases AMPA and NMDA receptor subunits' expression and activity. As a result, there is a growing literature reporting that a loss of function and/or reduction of Reelin is implicated in numerous neurodegenerative diseases. The present review summarizes the current state of the literature regarding the implication of Reelin and Reelin-mediated signaling during aging and neurodegenerative disorders, highlighting Reelin as a possible target in the prevention or treatment of progressive neurodegeneration.
Collapse
Affiliation(s)
- Aurelie Joly-Amado
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA; (N.K.); (K.R.N.)
| | | | | |
Collapse
|
2
|
Passarella D, Ronci M, Di Liberto V, Zuccarini M, Mudò G, Porcile C, Frinchi M, Di Iorio P, Ulrich H, Russo C. Bidirectional Control between Cholesterol Shuttle and Purine Signal at the Central Nervous System. Int J Mol Sci 2022; 23:ijms23158683. [PMID: 35955821 PMCID: PMC9369131 DOI: 10.3390/ijms23158683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 12/07/2022] Open
Abstract
Recent studies have highlighted the mechanisms controlling the formation of cerebral cholesterol, which is synthesized in situ primarily by astrocytes, where it is loaded onto apolipoproteins and delivered to neurons and oligodendrocytes through interactions with specific lipoprotein receptors. The “cholesterol shuttle” is influenced by numerous proteins or carbohydrates, which mainly modulate the lipoprotein receptor activity, function and signaling. These molecules, provided with enzymatic/proteolytic activity leading to the formation of peptide fragments of different sizes and specific sequences, could be also responsible for machinery malfunctions, which are associated with neurological, neurodegenerative and neurodevelopmental disorders. In this context, we have pointed out that purines, ancestral molecules acting as signal molecules and neuromodulators at the central nervous system, can influence the homeostatic machinery of the cerebral cholesterol turnover and vice versa. Evidence gathered so far indicates that purine receptors, mainly the subtypes P2Y2, P2X7 and A2A, are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer’s and Niemann–Pick C diseases, by controlling the brain cholesterol homeostasis; in addition, alterations in cholesterol turnover can hinder the purine receptor function. Although the precise mechanisms of these interactions are currently poorly understood, the results here collected on cholesterol–purine reciprocal control could hopefully promote further research.
Collapse
Affiliation(s)
- Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Maurizio Ronci
- Department of Pharmacy, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Di Liberto
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Mariachiara Zuccarini
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giuseppa Mudò
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
| | - Monica Frinchi
- Department of Experimental Biomedicine and Clinical Neurosciences, University of Palermo, 90133 Palermo, Italy
| | - Patrizia Di Iorio
- Department of Medical Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Henning Ulrich
- Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-060, Brazil
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-087-440-4897
| |
Collapse
|
3
|
Podvin S, Jones A, Liu Q, Aulston B, Mosier C, Ames J, Winston C, Lietz CB, Jiang Z, O’Donoghue AJ, Ikezu T, Rissman RA, Yuan SH, Hook V. Mutant Presenilin 1 Dysregulates Exosomal Proteome Cargo Produced by Human-Induced Pluripotent Stem Cell Neurons. ACS OMEGA 2021; 6:13033-13056. [PMID: 34056454 PMCID: PMC8158845 DOI: 10.1021/acsomega.1c00660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
The accumulation and propagation of hyperphosphorylated tau (p-Tau) is a neuropathological hallmark occurring with neurodegeneration of Alzheimer's disease (AD). Extracellular vesicles, exosomes, have been shown to initiate tau propagation in the brain. Notably, exosomes from human-induced pluripotent stem cell (iPSC) neurons expressing the AD familial A246E mutant form of presenilin 1 (mPS1) are capable of inducing tau deposits in the mouse brain after in vivo injection. To gain insights into the exosome proteome cargo that participates in propagating tau pathology, this study conducted proteomic analysis of exosomes produced by human iPSC neurons expressing A246E mPS1. Significantly, mPS1 altered the profile of exosome cargo proteins to result in (1) proteins present only in mPS1 exosomes and not in controls, (2) the absence of proteins in the mPS1 exosomes which were present only in controls, and (3) shared proteins which were upregulated or downregulated in the mPS1 exosomes compared to controls. These results show that mPS1 dysregulates the proteome cargo of exosomes to result in the acquisition of proteins involved in the extracellular matrix and protease functions, deletion of proteins involved in RNA and protein translation systems along with proteasome and related functions, combined with the upregulation and downregulation of shared proteins, including the upregulation of amyloid precursor protein. Notably, mPS1 neuron-derived exosomes displayed altered profiles of protein phosphatases and kinases involved in regulating the status of p-tau. The dysregulation of exosome cargo proteins by mPS1 may be associated with the ability of mPS1 neuron-derived exosomes to propagate tau pathology.
