1
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
2
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
3
|
Eck SR, Kokras N, Wicks B, Baltimas P, Hall A, van Bendegem N, Salvatore M, Cohen SR, Bergmann J, Ceretti A, Parikh V, Dalla C, Bangasser DA. Corticotropin releasing factor in the nucleus basalis of Meynert impairs attentional performance and reduces levels of glutamate and taurine in male and female rats. Neuropharmacology 2022; 221:109280. [PMID: 36216029 PMCID: PMC9883789 DOI: 10.1016/j.neuropharm.2022.109280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/06/2022] [Accepted: 10/04/2022] [Indexed: 11/08/2022]
Abstract
Psychiatric disorders that are characterized by impairments in sustained attention, including attention deficit hyperactivity disorder (ADHD), post-traumatic stress disorder (PTSD), and major depression are also sensitive to exacerbation by stress. Sustained attention relies on cholinergic and non-cholinergic projections from the nucleus basalis of Meynert (NBM) in the basal forebrain to the medial prefrontal cortex (mPFC). We have previously shown that central administration of the stress neuropeptide corticotropin releasing factor (CRF) impairs performance on the sustained attention task (SAT) in adult male and female rats. The present study investigated whether this effect was mediated by CRF's action in the NBM. Rats were administered CRF in the NBM and subsequent SAT performance was measured. A high dose of CRF (100 ng) significantly impaired performance on non-signaled events across sex. Because performance on non-signaled events is believed to depend on non-cholinergic (i.e., GABA and glutamate) signaling, high performance liquid chromatography was used to quantify amino acid levels in the NBM and mPFC. We found females have higher levels of glutamate, glutamine, GABA glycine, and alanine in the NBM than males. Importantly, CRF in the NBM led to a local decrease of taurine and several amino acids involved in glutamate synthesis in males and females, changes which may mediate the CRF-induced SAT performance deficit. Together these studies suggest that CRF regulation of amino acids in the NMB contributes to stress-induced attention deficits.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Goudi, Athens, Greece; First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Greece
| | - Brittany Wicks
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Petros Baltimas
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Goudi, Athens, Greece
| | - Arron Hall
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Nina van Bendegem
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Madeleine Salvatore
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Sarah R Cohen
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Joy Bergmann
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Attilio Ceretti
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Mikras Asias 75, 11527, Goudi, Athens, Greece
| | - Debra A Bangasser
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19122, USA; Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
4
|
Marchetta P, Eckert P, Lukowski R, Ruth P, Singer W, Rüttiger L, Knipper M. Loss of central mineralocorticoid or glucocorticoid receptors impacts auditory nerve processing in the cochlea. iScience 2022; 25:103981. [PMID: 35281733 PMCID: PMC8914323 DOI: 10.1016/j.isci.2022.103981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 02/08/2023] Open
Abstract
The key auditory signature that may associate peripheral hearing with central auditory cognitive defects remains elusive. Suggesting the involvement of stress receptors, we here deleted the mineralocorticoid and glucocorticoid receptors (MR and GR) using a CaMKIIα-based tamoxifen-inducible CreERT2/loxP approach to generate mice with single or double deletion of central but not cochlear MR and GR. Hearing thresholds of MRGRCaMKIIαCreERT2 conditional knockouts (cKO) were unchanged, whereas auditory nerve fiber (ANF) responses were larger and faster and auditory steady state responses were improved. Subsequent analysis of single MR or GR cKO revealed discrete roles for both, central MR and GR on cochlear functions. Limbic MR deletion reduced inner hair cell (IHC) ribbon numbers and ANF responses. In contrast, GR deletion shortened the latency and improved the synchronization to amplitude-modulated tones without affecting IHC ribbon numbers. These findings imply that stress hormone-dependent functions of central MR/GR contribute to “precognitive” sound processing in the cochlea. Top-down MR/GR signaling differentially contributes to cochlear sound processing Limbic MR stimulates auditory nerve fiber discharge rates Central GR deteriorates auditory nerve fiber synchrony
Collapse
Affiliation(s)
- Philine Marchetta
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Philipp Eckert
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Robert Lukowski
- University of Tübingen, Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, 72076 Tübingen, Germany
| | - Peter Ruth
- University of Tübingen, Institute of Pharmacy, Pharmacology, Toxicology and Clinical Pharmacy, 72076 Tübingen, Germany
| | - Wibke Singer
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Marlies Knipper
- University of Tübingen, Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
