1
|
Itsuno M, Tanabe H, Sano E, Sasaki T, Oyama C, Bannai H, Saito K, Nakata K, Endoh-Yamagami S, Okano H, Maeda S. MAPT-A152T mutation drives neuronal hyperactivity through Fyn-NMDAR signaling in human iPSC-Derived neurons: Insights into Alzheimer's pathogenesis. Regen Ther 2025; 28:201-213. [PMID: 39811068 PMCID: PMC11730958 DOI: 10.1016/j.reth.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau (MAPT) gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models. Methods To investigate the effects of MAPT gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs). We then differentiated them into excitatory and inhibitory neurons. As a control, iPSCs in which the MAPT gene was replaced with a fluorescent protein were also created. Results In excitatory neuronal cultures, the A152T mutation was found to enhance spontaneous neuronal activity and the association of tau and Fyn. However, in inhibitory neuron-enriched cultures, the A152T mutation did not affect neuronal activity. Inhibition of NMDA receptors (NMDAR) and the reduction of tau protein levels decreased neuronal excitability in both A152T/A152T and healthy control (WT/WT) excitatory neurons. In addition, the A152T mutation increased the interaction between tau and Fyn. These findings suggest that the tau-Fyn interaction plays a critical role in regulating neuronal activity under physiological conditions, while the A152T mutation enhances neuronal activity by strengthening this endogenous interaction between tau and Fyn. In addition, transcriptomic analysis revealed structural changes specific to excitatory neurons with the A152T mutation. Common changes observed in both A152T and P301S lines recapitulated a dedifferentiation phenotype, consistent with previous reports. Conclusions These data demonstrate that the A152T mutation in the MAPT gene increases neuronal excitability through the tau-Fyn-NMDAR pathway in excitatory neurons, shedding light on its role in AD pathogenesis.
Collapse
Affiliation(s)
- Maika Itsuno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hirokazu Tanabe
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Etsuko Sano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Chisato Oyama
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Koichi Saito
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Kazuhiko Nakata
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Setsu Endoh-Yamagami
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
2
|
Islam A, Shaukat Z, Hussain R, Ricos MG, Dibbens LM, Gregory SL. Aneuploidy is Linked to Neurological Phenotypes Through Oxidative Stress. J Mol Neurosci 2024; 74:50. [PMID: 38693434 PMCID: PMC11062972 DOI: 10.1007/s12031-024-02227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
Aneuploidy, having an aberrant genome, is gaining increasing attention in neurodegenerative diseases. It gives rise to proteotoxic stress as well as a stereotypical oxidative shift which makes these cells sensitive to internal and environmental stresses. A growing body of research from numerous laboratories suggests that many neurodegenerative disorders, especially Alzheimer's disease and frontotemporal dementia, are characterised by neuronal aneuploidy and the ensuing apoptosis, which may contribute to neuronal loss. Using Drosophila as a model, we investigated the effect of induced aneuploidy in GABAergic neurons. We found an increased proportion of aneuploidy due to Mad2 depletion in the third-instar larval brain and increased cell death. Depletion of Mad2 in GABAergic neurons also gave a defective climbing and seizure phenotype. Feeding animals an antioxidant rescued the climbing and seizure phenotype. These findings suggest that increased aneuploidy leads to higher oxidative stress in GABAergic neurons which causes cell death, climbing defects, and seizure phenotype. Antioxidant feeding represents a potential therapy to reduce the aneuploidy-driven neurological phenotype.
Collapse
Affiliation(s)
- Anowarul Islam
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Zeeshan Shaukat
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Rashid Hussain
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Michael G Ricos
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Leanne M Dibbens
- Epilepsy Research Group, Australian Centre for Precision Health, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Stephen L Gregory
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, 5042, Australia.
| |
Collapse
|
3
|
González-Cota AL, Martínez-Flores D, Rosendo-Pineda MJ, Vaca L. NMDA receptor-mediated Ca 2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer. Cell Calcium 2024; 119:102856. [PMID: 38408411 DOI: 10.1016/j.ceca.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.
Collapse
Affiliation(s)
- Ana L González-Cota
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Daniel Martínez-Flores
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
4
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
5
|
Ali M, Wani SUD, Dey T, Sridhar SB, Qadrie ZL. A common molecular and cellular pathway in developing Alzheimer and cancer. Biochem Biophys Rep 2024; 37:101625. [PMID: 38225990 PMCID: PMC10788207 DOI: 10.1016/j.bbrep.2023.101625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024] Open
Abstract
Globally cancer and Alzheimer's disease (AD) are two major diseases and still, there is no clearly defined molecular mechanism. There is an opposite relation between cancer and AD which are the proportion of emerging cancer was importantly slower in AD patients, whereas slow emerging AD in patients with cancer. In cancer, regulation of cell mechanisms is interrupted by an increase in cell survival and proliferation, while on the contrary, AD is related to augmented neuronal death, that may be either produced by or associated with amyloid-β (Aβ) and tau deposition. Stated that the probability that disruption of mechanisms takes part in the regulation of cell survival/death and might be implicated in both diseases. The mechanism of actions such as DNA-methylation, genetic polymorphisms, or another mechanism of actions that induce alteration in the action of drugs with significant roles in resolving the finding to repair and live or die might take part in the pathogenesis of these two ailments. The functions of miRNA, p53, Pin1, the Wnt signaling pathway, PI3 KINASE/Akt/mTOR signaling pathway GRK2 signaling pathway, and the pathophysiological role of oxidative stress are presented in this review as potential candidates which hypothetically describe inverse relations between cancer and AD. Innovative materials almost mutual mechanisms in the aetiology of cancer and AD advocates novel treatment approaches. Among these treatment strategies, the most promising use treatment such as tyrosine kinase inhibitor, nilotinib, protein kinase C, and bexarotene.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacology, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G Nagar, Nagamagala, Bellur, Karnataka, 571418, India
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Division of Pharmaceutics, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Sathvik B. Sridhar
- Department of Clinical Pharmacy and Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, PO Box 11172, United Arab Emirates
| | | |
Collapse
|
6
|
Camblor-Perujo S, Ozer Yildiz E, Küpper H, Overhoff M, Rastogi S, Bazzi H, Kononenko NL. The AP-2 complex interacts with γ-TuRC and regulates the proliferative capacity of neural progenitors. Life Sci Alliance 2024; 7:e202302029. [PMID: 38086550 PMCID: PMC10716017 DOI: 10.26508/lsa.202302029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Centrosomes are organelles that nucleate microtubules via the activity of gamma-tubulin ring complexes (γ-TuRC). In the developing brain, centrosome integrity is central to the progression of the neural progenitor cell cycle, and its loss leads to microcephaly. We show that NPCs maintain centrosome integrity via the endocytic adaptor protein complex-2 (AP-2). NPCs lacking AP-2 exhibit defects in centrosome formation and mitotic progression, accompanied by DNA damage and accumulation of p53. This function of AP-2 in regulating the proliferative capacity of NPCs is independent of its role in clathrin-mediated endocytosis and is coupled to its association with the GCP2, GCP3, and GCP4 components of γ-TuRC. We find that AP-2 maintains γ-TuRC organization and regulates centrosome function at the level of MT nucleation. Taken together, our data reveal a novel, noncanonical function of AP-2 in regulating the proliferative capacity of NPCs and open new avenues for the identification of novel therapeutic strategies for the treatment of neurodevelopmental and neurodegenerative disorders with AP-2 complex dysfunction.