Collapse
Affiliation(s)
- Sonia Podvin
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Alexander Jones
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Qing Liu
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Brent Aulston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Charles Mosier
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Janneca Ames
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Charisse Winston
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Christopher B. Lietz
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Zhenze Jiang
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Anthony J. O’Donoghue
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
| | - Tsuneya Ikezu
- Department
of Pharmacology and Experimental Therapeutics, Department of Neurology,
Alzheimer’s Disease Research Center, Boston University, School of Medicine, Boston 02118, Massachusetts, United States
| | - Robert A. Rissman
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
- Veterans
Affairs San Diego Healthcare System,
La Jolla, San Diego 92161, California, United States
| | - Shauna H. Yuan
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| | - Vivian Hook
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego,
La Jolla, San Diego 92093, California, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, San Diego 92093, California, United States
- Department
of Neurosciences, School of Medicine, University
of California, San Diego, La Jolla, San Diego 92093, California, United States
| |
Collapse
|
4
|
Gao Y, Pang H, Chen B, Wu C, Wang Y, Hou L, Wang S, Sun D, Zheng X. Genome-wide analysis of DNA methylation and risk of cardiovascular disease in a Chinese population. BMC Cardiovasc Disord 2021; 21:240. [PMID: 33980183 PMCID: PMC8117656 DOI: 10.1186/s12872-021-02001-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Background Systemic studies of association of genome-wide DNA methylated sites with cardiovascular disease (CVD) in prospective cohorts are lacking. Our aim was to identify DNA methylation sites associated with the risk of CVD and further investigate their potential predictive value in CVD development for high-risk subjects. Methods We performed an epigenome-wide association study (EWAS) to identify CpGs related to CVD development in a Chinese population.We adopted a nested case–control design based on data from China PEACE Million Persons Project. A total of 83 cases who developed CVD events during follow-up and 83 controls who were matched with cases by age, sex, BMI, ethnicity, medications treatment and behavior risk factors were included in the discovery stage. Genome-wide DNA methylation from whole blood was detected using Infinium Human Methylation EPIC Beadchip (850 K). For significant CpGs [FDR(false discovery rate) < 0.005], we further validated in an independent cohort including 38 cases and 38 controls. Results In discovery set, we identified 8 significant CpGs (FDR < 0.005) associated with the risk of CVD after adjustment for cell components, demographic and cardiac risk factors and the first 5 principal components. Two of these identified CpGs (cg06901278 and cg09306458 in UACA) were replicated in another independent set (p < 0.05). Enrichment analysis in 787 individual genes from 1036 CpGs in discovery set revealed a significant enrichment for anatomical structure homeostasis as well as regulation of vesicle-mediated transport. Receiver operating characteristic (ROC) analysis showed that the model combined 8 CVD-related CpGs with baseline characteristics showed much better predictive effect for CVD occurrence compared with the model with baseline characteristics only [AUC (area under the curve) = 0.967, 95% CI (0.942 − 0.991); AUC = 0.621, 95% CI (0.536 − 0.706); p = 9.716E-15]. Conclusions Our study identified the novel CpGs associated with CVD development and revealed their additional predictive power in the risk of CVD for high-risk subjects. Supplementary information The online version contains supplementary material available at 10.1186/s12872-021-02001-w.