5
|
Pagella S, Deussing JM, Kopp-Scheinpflug C. Expression Patterns of the Neuropeptide Urocortin 3 and Its Receptor CRFR2 in the Mouse Central Auditory System. Front Neural Circuits 2021; 15:747472. [PMID: 34867212 PMCID: PMC8633543 DOI: 10.3389/fncir.2021.747472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Sensory systems have to be malleable to context-dependent modulations occurring over different time scales, in order to serve their evolutionary function of informing about the external world while also eliciting survival-promoting behaviors. Stress is a major context-dependent signal that can have fast and delayed effects on sensory systems, especially on the auditory system. Urocortin 3 (UCN3) is a member of the corticotropin-releasing factor family. As a neuropeptide, UCN3 regulates synaptic activity much faster than the classic steroid hormones of the hypothalamic-pituitary-adrenal axis. Moreover, due to the lack of synaptic re-uptake mechanisms, UCN3 can have more long-lasting and far-reaching effects. To date, a modest number of studies have reported the presence of UCN3 or its receptor CRFR2 in the auditory system, particularly in the cochlea and the superior olivary complex, and have highlighted the importance of this stress neuropeptide for protecting auditory function. However, a comprehensive map of all neurons synthesizing UCN3 or CRFR2 within the auditory pathway is lacking. Here, we utilize two reporter mouse lines to elucidate the expression patterns of UCN3 and CRFR2 in the auditory system. Additional immunolabelling enables further characterization of the neurons that synthesize UCN3 or CRFR2. Surprisingly, our results indicate that within the auditory system, UCN3 is expressed predominantly in principal cells, whereas CRFR2 expression is strongest in non-principal, presumably multisensory, cell types. Based on the presence or absence of overlap between UCN3 and CRFR2 labeling, our data suggest unusual modes of neuromodulation by UCN3, involving volume transmission and autocrine signaling.
Collapse
Affiliation(s)
- Sara Pagella
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Jiang Z, Rajamanickam S, Justice NJ. CRF signaling between neurons in the paraventricular nucleus of the hypothalamus (PVN) coordinates stress responses. Neurobiol Stress 2019; 11:100192. [PMID: 31516918 PMCID: PMC6732729 DOI: 10.1016/j.ynstr.2019.100192] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022] Open
Abstract
The importance of a precisely coordinated neuroendocrine, autonomic, and behavioral stress response was a primary theme at the Stress Neurobiology Workshop 2018, held in the beautiful setting of Banff Provincial Park in Alberta, Canada. Much of the research featured at this meeting reinforced the importance of appropriately responding to stress in order to avoid various neuropsychiatric pathologies, including Post-Traumatic Stress Disorder (PTSD), depression, and addiction. Corticotropin-Releasing Factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVN) are central players in the stress response, integrating both external and visceral stress-relevant information, then directing neuroendocrine, autonomic and behavioral adaptations via endocrine and neural outputs of the PVN. The PVN contains a densely packed array of neuron types that respond to stress, including CRF neurons that activate the Hypothalamic-Pituitary-Adrenal (HPA) axis. Recently, identification of a new population of neurons in the PVN that express CRF Receptor 1 (CRFR1) has suggested that CRF release in the PVN signals to neighboring CRF responsive neurons, potentially functioning in HPA axis feedback, neuroendocrine coordination, and autonomic signaling. Here, we review our recent work characterizing an intra-PVN microcircuit in which locally released CRF release activates CRFR1+ neurons that make recurrent inhibitory GABAergic synapses onto CRF neurons to dampen excitability , therebylimiting HPA axis hyperactivity in response to stress and promoting stress recovery, which we presented in a poster session at the conference. We then discuss questions that have arisen following publication of our initial characterization of the microcircuit, regarding specific features of intra-PVN CRF signaling and its potential role in coordinating neuroendocrine, autonomic, and behavioral outputs of the PVN. Our presented work, as well as many of the presentations at the Stress Neurobiology Workshop 2018 together establish intra-PVN signaling as an important regulatory node in stress response pathways, which are central to the pathogenesis of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zhiying Jiang
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, 77030, USA
| | - Shivakumar Rajamanickam
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, 77030, USA
| | - Nicholas J Justice
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Texas, 77030, USA
| |
Collapse
|
7
|