Collapse
Affiliation(s)
| | - Ebru Ozer Yildiz
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Hanna Küpper
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Melina Overhoff
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Saumya Rastogi
- CECAD Excellence Center, University of Cologne, Cologne, Germany
| | - Hisham Bazzi
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- CECAD Excellence Center, University of Cologne, Cologne, Germany
- Center for Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Genetics, Natural Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Frost B. Alzheimer's disease and related tauopathies: disorders of disrupted neuronal identity. Trends Neurosci 2023; 46:797-813. [PMID: 37591720 PMCID: PMC10528597 DOI: 10.1016/j.tins.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Postmitotic neurons require persistently active controls to maintain terminal differentiation. Unlike dividing cells, aberrant cell cycle activation in mature neurons causes apoptosis rather than transformation. In Alzheimer's disease (AD) and related tauopathies, evidence suggests that pathogenic forms of tau drive neurodegeneration via neuronal cell cycle re-entry. Multiple interconnected mechanisms linking tau to cell cycle activation have been identified, including, but not limited to, tau-induced overstabilization of the actin cytoskeleton, consequent changes to nuclear architecture, and disruption of heterochromatin-mediated gene silencing. Cancer- and development-associated pathways are upregulated in human and cellular models of tauopathy, and many tau-induced cellular phenotypes are also present in various cancers and progenitor/stem cells. In this review, I delve into mechanistic parallels between tauopathies, cancer, and development, and highlight the role of tau in cancer and in the developing brain. Based on these studies, I put forth a model by which pathogenic forms of tau disrupt the program that maintains terminal neuronal differentiation, driving cell cycle re-entry and consequent neuronal death. This framework presents tauopathies as conditions involving the profound toxic disruption of neuronal identity.
Collapse
Affiliation(s)
- Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
8
|
Balusu S, Horré K, Thrupp N, Craessaerts K, Snellinx A, Serneels L, T’Syen D, Chrysidou I, Arranz AM, Sierksma A, Simrén J, Karikari TK, Zetterberg H, Chen WT, Thal DR, Salta E, Fiers M, De Strooper B. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer's disease. Science 2023; 381:1176-1182. [PMID: 37708272 PMCID: PMC7615236 DOI: 10.1126/science.abp9556] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Neuronal cell loss is a defining feature of Alzheimer's disease (AD), but the underlying mechanisms remain unclear. We xenografted human or mouse neurons into the brain of a mouse model of AD. Only human neurons displayed tangles, Gallyas silver staining, granulovacuolar neurodegeneration (GVD), phosphorylated tau blood biomarkers, and considerable neuronal cell loss. The long noncoding RNA MEG3 was strongly up-regulated in human neurons. This neuron-specific long noncoding RNA is also up-regulated in AD patients. MEG3 expression alone was sufficient to induce necroptosis in human neurons in vitro. Down-regulation of MEG3 and inhibition of necroptosis using pharmacological or genetic manipulation of receptor-interacting protein kinase 1 (RIPK1), RIPK3, or mixed lineage kinase domain-like protein (MLKL) rescued neuronal cell loss in xenografted human neurons. This model suggests potential therapeutic approaches for AD and reveals a human-specific vulnerability to AD.
Collapse
Affiliation(s)
- Sriram Balusu
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Katrien Horré
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Katleen Craessaerts
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - An Snellinx
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Lutgarde Serneels
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Dries T’Syen
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Iordana Chrysidou
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Amaia M. Arranz
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain
- Ikerbasque Basque Foundation for Science, 48009 Bilbao, Spain
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Joel Simrén
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Möndal, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Möndal, Sweden
| | - Thomas K. Karikari
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Möndal, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Möndal, Sweden
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Möndal, Sweden
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, 431 80 Möndal, Sweden
- Department of Neurodegenerative Disease, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Wei-Ting Chen
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Department of Pathology, University Hospital Leuven, 3000 Leuven, Belgium
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, 1105BA Amsterdam, Netherlands
| | - Mark Fiers
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain and Disease Research, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| |
Collapse
|
9
|
Aughey GN. Maintenance of neuronal fate and transcriptional identity. Biol Open 2023; 12:bio059953. [PMID: 37272626 PMCID: PMC10259840 DOI: 10.1242/bio.059953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
The processes that drive naive multipotent stem cells towards fully differentiated fates are increasingly well understood. However, once differentiated, the mechanisms and molecular factors involved in maintaining differentiated states and associated transcriptomes are less well studied. Neurons are a post-mitotic cell-type with highly specialised functions that largely lack the capacity for renewal. Therefore, neuronal cell identities and the transcriptional states that underpin them are locked into place by active mechanisms that prevent lineage reversion/dedifferentiation and repress cell cycling. Furthermore, individual neurons may be very long-lived, so these mechanisms must be sufficient to ensure the fidelity of neuronal transcriptomes over long time periods. This Review aims to provide an overview of recent progress in understanding how neuronal cell fate and associated gene expression are maintained and the transcriptional regulators that are involved. Maintenance of neuronal fate and subtype specification are discussed, as well as the activating and repressive mechanisms involved. The relevance of these processes to disease states, such as brain cancers and neurodegeneration is outlined. Finally, outstanding questions and hypotheses in this field are proposed.