Collapse
Affiliation(s)
- Yan Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Huifang Pang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Bowang Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - ChaoQun Wu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Yanping Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Libo Hou
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Siming Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, People's Republic of China
| | - Xin Zheng
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China.
| |
Collapse
|
5
|
Liu Z, Dai X, Tao W, Liu H, Li H, Yang C, Zhang J, Li X, Chen Y, Ma C, Pei J, Mao H, Chen K, Zhang Z. APOE influences working memory in non-demented elderly through an interaction with SPON1 rs2618516. Hum Brain Mapp 2018; 39:2859-2867. [PMID: 29573041 DOI: 10.1002/hbm.24045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 12/18/2022] Open
Abstract
Exploring how risk genes cumulatively impair brain function in preclinical phase (i.e., in cognitively normal elderly) could provide critical insights into the pathophysiology of Alzheimer's disease (AD). Working memory impairment has always been a considerable cognitive deficit in AD, which is likely under complex genetic control. Though, the APOE ɛ4 allele could damage the working memory performance in normal elderly, dissociable results have been reported. This allele may exert specific effects in contexts with other genetic variants. The rs2618516 in the spondin 1 gene (SPON1) has been associated with AD risk and brain structure in the elderly. SPON1 may interact with APOE through processing the amyloid precursor protein and suppressing amyloid-β levels. Using neuropsychological tasks from 710 individuals, we found significant SPON1 × APOE genotype interactions in working memory and executive function performances. Moreover, such interaction was also found in regional brain activations based on functional magnetic resonance imaging data with the n-back working memory task performed in a sub-cohort of 64 subjects. The effects of ɛ4 allele on activation of right inferior frontal gyrus, triangular part (IFGtriang.R) were modulated by rs2618516 in a working memory task. Furthermore, lower IFGtriang.R activation was associated with better cognitive functions. Moreover, the IFGtriang.R activation could mediate the impacts of SPON1 × APOE interactions on working memory performance. These findings suggested the importance of weighing APOE effects on brain activation under the working memory task within the context of the SPON1 genotype.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xiangwei Dai
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Wuhai Tao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Huilan Liu
- The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - He Li
- BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Caishui Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Xin Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Chao Ma
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jing Pei
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Haohao Mao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Kewei Chen
- BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China.,Banner Alzheimer's Institute, Phoenix, Arizona
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, People's Republic of China.,BABRI Centre, Beijing Normal University, Beijing, 100875, People's Republic of China
| |
Collapse
|
6
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|
7
|
Alowolodu O, Johnson G, Alashwal L, Addou I, Zhdanova IV, Uversky VN. Intrinsic disorder in spondins and some of their interacting partners. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1255295. [PMID: 28232900 DOI: 10.1080/21690707.2016.1255295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 10/22/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
Spondins, which are proteins that inhibit and promote adherence of embryonic cells so as to aid axonal growth are part of the thrombospondin-1 family. Spondins function in several important biological processes, such as apoptosis, angiogenesis, etc. Spondins constitute a thrombospondin subfamily that includes F-spondin, a protein that interacts with Aβ precursor protein and inhibits its proteolytic processing; R-spondin, a 4-membered group of proteins that regulates Wnt pathway and have other functions, such as regulation of kidney proliferation, induction of epithelial proliferation, the tumor suppressant action; M-spondin that mediates mechanical linkage between the muscles and apodemes; and the SCO-spondin, a protein important for neuronal development. In this study, we investigated intrinsic disorder status of human spondins and their interacting partners, such as members of the LRP family, LGR family, Frizzled family, and several other binding partners in order to establish the existence and importance of disordered regions in spondins and their interacting partners by conducting a detailed analysis of their sequences, finding disordered regions, and establishing a correlation between their structure and biological functions.