Fischl MJ, Ueberfuhr MA, Drexl M, Pagella S, Sinclair JL, Alexandrova O, Deussing JM, Kopp-Scheinpflug C. Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noise-induced threshold shift. J Physiol 2019; 597:4341-4355. [PMID: 31270820 PMCID: PMC6852351 DOI: 10.1113/jp278132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/03/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Ongoing, moderate noise exposure does not instantly damage the auditory system but may cause lasting deficits, such as elevated thresholds and accelerated ageing of the auditory system. The neuromodulatory peptide urocortin-3 (UCN3) is involved in the body's recovery from a stress response, and is also expressed in the cochlea and the auditory brainstem. Lack of UCN3 facilitates age-induced hearing loss and causes permanently elevated auditory thresholds following a single 2 h noise exposure at moderate intensities. Outer hair cell function in mice lacking UCN3 is unaffected, so that the observed auditory deficits are most likely due to inner hair cell function or central mechanisms. Highly specific, rather than ubiquitous, expression of UCN3 in the brain renders it a promising candidate for designing drugs to ameliorate stress-related auditory deficits, including recovery from acoustic trauma. ABSTRACT Environmental acoustic noise is omnipresent in our modern society, with sound levels that are considered non-damaging still causing long-lasting or permanent changes in the auditory system. The small neuromodulatory peptide urocortin-3 (UCN3) is the endogenous ligand for corticotropin-releasing factor receptor type 2 and together they are known to play an important role in stress recovery. UCN3 expression has been observed in the auditory brainstem, but its role remains unclear. Here we describe the detailed distribution of UCN3 expression in the murine auditory brainstem and provide evidence that UCN3 is expressed in the synaptic region of inner hair cells in the cochlea. We also show that mice with deficient UCN3 signalling experience premature ageing of the auditory system starting at an age of 4.7 months with significantly elevated thresholds of auditory brainstem responses (ABRs) compared to age-matched wild-type mice. Following a single, 2 h exposure to moderate (84 or 94 dB SPL) noise, UCN3-deficient mice exhibited significantly larger shifts in ABR thresholds combined with maladaptive recovery. In wild-type mice, the same noise exposure did not cause lasting changes to auditory thresholds. The presence of UCN3-expressing neurons throughout the auditory brainstem and the predisposition to hearing loss caused by preventing its normal expression suggests UCN3 as an important neuromodulatory peptide in the auditory system's response to loud sounds.
Collapse
Affiliation(s)
- Matthew J Fischl
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Margarete A Ueberfuhr
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - Markus Drexl
- German Center for Vertigo and Balance Disorders, University Hospital Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Sara Pagella
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University, Munich, Germany
| | - James L Sinclair
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Olga Alexandrova
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| | - Jan M Deussing
- Max Planck Institute of Psychiatry, Molecular Neurogenetics, Munich, Germany
| | - Conny Kopp-Scheinpflug
- Department of Biology II, Division Neurobiology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
8
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
9
|
Vetter DE. Cellular signaling protective against noise-induced hearing loss – A role for novel intrinsic cochlear signaling involving corticotropin-releasing factor? Biochem Pharmacol 2015; 97:1-15. [PMID: 26074267 DOI: 10.1016/j.bcp.2015.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
Hearing loss afflicts approximately 15% of the world's population, and crosses all socioeconomic boundaries. While great strides have been made in understanding the genetic components of syndromic and non-syndromic hearing loss, understanding of the mechanisms underlying noise-induced hearing loss (NIHL) have come much more slowly. NIHL is not simply a mechanism by which older individuals loose their hearing. Significantly, the incidence of NIHL is increasing, and is now involving ever younger populations. This may predict future increased occurrences of hearing loss. Current research has shown that even short-term exposures to loud sounds generating what was previously considered temporary hearing loss, actually produces an almost immediate and permanent loss of specific populations of auditory nerve fibers. Additionally, recurrent exposures to intense sound may hasten age-related hearing loss. While NIHL is a significant medical concern, to date, few compounds have delivered significant protection, arguing that new targets need to be identified. In this commentary, we will explore cellular signaling processes taking place in the cochlea believed to be involved in protection against hearing loss, and highlight new data suggestive of novel signaling not previously recognized as occurring in the cochlea, that is perhaps protective of hearing. This includes a recently described local hypothalamic-pituitary-adrenal axis (HPA)-like signaling system fully contained in the cochlea. This system may represent a local cellular stress-response system based on stress hormone release similar to the systemic HPA axis. Its discovery may hold hope for new drug therapies that can be delivered directly to the cochlea, circumventing systemic side effects.