Collapse
Affiliation(s)
- Gabriel N. Aughey
- Queen Square Institute of Neurology, Department of Clinical and Experimental Epilepsy, University College London, London WC1N 3BG, UK
| |
Collapse
|
10
|
Whitfield JF, Rennie K, Chakravarthy B. Alzheimer's Disease and Its Possible Evolutionary Origin: Hypothesis. Cells 2023; 12:1618. [PMID: 37371088 PMCID: PMC10297544 DOI: 10.3390/cells12121618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The enormous, 2-3-million-year evolutionary expansion of hominin neocortices to the current enormity enabled humans to take over the planet. However, there appears to have been a glitch, and it occurred without a compensatory expansion of the entorhinal cortical (EC) gateway to the hippocampal memory-encoding system needed to manage the processing of the increasing volume of neocortical data converging on it. The resulting age-dependent connectopathic glitch was unnoticed by the early short-lived populations. It has now surfaced as Alzheimer's disease (AD) in today's long-lived populations. With advancing age, processing of the converging neocortical data by the neurons of the relatively small lateral entorhinal cortex (LEC) inflicts persistent strain and high energy costs on these cells. This may result in their hyper-release of harmless Aβ1-42 monomers into the interstitial fluid, where they seed the formation of toxic amyloid-β oligomers (AβOs) that initiate AD. At the core of connectopathic AD are the postsynaptic cellular prion protein (PrPC). Electrostatic binding of the negatively charged AβOs to the positively charged N-terminus of PrPC induces hyperphosphorylation of tau that destroys synapses. The spread of these accumulating AβOs from ground zero is supported by Aβ's own production mediated by target cells' Ca2+-sensing receptors (CaSRs). These data suggest that an early administration of a strongly positively charged, AβOs-interacting peptide or protein, plus an inhibitor of CaSR, might be an effective AD-arresting therapeutic combination.
Collapse
Affiliation(s)
- James F. Whitfield
- Human Health Therapeutics, National Research Council, Ottawa, ON K1A 0R6, Canada
| | | | | |
Collapse
|
11
|
Denechaud M, Geurs S, Comptdaer T, Bégard S, Garcia-Núñez A, Pechereau LA, Bouillet T, Vermeiren Y, De Deyn PP, Perbet R, Deramecourt V, Maurage CA, Vanderhaegen M, Vanuytven S, Lefebvre B, Bogaert E, Déglon N, Voet T, Colin M, Buée L, Dermaut B, Galas MC. Tau promotes oxidative stress-associated cycling neurons in S phase as a pro-survival mechanism: Possible implication for Alzheimer's disease. Prog Neurobiol 2023; 223:102386. [PMID: 36481386 DOI: 10.1016/j.pneurobio.2022.102386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Multiple lines of evidence have linked oxidative stress, tau pathology and neuronal cell cycle re-activation to Alzheimer's disease (AD). While a prevailing idea is that oxidative stress-induced neuronal cell cycle reactivation acts as an upstream trigger for pathological tau phosphorylation, others have identified tau as an inducer of cell cycle abnormalities in both mitotic and postmitotic conditions. In addition, nuclear hypophosphorylated tau has been identified as a key player in the DNA damage response to oxidative stress. Whether and to what extent these observations are causally linked remains unclear. Using immunofluorescence, fluorescence-activated nucleus sorting and single-nucleus sequencing, we report an oxidative stress-associated accumulation of nuclear hypophosphorylated tau in a subpopulation of cycling neurons confined in S phase in AD brains, near amyloid plaques. Tau downregulation in murine neurons revealed an essential role for tau to promote cell cycle progression to S phase and prevent apoptosis in response to oxidative stress. Our results suggest that tau holds oxidative stress-associated cycling neurons in S phase to escape cell death. Together, this study proposes a tau-dependent protective effect of neuronal cell cycle reactivation in AD brains and challenges the current view that the neuronal cell cycle is an early mediator of tau pathology.
Collapse
Affiliation(s)
- Marine Denechaud
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Sarah Geurs
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium; Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Thomas Comptdaer
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Séverine Bégard
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Alejandro Garcia-Núñez
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Louis-Adrien Pechereau
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Thomas Bouillet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Yannick Vermeiren
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium.
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, and Biobank, Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, BE-2610 Antwerpen, Belgium; Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, eindendreef 1, 2020 Antwerpen, Belgium.
| | - Romain Perbet
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Vincent Deramecourt
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Claude-Alain Maurage
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of Pathological Anatomy, University of Lille, CHU Lille, Lille, France.
| | - Michiel Vanderhaegen
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium.
| | - Bruno Lefebvre
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Elke Bogaert
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne, Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, 1011 Lausanne, Switzerland.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven (KU Leuven), 3000 Leuven, Belgium; KU Leuven, Institute for Single Cell Omics (LISCO), KU Leuven, 3000 Leuven, Belgium.
| | - Morvane Colin
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium; Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium.
| | - Marie-Christine Galas
- University of Lille, Inserm, CHU Lille, CNRS, LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France.
| |
Collapse
|
12
|
Beckmann A, Ramirez P, Gamez M, Gonzalez E, De Mange J, Bieniek KF, Ray WJ, Frost B. Moesin is an effector of tau-induced actin overstabilization, cell cycle activation, and neurotoxicity in Alzheimer's disease. iScience 2023; 26:106152. [PMID: 36879821 PMCID: PMC9984563 DOI: 10.1016/j.isci.2023.106152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/01/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
In Alzheimer's disease, neurons acquire phenotypes that are also present in various cancers, including aberrant activation of the cell cycle. Unlike cancer, cell cycle activation in post-mitotic neurons is sufficient to induce cell death. Multiple lines of evidence suggest that abortive cell cycle activation is a consequence of pathogenic forms of tau, a protein that drives neurodegeneration in Alzheimer's disease and related "tauopathies." Here we combine network analyses of human Alzheimer's disease and mouse models of Alzheimer's disease and primary tauopathy with studies in Drosophila to discover that pathogenic forms of tau drive cell cycle activation by disrupting a cellular program involved in cancer and the epithelial-mesenchymal transition (EMT). Moesin, an EMT driver, is elevated in cells harboring disease-associated phosphotau, over-stabilized actin, and ectopic cell cycle activation. We further find that genetic manipulation of Moesin mediates tau-induced neurodegeneration. Taken together, our study identifies novel parallels between tauopathy and cancer.