Collapse
Affiliation(s)
- Oluwole Alowolodu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Gbemisola Johnson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Lamis Alashwal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Iqbal Addou
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida , Tampa, FL, USA
| | - Irina V Zhdanova
- Department of Anatomy & Neurobiology, Boston University School of Medicine , Boston, MA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
8
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
9
|
Hu H, Xin N, Liu J, Liu M, Wang Z, Wang W, Zhang Q, Qi J. Characterization of F-spondin in Japanese flounder (Paralichthys olivaceus) and its role in the nervous system development of teleosts. Gene 2015; 575:623-31. [PMID: 26390814 DOI: 10.1016/j.gene.2015.09.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 09/16/2015] [Indexed: 12/21/2022]
Abstract
F-spondin was originally isolated from the developing embryonic floor plate of vertebrates, secreting numerous kinds of neuron-related molecules. The protein performs a positive function in nervous system development, which is attributed to the high conservation of F-spondin protein, an extracellular matrix (ECM) protein in several species. However, its precise function remains unknown, especially in marine fish. In this study, the F-spondin of Japanese flounder (Paralichthys olivaceus). was cloned, and its expression pattern and structural characteristics were analyzed. The 2421bp-long cDNA ORF of PoF-spondin was obtained and divided into 14 exons spread over 61,496bp of the genomic sequence. Phylogenetic analysis showed that PoF-spondin was actually the ortholog of the human spon1 gene and shared high identities with other teleost spon1a genes. Quantitative RT-PCR analysis showed that PoF-spondin was maternally expressed, and transcripts were present from one-cell stage to hatching stage, peaking at tailbud stage. Tissue distribution analysis indicated that PoF-spondin was detectable mainly in the gonads (especially in the ovary) and the brain. Whole mount in situ hybridization analysis revealed that the PoF-spondin transcription distributed throughout the cleavage of the ball in the early stage and expressed at a high level in the floor plate of the trunk at tailbud and pre-hatching stages. Furthermore, the expression of genes related to nervous system development (spon1b, foxo3b, and foxj1a) was significantly increased after the injection of PoF-spondin into the embryos of wild-type zebrafish. Furthermore, PoF-spondin significantly suppressed the expression of the chordamesoderm marker gene ntl, increased the expression of otx2/krox20, ectoderm mark genes, and left the expression of dorsal mesodermal marker gene gsc unaffected at 50% epiboly stage in zebrafish. In short, our results suggest that PoF-spondin functions in the development of the teleost nervous system.
Collapse
Affiliation(s)
- Hongshuang Hu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Nian Xin
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Mengmeng Liu
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Zhenwei Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Wenji Wang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Jie Qi
- Key Laboratory of Marine Genetics and Breeding, Ocean University of China, 266003 Qingdao, Shandong, China.
| |
Collapse
|
10
|
Divekar SD, Burrell TC, Lee JE, Weeber EJ, Rebeck GW. Ligand-induced homotypic and heterotypic clustering of apolipoprotein E receptor 2. J Biol Chem 2014; 289:15894-903. [PMID: 24755222 DOI: 10.1074/jbc.m113.537548] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
ApoE Receptor 2 (ApoER2) and the very low density lipoprotein receptor (VLDLR) are type I transmembrane proteins belonging to the LDLR family of receptors. They are neuronal proteins found in synaptic compartments that play an important role in neuronal migration during development. ApoER2 and VLDLR bind to extracellular glycoproteins, such as Reelin and F-spondin, which leads to phosphorylation of adaptor proteins and subsequent activation of downstream signaling pathways. It is thought that ApoER2 and VLDLR undergo clustering upon binding to their ligands, but no direct evidence of clustering has been shown. Here we show strong clustering of ApoER2 induced by the dimeric ligands Fc-RAP, F-spondin, and Reelin but relatively weak clustering with the ligand apoE in the absence of lipoproteins. This clustering involves numerous proteins besides ApoER2, including amyloid precursor protein and the synaptic adaptor protein PSD-95. Interestingly, we did not observe strong clustering of ApoER2 with VLDLR. Clustering was modulated by both extracellular and intracellular domains of ApoER2. Together, our data demonstrate that several multivalent ligands for ApoER2 induce clustering in transfected cells and primary neurons and that these complexes included other synaptic molecules, such as APP and PSD-95.