Collapse
Affiliation(s)
- Douglas E Vetter
- University of Mississippi Medical Center, Department of Neurobiology and Anatomical Sciences, 2500 N. State St., Jackson, MS 39216, USA.
| |
Collapse
|
10
|
Noreña AJ, Mulders WHAM, Robertson D. Suppression of putative tinnitus-related activity by extra-cochlear electrical stimulation. J Neurophysiol 2015; 113:132-43. [DOI: 10.1152/jn.00580.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Studies on animals have shown that noise-induced hearing loss is followed by an increase of spontaneous firing at several stages of the central auditory system. This central hyperactivity has been suggested to underpin the perception of tinnitus. It was shown that decreasing cochlear activity can abolish the noise-induced central hyperactivity. This latter result further suggests that an approach consisting of reducing cochlear activity may provide a therapeutic avenue for tinnitus. In this context, extra-cochlear electric stimulation (ECES) may be a good candidate to modulate cochlear activity and suppress tinnitus. Indeed, it has been shown that a positive current applied at the round window reduces cochlear nerve activity and can suppress tinnitus reliably in tinnitus subjects. The present study investigates whether ECES with a positive current can abolish the noise-induced central hyperactivity, i.e., the putative tinnitus-related activity. Spontaneous and stimulus-evoked neural activity before, during and after ECES was assessed from single-unit recordings in the inferior colliculus of anesthetized guinea pigs. We found that ECES with positive current significantly decreases the spontaneous firing rate of neurons with high characteristic frequencies, whereas negative current produces the opposite effect. The effects of the ECES are absent or even reversed for neurons with low characteristic frequencies. Importantly, ECES with positive current had only a marginal effect on thresholds and tone-induced activity of collicular neurons, suggesting that the main action of positive current is to modulate the spontaneous firing. Overall, cochlear electrical stimulation may be a viable approach for suppressing some forms of (peripheral-dependent) tinnitus.
Collapse
Affiliation(s)
- A. J. Noreña
- Laboratory of Adaptive and Integrative Neuroscience, CNRS, and Aix-Marseille Université, Fédération de Recherche 3C, Marseille, France; and
| | | | - D. Robertson
- The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
11
|
Willaredt MA, Ebbers L, Nothwang HG. Central auditory function of deafness genes. Hear Res 2014; 312:9-20. [DOI: 10.1016/j.heares.2014.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/31/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
|
12
|
Kang HH, Wang CH, Chen HC, Li IH, Cheng CY, Liu RS, Huang WS, Shiue CY, Ma KH. Investigating the effects of noise-induced hearing loss on serotonin transporters in rat brain using 4-[18F]-ADAM/small animal PET. Neuroimage 2013; 75:262-269. [DOI: 10.1016/j.neuroimage.2012.06.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/08/2012] [Accepted: 06/26/2012] [Indexed: 01/10/2023] Open
|
13
|
Basappa J, Graham CE, Turcan S, Vetter DE. The cochlea as an independent neuroendocrine organ: expression and possible roles of a local hypothalamic-pituitary-adrenal axis-equivalent signaling system. Hear Res 2012; 288:3-18. [PMID: 22484018 DOI: 10.1016/j.heares.2012.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 02/07/2023]
Abstract
A key property possessed by the mammalian cochlea is its ability to dynamically alter its own sensitivity. Because hair cells and ganglion cells are prone to damage following exposure to loud sound, extant mechanisms limiting cochlear damage include modulation involving both the mechanical (via outer hair cell motility) and neural signaling (via inner hair cell-ganglion cell synapses) steps of peripheral auditory processing. Feedback systems such as that embodied by the olivocochlear system can alter sensitivity, but respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear before sensitivity is adjusted. Less well characterized are potential cellular signaling systems involved in protection against metabolic stress and resultant damage. Although pharmacological manipulation of the olivocochlear system may hold some promise for attenuating cochlear damage, targeting this system may still allow damage to occur that does not depend on a fully functional feedback loop for its mitigation. Thus, understanding endogenous cell signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic-pituitary-adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. This system may represent a local cellular response system designed to mitigate damage arising from various types of insult.
Collapse
|