Collapse
Affiliation(s)
- Adrian Beckmann
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Paulino Ramirez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Maria Gamez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Elias Gonzalez
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jasmine De Mange
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - Kevin F. Bieniek
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bess Frost
- Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, San Antonio, TX, USA
- University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
13
|
Muotri AR. Interchromosomal translocation in neural progenitor cells exposed to L1 retrotransposition. Genet Mol Biol 2023; 46:e20220268. [PMID: 36734369 PMCID: PMC9936793 DOI: 10.1590/1678-4685-gmb-2022-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/20/2022] [Indexed: 02/04/2023] Open
Abstract
LINE-1 (L1) elements are a class of transposons, comprising approximately 19% and 21% of the mouse and human genomes, respectively. L1 retrotransposons can reverse transcribe their own RNA sequence into a de novo DNA copy integrated into a new genomic location. This activity, known as retrotransposition, may induce genomic alterations, such as insertions and deletions. Interestingly, L1s can retrotranspose and generate more de novo L1 copies in brains than in other somatic tissues. Here, we describe for the first time interchromosomal translocation triggered by ectopic L1 retrotransposition in neural progenitor cells. Such an observation adds to the studies in neurological and psychiatric diseases that exhibited variation in L1 activity between diseased brains compared with controls, suggesting that L1 activity could be detrimental when de-regulated.
Collapse
Affiliation(s)
- Alysson R. Muotri
- University of California San Diego, Department of Pediatrics, La Jolla, CA, USA.,University of California San Diego, Department of Cellular & Molecular Medicine, La Jolla, CA , USA.,University of California San Diego, Center for Academic Research and Training in Anthropogeny, Kavli Institute for Brain and Mind, Archealization Center, La Jolla, CA , USA.
| |
Collapse
|
14
|
Salta E, Lazarov O, Fitzsimons CP, Tanzi R, Lucassen PJ, Choi SH. Adult hippocampal neurogenesis in Alzheimer's disease: A roadmap to clinical relevance. Cell Stem Cell 2023; 30:120-136. [PMID: 36736288 PMCID: PMC10082636 DOI: 10.1016/j.stem.2023.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Adult hippocampal neurogenesis (AHN) drops sharply during early stages of Alzheimer's disease (AD), via unknown mechanisms, and correlates with cognitive status in AD patients. Understanding AHN regulation in AD could provide a framework for innovative pharmacological interventions. We here combine molecular, behavioral, and clinical data and critically discuss the multicellular complexity of the AHN niche in relation to AD pathophysiology. We further present a roadmap toward a better understanding of the role of AHN in AD by probing the promises and caveats of the latest technological advancements in the field and addressing the conceptual and methodological challenges ahead.
Collapse
Affiliation(s)
- Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, 808 S Wood St., Chicago, IL 60612, USA
| | - Carlos P Fitzsimons
- Brain Plasticity group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rudolph Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, McCance Center for Brain Health, 114 16th Street, Boston, MA 02129, USA.
| | - Paul J Lucassen
- Brain Plasticity group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands; Center for Urban Mental Health, University of Amsterdam, Kruislaan 404, 1098 SM, Amsterdam, The Netherlands.
| | - Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, McCance Center for Brain Health, 114 16th Street, Boston, MA 02129, USA.
| |
Collapse
|
15
|
Omais S, El Atie YE, Ghanem N. Rb deficiency, neuronal survival and neurodegeneration: In search of the perfect mouse model. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100074. [PMID: 36699152 PMCID: PMC9869410 DOI: 10.1016/j.crneur.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/26/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival. There is indeed evidence of age-specific, cell type-specific and region-specific effects following Rb KO in the embryonic and the adult mouse brain. In terms of modeling neurodegenerative processes in human diseases, we discuss cell cycle re-entry (CCE) as a candidate mechanism underlying the increased vulnerability of Rb-deficient neurons to cell death. Notably, mouse models may limit the extent to which CCE due to Rb inactivation can mimic the pathological course of these disorders, such as Alzheimer's disease. These remarks ought to be considered in future research when studying the consequences of Rb inactivation on neuronal generation and survival in rodents and their corresponding clinical significance in humans.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Lebanon
| | - Yara E. El Atie
- Department of Biology, American University of Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Lebanon
| |
Collapse
|
16
|
Ramón-Landreau M, Sánchez-Puelles C, López-Sánchez N, Lozano-Ureña A, Llabrés-Mas AM, Frade JM. E2F4DN Transgenic Mice: A Tool for the Evaluation of E2F4 as a Therapeutic Target in Neuropathology and Brain Aging. Int J Mol Sci 2022; 23:ijms232012093. [PMID: 36292945 PMCID: PMC9603043 DOI: 10.3390/ijms232012093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 12/03/2022] Open
Abstract
E2F4 was initially described as a transcription factor with a key function in the regulation of cell quiescence. Nevertheless, a number of recent studies have established that E2F4 can also play a relevant role in cell and tissue homeostasis, as well as tissue regeneration. For these non-canonical functions, E2F4 can also act in the cytoplasm, where it is able to interact with many homeostatic and synaptic regulators. Since E2F4 is expressed in the nervous system, it may fulfill a crucial role in brain function and homeostasis, being a promising multifactorial target for neurodegenerative diseases and brain aging. The regulation of E2F4 is complex, as it can be chemically modified through acetylation, from which we present evidence in the brain, as well as methylation, and phosphorylation. The phosphorylation of E2F4 within a conserved threonine motif induces cell cycle re-entry in neurons, while a dominant negative form of E2F4 (E2F4DN), in which the conserved threonines have been substituted by alanines, has been shown to act as a multifactorial therapeutic agent for Alzheimer’s disease (AD). We generated transgenic mice neuronally expressing E2F4DN. We have recently shown using this mouse strain that expression of E2F4DN in 5xFAD mice, a known murine model of AD, improved cognitive function, reduced neuronal tetraploidization, and induced a transcriptional program consistent with modulation of amyloid-β (Aβ) peptide proteostasis and brain homeostasis recovery. 5xFAD/E2F4DN mice also showed reduced microgliosis and astrogliosis in both the cerebral cortex and hippocampus at 3-6 months of age. Here, we analyzed the immune response in 1 year-old 5xFAD/E2F4DN mice, concluding that reduced microgliosis and astrogliosis is maintained at this late stage. In addition, the expression of E2F4DN also reduced age-associated microgliosis in wild-type mice, thus stressing its role as a brain homeostatic agent. We conclude that E2F4DN transgenic mice represent a promising tool for the evaluation of E2F4 as a therapeutic target in neuropathology and brain aging.