Collapse
Affiliation(s)
- Shailaja D Divekar
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Teal C Burrell
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Jennifer E Lee
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| | - Edwin J Weeber
- the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida 33613
| | - G William Rebeck
- From the Department of Neuroscience, Georgetown University Medical Center, Washington, D. C. 20007 and
| |
Collapse
|
11
|
Rembach A, Ryan TM, Roberts BR, Doecke JD, Wilson WJ, Watt AD, Barnham KJ, Masters CL. Progress towards a consensus on biomarkers for Alzheimer’s disease: a review of peripheral analytes. Biomark Med 2013; 7:641-62. [DOI: 10.2217/bmm.13.59] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population and attempts to develop therapies have been unsuccessful because there is no means to target an effective therapeutic window. CNS biomarkers are insightful but impractical for high-throughput population-based screening. Therefore, a peripheral, blood-based biomarker for AD would significantly improve early diagnosis, potentially enable presymptomatic detection and facilitate effective targeting of disease-modifying treatments. The various constituents of blood, including plasma, platelets and cellular fractions, are now being systematically explored as a pool of putative peripheral biomarkers for AD. In this review we cover some less known peripheral biomarkers and highlight the latest developments for their clinical application.
Collapse
Affiliation(s)
- Alan Rembach
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia.
| | - Tim M Ryan
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Blaine R Roberts
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - James D Doecke
- The Australian e-Health Research Centre, Herston, Queensland, 4029, Australia
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - William J Wilson
- CSIRO Preventative Health National Research Flagship, North Ryde, New South Wales, 2113, Australia
| | - Andrew D Watt
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Kevin J Barnham
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| |
Collapse
|
12
|
Moreau PH, Bott JB, Zerbinatti C, Renger JJ, Kelche C, Cassel JC, Mathis C. ApoE4 confers better spatial memory than apoE3 in young adult hAPP-Yac/apoE-TR mice. Behav Brain Res 2013; 243:1-5. [PMID: 23291160 DOI: 10.1016/j.bbr.2012.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/21/2012] [Accepted: 12/24/2012] [Indexed: 12/17/2022]
Abstract
The APOE-ɛ4 allele is associated with increased cognitive decline during normal aging and Alzheimer's disease. However, several studies intriguingly found a beneficial effect on cognition in young adult human APOE-ɛ4 carriers. Here, we show that 3-month old bigenic hAPP-Yac/apoE4-TR mice outperformed their hAPP-Yac/apoE3-TR counterparts on learning and memory performances in the highly hippocampus-dependent, hidden-platform version of the Morris water maze task. The two mouse lines did not differ in a non-spatial visible-platform version of the task. This hAPP-Yac/apoE-TR model may thus provide a useful tool to study the mechanisms involved in the antagonistic pleiotropic effects of APOE-ɛ4 on cognitive functions.
Collapse
Affiliation(s)
- Pierre-Henri Moreau
- Laboratoire d'Imagerie et de Neurosciences Cognitives, UMR 7237 CNRS, Université de Strasbourg, IFR 37, GDR CNRS 2905, 12 rue Goethe, F-67000 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Akle V, Guelin E, Yu L, Brassard-Giordano H, Slack BE, Zhdanova IV. F-spondin/spon1b expression patterns in developing and adult zebrafish. PLoS One 2012; 7:e37593. [PMID: 22768035 PMCID: PMC3387172 DOI: 10.1371/journal.pone.0037593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/26/2012] [Indexed: 01/24/2023] Open
Abstract
F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate.