Collapse
Affiliation(s)
- Morgan Ramón-Landreau
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Cristina Sánchez-Puelles
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Anna Lozano-Ureña
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - Aina M. Llabrés-Mas
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
| | - José M. Frade
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas, 28002 Madrid, Spain
- Cajal International Neuroscience Center, Consejo Superior de Investigaciones Científicas, UAH Science and Technology Campus, Avenida León 1, 28805 Alcalá de Henares, Spain
- Correspondence: ; Tel.: +34-91-585-4740
| |
Collapse
|
17
|
Traxler L, Herdy JR, Stefanoni D, Eichhorner S, Pelucchi S, Szücs A, Santagostino A, Kim Y, Agarwal RK, Schlachetzki JCM, Glass CK, Lagerwall J, Galasko D, Gage FH, D'Alessandro A, Mertens J. Warburg-like metabolic transformation underlies neuronal degeneration in sporadic Alzheimer's disease. Cell Metab 2022; 34:1248-1263.e6. [PMID: 35987203 PMCID: PMC9458870 DOI: 10.1016/j.cmet.2022.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 12/28/2022]
Abstract
The drivers of sporadic Alzheimer's disease (AD) remain incompletely understood. Utilizing directly converted induced neurons (iNs) from AD-patient-derived fibroblasts, we identified a metabolic switch to aerobic glycolysis in AD iNs. Pathological isoform switching of the glycolytic enzyme pyruvate kinase M (PKM) toward the cancer-associated PKM2 isoform conferred metabolic and transcriptional changes in AD iNs. These alterations occurred via PKM2's lack of metabolic activity and via nuclear translocation and association with STAT3 and HIF1α to promote neuronal fate loss and vulnerability. Chemical modulation of PKM2 prevented nuclear translocation, restored a mature neuronal metabolism, reversed AD-specific gene expression changes, and re-activated neuronal resilience against cell death.
Collapse
Affiliation(s)
- Larissa Traxler
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria.
| | - Joseph R Herdy
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophie Eichhorner
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Silvia Pelucchi
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Attila Szücs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest 1117, Hungary
| | - Alice Santagostino
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Yongsung Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109-5624, USA
| | - Ravi K Agarwal
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jessica Lagerwall
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jerome Mertens
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University, Innsbruck 6020, Austria; Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Goel P, Chakrabarti S, Goel K, Bhutani K, Chopra T, Bali S. Neuronal cell death mechanisms in Alzheimer's disease: An insight. Front Mol Neurosci 2022; 15:937133. [PMID: 36090249 PMCID: PMC9454331 DOI: 10.3389/fnmol.2022.937133] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Regulated cell death (RCD) is an ordered and tightly orchestrated set of changes/signaling events in both gene expression and protein activity and is responsible for normal development as well as maintenance of tissue homeostasis. Aberrant activation of this pathway results in cell death by various mechanisms including apoptosis, necroptosis, pyroptosis, ferroptosis, and autophagy-dependent cell death. Such pathological changes in neurons alone or in combination have been observed in the pathogenesis of various neurodegenerative diseases including Alzheimer's disease (AD). Pathological hallmarks of AD focus primarily on the accumulation of two main protein markers: amyloid β peptides and abnormally phosphorylated tau proteins. These protein aggregates result in the formation of A-β plaques and neuro-fibrillary tangles (NFTs) and induce neuroinflammation and neurodegeneration over years to decades leading to a multitude of cognitive and behavioral deficits. Autopsy findings of AD reveal massive neuronal death manifested in the form of cortical volume shrinkage, reduction in sizes of gyri to up to 50% and an increase in the sizes of sulci. Multiple forms of cell death have been recorded in neurons from different studies conducted so far. However, understanding the mechanism/s of neuronal cell death in AD patients remains a mystery as the trigger that results in aberrant activation of RCD is unknown and because of the limited availability of dying neurons. This review attempts to elucidate the process of Regulated cell death, how it gets unregulated in response to different intra and extracellular stressors, various forms of unregulated cell death, their interplay and their role in pathogenesis of Alzheimer's Disease in both human and experimental models of AD. Further we plan to explore the correlation of both amyloid-beta and Tau with neuronal loss as seen in AD.
Collapse
Affiliation(s)
- Parul Goel
- Department of Biochemistry, Shri Atal Bihari Vajpayee Government Medical College Chhainsa, Faridabad, India
| | - Sasanka Chakrabarti
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Kapil Goel
- Department of Community Medicine and School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karanpreet Bhutani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Tanya Chopra
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| | - Sharadendu Bali
- Department of Surgery, Maharishi Markandeshwar Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Ambala, India
| |
Collapse
|
19
|
Aleksandrova MA, Sukhinich KK. Astrocytes of the Brain: Retinue Plays the King. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Tiwari D, Mittal N, Jha HC. Unraveling the links between neurodegeneration and Epstein-Barr virus-mediated cell cycle dysregulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100046. [PMID: 36685766 PMCID: PMC9846474 DOI: 10.1016/j.crneur.2022.100046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/25/2023] Open
Abstract
The Epstein-Barr virus is a well-known cell cycle modulator. To establish successful infection in the host, EBV alters the cell cycle at multiple steps via antigens such as EBNAs, LMPs, and certain other EBV-encoded transcripts. Interestingly, several recent studies have indicated the possibility of EBV's neurotrophic potential. However, the effects and outcomes of EBV infection in the CNS are under-explored. Additionally, more and more epidemiological evidence implicates the cell-cycle dysregulation in neurodegeneration. Numerous hypotheses which describe the triggers that force post-mitotic neurons to re-enter the cell cycle are prevalent. Apart from the known genetic and epigenetic factors responsible, several reports have shown the association of microbial infections with neurodegenerative pathology. Although, studies implicating the herpesvirus family members in neurodegeneration exist, the involvement of Epstein-Barr virus (EBV), in particular, is under-evaluated. Interestingly, a few clinical studies have reported patients of AD or PD to be seropositive for EBV. Based on the findings mentioned above, in this review, we propose that EBV infection in neurons could drive it towards neurodegeneration through dysregulation of cell-cycle events and induction of apoptosis.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland,Corresponding author.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India,Corresponding author.