Collapse
Affiliation(s)
- Veronica Akle
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Emmanuel Guelin
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lili Yu
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Helena Brassard-Giordano
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara E. Slack
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Irina V. Zhdanova
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
14
|
ApoE receptor 2 regulates synapse and dendritic spine formation. PLoS One 2011; 6:e17203. [PMID: 21347244 PMCID: PMC3039666 DOI: 10.1371/journal.pone.0017203] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/25/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Apolipoprotein E receptor 2 (ApoEr2) is a postsynaptic protein involved in long-term potentiation (LTP), learning, and memory through unknown mechanisms. We examined the biological effects of ApoEr2 on synapse and dendritic spine formation-processes critical for learning and memory. METHODOLOGY/PRINCIPAL FINDINGS In a heterologous co-culture synapse assay, overexpression of ApoEr2 in COS7 cells significantly increased colocalization with synaptophysin in primary hippocampal neurons, suggesting that ApoEr2 promotes interaction with presynaptic structures. In primary neuronal cultures, overexpression of ApoEr2 increased dendritic spine density. Consistent with our in vitro findings, ApoEr2 knockout mice had decreased dendritic spine density in cortical layers II/III at 1 month of age. We also tested whether the interaction between ApoEr2 and its cytoplasmic adaptor proteins, specifically X11α and PSD-95, affected synapse and dendritic spine formation. X11α decreased cell surface levels of ApoEr2 along with synapse and dendritic spine density. In contrast, PSD-95 increased cell surface levels of ApoEr2 as well as synapse and dendritic spine density. CONCLUSIONS/SIGNIFICANCE These results suggest that ApoEr2 plays important roles in structure and function of CNS synapses and dendritic spines, and that these roles are modulated by cytoplasmic adaptor proteins X11α and PSD-95.
Collapse
|
15
|
Reduced Reelin expression accelerates amyloid-beta plaque formation and tau pathology in transgenic Alzheimer's disease mice. J Neurosci 2010; 30:9228-40. [PMID: 20610758 DOI: 10.1523/jneurosci.0418-10.2010] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In addition to the fundamental role of the extracellular glycoprotein Reelin in neuronal development and adult synaptic plasticity, alterations in Reelin-mediated signaling have been suggested to contribute to neuronal dysfunction associated with Alzheimer's disease (AD). In vitro data revealed a biochemical link between Reelin-mediated signaling, Tau phosphorylation, and amyloid precursor protein (APP) processing. To directly address the role of Reelin in amyloid-beta plaque and Tau pathology in vivo, we crossed heterozygous Reelin knock-out mice (reeler) with transgenic AD mice to investigate the temporal and spatial AD-like neuropathology. We demonstrate that a reduction in Reelin expression results in enhanced amyloidogenic APP processing, as indicated by the precocious production of amyloid-beta peptides, the significant increase in number and size of amyloid-beta plaques, as well as age-related aggravation of plaque pathology in double mutant compared with single AD mutant mice of both sexes. Numerous amyloid-beta plaques accumulate in the hippocampal formation and neocortex of double mutants, precisely in layers with strongest Reelin expression and highest accumulation of Reelin plaques in aged wild-type mice. Moreover, concentric accumulations of phosphorylated Tau-positive neurons around amyloid-beta plaques were evident in 15-month-old double versus single mutant mice. Silver stainings indicated the presence of neurofibrillary tangles, selectively associated with amyloid-beta plaques and dystrophic neurites in the entorhinal cortex and hippocampus. Our findings suggest that age-related Reelin aggregation and concomitant reduction in Reelin-mediated signaling play a proximal role in synaptic dysfunction associated with amyloid-beta deposition, sufficient to enhance Tau phosphorylation and tangle formation in the hippocampal formation in aged Reelin-deficient transgenic AD mice.