| |
Collapse
|
21
|
Osorio C, Sfera A, Anton JJ, Thomas KG, Andronescu CV, Li E, Yahia RW, Avalos AG, Kozlakidis Z. Virus-Induced Membrane Fusion in Neurodegenerative Disorders. Front Cell Infect Microbiol 2022; 12:845580. [PMID: 35531328 PMCID: PMC9070112 DOI: 10.3389/fcimb.2022.845580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
A growing body of epidemiological and research data has associated neurotropic viruses with accelerated brain aging and increased risk of neurodegenerative disorders. Many viruses replicate optimally in senescent cells, as they offer a hospitable microenvironment with persistently elevated cytosolic calcium, abundant intracellular iron, and low interferon type I. As cell-cell fusion is a major driver of cellular senescence, many viruses have developed the ability to promote this phenotype by forming syncytia. Cell-cell fusion is associated with immunosuppression mediated by phosphatidylserine externalization that enable viruses to evade host defenses. In hosts, virus-induced immune dysfunction and premature cellular senescence may predispose to neurodegenerative disorders. This concept is supported by novel studies that found postinfectious cognitive dysfunction in several viral illnesses, including human immunodeficiency virus-1, herpes simplex virus-1, and SARS-CoV-2. Virus-induced pathological syncytia may provide a unified framework for conceptualizing neuronal cell cycle reentry, aneuploidy, somatic mosaicism, viral spreading of pathological Tau and elimination of viable synapses and neurons by neurotoxic astrocytes and microglia. In this narrative review, we take a closer look at cell-cell fusion and vesicular merger in the pathogenesis of neurodegenerative disorders. We present a "decentralized" information processing model that conceptualizes neurodegeneration as a systemic illness, triggered by cytoskeletal pathology. We also discuss strategies for reversing cell-cell fusion, including, TMEM16F inhibitors, calcium channel blockers, senolytics, and tubulin stabilizing agents. Finally, going beyond neurodegeneration, we examine the potential benefit of harnessing fusion as a therapeutic strategy in regenerative medicine.
Collapse
Affiliation(s)
- Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Jonathan J. Anton
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Karina G. Thomas
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Christina V. Andronescu
- Medical Anthropology – Department of Anthropology, Stanford University, Stanford, CA, United States
| | - Erica Li
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Rayan W. Yahia
- School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Andrea García Avalos
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina Campus, Ciudad de Mexico, Mexico
| | - Zisis Kozlakidis
- International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
22
|
Staykov H, Lazarova M, Hassanova Y, Stefanova M, Tancheva L, Nikolov R. Neuromodulatory Mechanisms of a Memory Loss-Preventive Effect of Alpha-Lipoic Acid in an Experimental Rat Model of Dementia. J Mol Neurosci 2022; 72:1018-1025. [PMID: 35174445 DOI: 10.1007/s12031-022-01979-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
This study evaluates some of the neuromodulatory mechanisms of the memory loss preventive effect of alpha-lipoic acid (ALA) in a scopolamine (Sco)-induced rat model of Alzheimer's disease (AD) type dementia. Our results confirmed that Sco administration induces significant memory impairment, worsens exploratory behaviour and habituation, increases acetylcholinesterase (AChE) activity, and induces pathological monoamine content changes in the prefrontal cortex and hippocampus. ALA administration largely prevented Sco-induced memory impairment. It also improved exploratory behaviour and preserved habituation, and it decreased AChE activity, reversing it to control group levels, and corrected aberrant monoamine levels in the prefrontal cortex and hippocampus. According to the data available, this is the first time that ALA-induced changes in AChE and monoamine levels in the prefrontal cortex and hippocampus (brain structures related to learning and memory) have been demonstrated in a Sco-induced rat model of AD type dementia.
Collapse
Affiliation(s)
- Hristian Staykov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria.
| | - Yozljam Hassanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev St, 1113, Sofia, Bulgaria
| | - Rumen Nikolov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, 2 Zdrave St, 1431, Sofia, Bulgaria
| |
Collapse
|
23
|
Down-regulation of cyclin D2 in amyloid β toxicity, inflammation, and Alzheimer's disease. PLoS One 2021; 16:e0259740. [PMID: 34793515 PMCID: PMC8601534 DOI: 10.1371/journal.pone.0259740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/25/2021] [Indexed: 11/19/2022] Open
Abstract
In the current study, we analyzed the effects of the systemic inflammatory response (SIR) and amyloid β (Aβ) peptide on the expression of genes encoding cyclins and cyclin-dependent kinase (Cdk) in: (i) PC12 cells overexpressing human beta amyloid precursor protein (βAPP), wild-type (APPwt-PC12), or carrying the Swedish mutantion (APPsw-PC12); (ii) the murine hippocampus during SIR; and (iii) Alzheimer’s disease (AD) brain. In APPwt-PC12 expression of cyclin D2 (cD2) was exclusively reduced, and in APPsw-PC12 cyclins cD2 and also cA1 were down-regulated, but cA2, cB1, cB2, and cE1 were up-regulated. In the SIR cD2, cB2, cE1 were found to be significantly down-regulated and cD3, Cdk5, and Cdk7 were significantly up-regulated. Cyclin cD2 was also found to be down-regulated in AD neocortex and hippocampus. Our novel data indicate that Aβ peptide and inflammation both significantly decreased the expression of cD2, suggesting that Aβ peptides may also contribute to downregulation of cD2 in AD brain.
Collapse
|
24
|
Gupta R, Jha A, Ambasta RK, Kumar P. Regulatory mechanism of cyclins and cyclin-dependent kinases in post-mitotic neuronal cell division. Life Sci 2021; 285:120006. [PMID: 34606852 DOI: 10.1016/j.lfs.2021.120006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases (NDDs) are the most common life-threatening disease of the central nervous system and it cause the progressive loss of neuronal cells. The exact mechanism of the disease's progression is not clear and thus line of treatment for NDDs is a baffling issue. During the progression of NDDs, oxidative stress and DNA damage play an important regulatory function, and ultimately induces neurodegeneration. Recently, aberrant cell cycle events have been demonstrated in the progression of different NDDs. However, the pertinent role of signaling mechanism, for instance, post-translational modifications, oxidative stress, DNA damage response pathway, JNK/p38 MAPK, MEK/ERK cascade, actively participated in the aberrant cell cycle reentry induced neuronal cell death. Mounting evidence has demonstrated that aberrant cell cycle re-entry is a major contributing factor in the pathogenesis of NDDs rather than a secondary phenomenon. In the brain of AD patients with mild cognitive impairment, post miotic cell division can be seen in the early stage of the disease. However, in the brain of PD patients, response to various neurotoxic signals, the cell cycle re-entry has been observed that causes neuronal apoptosis. On contrary, the contributing factors that leads to the induction of cell cycle events in mature neurons in HD and ALS brain pathology is remain unclear. Various pharmacological drugs have been developed to reduce the pathogenesis of NDDs, but they are still not helpful in eliminating the cause of these NDDs.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Ankita Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
25
|
Rapid initiation of cell cycle reentry processes protects neurons from amyloid-β toxicity. Proc Natl Acad Sci U S A 2021; 118:2011876118. [PMID: 33737393 DOI: 10.1073/pnas.2011876118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons are postmitotic cells. Reactivation of the cell cycle by neurons has been reported in Alzheimer's disease (AD) brains and models. This gave rise to the hypothesis that reentering the cell cycle renders neurons vulnerable and thus contributes to AD pathogenesis. Here, we use the fluorescent ubiquitination-based cell cycle indicator (FUCCI) technology to monitor the cell cycle in live neurons. We found transient, self-limited cell cycle reentry activity in naive neurons, suggesting that their postmitotic state is a dynamic process. Furthermore, we observed a diverse response to oligomeric amyloid-β (oAβ) challenge; neurons without cell cycle reentry activity would undergo cell death without activating the FUCCI reporter, while neurons undergoing cell cycle reentry activity at the time of the oAβ challenge could maintain and increase FUCCI reporter signal and evade cell death. Accordingly, we observed marked neuronal FUCCI positivity in the brains of human mutant Aβ precursor protein transgenic (APP23) mice together with increased neuronal expression of the endogenous cell cycle control protein geminin in the brains of 3-mo-old APP23 mice and human AD brains. Taken together, our data challenge the current view on cell cycle in neurons and AD, suggesting that pathways active during early cell cycle reentry in neurons protect from Aβ toxicity.
Collapse
|
26
|
Mertens J, Herdy JR, Traxler L, Schafer ST, Schlachetzki JCM, Böhnke L, Reid DA, Lee H, Zangwill D, Fernandes DP, Agarwal RK, Lucciola R, Zhou-Yang L, Karbacher L, Edenhofer F, Stern S, Horvath S, Paquola ACM, Glass CK, Yuan SH, Ku M, Szücs A, Goldstein LSB, Galasko D, Gage FH. Age-dependent instability of mature neuronal fate in induced neurons from Alzheimer's patients. Cell Stem Cell 2021; 28:1533-1548.e6. [PMID: 33910058 PMCID: PMC8423435 DOI: 10.1016/j.stem.2021.04.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/17/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Sporadic Alzheimer's disease (AD) exclusively affects elderly people. Using direct conversion of AD patient fibroblasts into induced neurons (iNs), we generated an age-equivalent neuronal model. AD patient-derived iNs exhibit strong neuronal transcriptome signatures characterized by downregulation of mature neuronal properties and upregulation of immature and progenitor-like signaling pathways. Mapping iNs to longitudinal neuronal differentiation trajectory data demonstrated that AD iNs reflect a hypo-mature neuronal identity characterized by markers of stress, cell cycle, and de-differentiation. Epigenetic landscape profiling revealed an underlying aberrant neuronal state that shares similarities with malignant transformation and age-dependent epigenetic erosion. To probe for the involvement of aging, we generated rejuvenated iPSC-derived neurons that showed no significant disease-related transcriptome signatures, a feature that is consistent with epigenetic clock and brain ontogenesis mapping, which indicate that fibroblast-derived iNs more closely reflect old adult brain stages. Our findings identify AD-related neuronal changes as age-dependent cellular programs that impair neuronal identity.
Collapse
Affiliation(s)
- Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria.
| | - Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria; Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Larissa Traxler
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lena Böhnke
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Dylan A Reid
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hyungjun Lee
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dina Zangwill
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Diana P Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ravi K Agarwal
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Raffaella Lucciola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lucia Zhou-Yang
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Lukas Karbacher
- Neural Aging Laboratory, Institute of Molecular Biology, CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cells & Regenerative Medicine, Institute of Molecular Biology, CMBI, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Tyrol, Austria
| | - Shani Stern
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Steve Horvath
- Department of Human Genetics, Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Apua C M Paquola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA; Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; University of Minnesota, Twin Cities, Department of Neurology, Minneapolis, MN, USA
| | - Manching Ku
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Attila Szücs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Lawrence S B Goldstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
27
|
Barros CS, Bossing T. Microtubule disruption upon CNS damage triggers mitotic entry via TNF signaling activation. Cell Rep 2021; 36:109325. [PMID: 34233183 DOI: 10.1016/j.celrep.2021.109325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/12/2020] [Accepted: 06/08/2021] [Indexed: 01/15/2023] Open
Abstract
Repair after traumatic injury often starts with mitotic activation around the lesion edges. Early midline cells in the Drosophila embryonic CNS can enter into division following the traumatic disruption of microtubules. We demonstrate that microtubule disruption activates non-canonical TNF signaling by phosphorylation of TGF-β activated kinase 1 (Tak1) and its target IkappaB kinase (Ik2), culminating in Dorsal/NfkappaB nuclear translocation and Jra/Jun expression. Tak1 and Ik2 are necessary for the damaged-induced divisions. Microtubule disruption caused by Tau accumulation is also reported in Alzheimer's disease (AD). Human Tau expression in Drosophila midline cells is sufficient to induce Tak1 phosphorylation, Dorsal and Jra/Jun expression, and entry into mitosis. Interestingly, activation of Tak1 and Tank binding kinase 1 (Tbk1), the human Ik2 ortholog, and NfkappaB upregulation are observed in AD brains.