Collapse
|
16
|
Achim CL, Adame A, Dumaop W, Everall IP, Masliah E. Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J Neuroimmune Pharmacol 2009; 4:190-9. [PMID: 19288297 PMCID: PMC3055557 DOI: 10.1007/s11481-009-9152-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 02/25/2009] [Indexed: 01/10/2023]
Abstract
In recent years, human immunodeficiency virus (HIV)-infected patients under highly active anti-retroviral therapy (HAART) regimens have shown a markedly improved general clinical status; however, the prevalence of mild cognitive disorders has increased. We propose that increased longevity with HIV-mediated chronic inflammation combined with the secondary effects of HAART may increase the risk of early brain aging as shown by intraneuronal accumulation of abnormal protein aggregates like amyloid beta (Abeta), which might participate in worsening the neurodegenerative process and cognitive impairment in older patients with HIV. For this purpose, levels and distribution of Abeta immunoreactivity were analyzed in the frontal cortex of 43 patients with HIV (ages 38-60) and HIV- age-matched controls. Subcellular localization of the Abeta-immunoreactive material was analyzed by double labeling and confocal microscopy and by immunono-electron microscopy (EM). Compared to HIV- cases, in HIV+ cases, there was abundant intracellular Abeta immunostaining in pyramidal neurons and along axonal tracts. Cases with HIV encephalitis (HIVE) had higher levels of intraneuronal Abeta immunoreactivity compared to HIV+ cases with no HIVE. Moreover, levels of intracellular Abeta correlated with age in the group with HIVE. Double-labeling analysis showed that the Abeta-immunoreactive granules in the neurons co-localized with lysosomal markers such as cathepsin-D and LC3. Ultrastructural analysis by immuno-EM has confirmed that in these cases, intracellular Abeta was often found in structures displaying morphology similar to autophagosomes. These findings suggest that long-term survival with HIV might interfere with clearance of proteins such as Abeta and worsen neuronal damage and cognitive impairment in this population.
Collapse
Affiliation(s)
- Cristian L. Achim
- Department of Psychiatry, University of California, San Diego, CA, USA. Department of Pathology, University of California, San Diego, CA, USA
| | - Anthony Adame
- Department of Pathology, University of California, San Diego, CA, USA. Department of Neurosciences, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0624, USA
| | - Wilmar Dumaop
- Department of Pathology, University of California, San Diego, CA, USA
| | - Ian P. Everall
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Eliezer Masliah
- Department of Pathology, University of California, San Diego, CA, USA. Department of Neurosciences, University of California, 9500 Gilman Dr., La Jolla, San Diego, CA 92093-0624, USA
| | | |
Collapse
|
17
|
Apolipoprotein E and its receptors in Alzheimer's disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009; 10:333-44. [PMID: 19339974 DOI: 10.1038/nrn2620] [Citation(s) in RCA: 796] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast majority of Alzheimer's disease (AD) cases are late-onset and their development is probably influenced by both genetic and environmental risk factors. A strong genetic risk factor for late-onset AD is the presence of the epsilon4 allele of the apolipoprotein E (APOE) gene, which encodes a protein with crucial roles in cholesterol metabolism. There is mounting evidence that APOE4 contributes to AD pathogenesis by modulating the metabolism and aggregation of amyloid-beta peptide and by directly regulating brain lipid metabolism and synaptic functions through APOE receptors. Emerging knowledge of the contribution of APOE to the pathophysiology of AD presents new opportunities for AD therapy.
Collapse
|
18
|
Marzolo MP, Bu G. Lipoprotein receptors and cholesterol in APP trafficking and proteolytic processing, implications for Alzheimer's disease. Semin Cell Dev Biol 2008; 20:191-200. [PMID: 19041409 DOI: 10.1016/j.semcdb.2008.10.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/13/2008] [Indexed: 12/30/2022]
Abstract
Amyloid-beta (Abeta) peptide accumulation in the brain is central to the pathogenesis of Alzheimer's disease (AD). Abeta is produced through proteolytic processing of a transmembrane protein, beta-amyloid precursor protein (APP), by beta- and gamma-secretases. Mounting evidence has demonstrated that alterations in APP cellular trafficking and localization directly impact its processing to Abeta. Members of the low-density lipoprotein receptor family, including LRP, LRP1B, SorLA/LR11, and apoER2, interact with APP and regulate its endocytic trafficking. Additionally, APP trafficking and processing are greatly affected by cellular cholesterol content. In this review, we summarize the current understanding of the roles of lipoprotein receptors and cholesterol in APP trafficking and processing and their implication for AD pathogenesis and therapy.
Collapse
Affiliation(s)
- Maria-Paz Marzolo
- FONDAP Center for Cell Regulation and Pathology (CRCP), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and MIFAB, Santiago, Chile
| | | |
Collapse
|