Collapse
Affiliation(s)
- Claudia S Barros
- Peninsula Medical School, Faculty of Health, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, UK
| | - Torsten Bossing
- Peninsula Medical School, Faculty of Health, University of Plymouth, John Bull Building, 16 Research Way, Plymouth PL6 8BU, UK.
| |
Collapse
|
28
|
Yashin AI, Wu D, Arbeev K, Bagley O, Akushevich I, Duan M, Yashkin A, Ukraintseva S. Interplay between stress-related genes may influence Alzheimer's disease development: The results of genetic interaction analyses of human data. Mech Ageing Dev 2021; 196:111477. [PMID: 33798591 PMCID: PMC8173104 DOI: 10.1016/j.mad.2021.111477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023]
Abstract
Emerging evidence from experimental and clinical research suggests that stress-related genes may play key roles in AD development. The fact that genome-wide association studies were not able to detect a contribution of such genes to AD indicates the possibility that these genes may influence AD non-linearly, through interactions of their products. In this paper, we selected two stress-related genes (GCN2/EIF2AK4 and APP) based on recent findings from experimental studies which suggest that the interplay between these genes might influence AD in humans. To test this hypothesis, we evaluated the effects of interactions between SNPs in these two genes on AD occurrence, using the Health and Retirement Study data on white indidividuals. We found several interacting SNP-pairs whose associations with AD remained statistically significant after correction for multiple testing. These findings emphasize the importance of nonlinear mechanisms of polygenic AD regulation that cannot be detected in traditional association studies. To estimate collective effects of multiple interacting SNP-pairs on AD, we constructed a new composite index, called Interaction Polygenic Risk Score, and showed that its association with AD is highly statistically significant. These results open a new avenue in the analyses of mechanisms of complex multigenic AD regulation.
Collapse
Affiliation(s)
| | - Deqing Wu
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | | - Olivia Bagley
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Igor Akushevich
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Matt Duan
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Duke University SSRI, USA
| | | |
Collapse
|
29
|
Iourov IY, Vorsanova SG, Kurinnaia OS, Zelenova MA, Vasin KS, Yurov YB. Causes and Consequences of Genome Instability in Psychiatric and Neurodegenerative Diseases. Mol Biol 2021. [DOI: 10.1134/s0026893321010155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Wang ZT, Zhang C, Wang YJ, Dong Q, Tan L, Yu JT. Selective neuronal vulnerability in Alzheimer's disease. Ageing Res Rev 2020; 62:101114. [PMID: 32569730 DOI: 10.1016/j.arr.2020.101114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is defined by a deficiency in specific behavioural and/or cognitive domains, pointing to selective vulnerabilities of specific neurons from different brain regions. These vulnerabilities can be compared across neuron subgroups to identify the most vulnerable neuronal types, regions, and time points for further investigation. Thus, the relevant organizational frameworks for brain subgroups will hold great values for a clear understanding of the progression in AD. Presently, the neuronal vulnerability has yet urgently required to be elucidated as not yet been clearly defined. It is suggested that cell-autonomous and non-cell-autonomous mechanisms can affect the neuronal vulnerability to stressors, and in turn modulates AD progression. This review examines cell-autonomous and non-cell-autonomous mechanisms that contribute to the neuronal vulnerability. Collectively, the cell-autonomous mechanisms seem to be the primary drivers responsible for initiating specific stressor-related neuronal vulnerability with pathological changes in certain brain areas, which then utilize non-cell-autonomous mechanisms and result in subsequent progression of AD. In summary, this article has provided a new perspective on the preventative and therapeutic options for AD.
Collapse
Affiliation(s)
- Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129-2060, USA
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, College of Medicine and Pharmaceutics, Ocean University of China, Qingdao, China; Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
Joseph C, Mangani AS, Gupta V, Chitranshi N, Shen T, Dheer Y, Kb D, Mirzaei M, You Y, Graham SL, Gupta V. Cell Cycle Deficits in Neurodegenerative Disorders: Uncovering Molecular Mechanisms to Drive Innovative Therapeutic Development. Aging Dis 2020; 11:946-966. [PMID: 32765956 PMCID: PMC7390532 DOI: 10.14336/ad.2019.0923] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Cell cycle dysregulation has been implicated in the pathogenesis of neurodegenerative disorders. Specialised function obligates neuronal cells to subsist in a quiescent state of cell cycle once differentiated and therefore the circumstances and mechanisms underlying aberrant cell cycle activation in post-mitotic neurons in physiological and disease conditions remains an intriguing area of research. There is a strict requirement of concurrence to cell cycle regulation for neurons to ensure intracellular biochemical conformity as well as interrelationship with other cells within neural tissues. This review deliberates on various mechanisms underlying cell cycle regulation in neuronal cells and underscores potential implications of their non-compliance in neural pathology. Recent research suggests that successful duplication of genetic material without subsequent induction of mitosis induces inherent molecular flaws that eventually assert as apoptotic changes. The consequences of anomalous cell cycle activation and subsequent apoptosis are demonstrated by the increased presence of molecular stress response and apoptotic markers. This review delineates cell cycle events under normal physiological conditions and deficits amalgamated by alterations in protein levels and signalling pathways associated with cell-division are analysed. Cell cycle regulators essentially, cyclins, CDKs, cip/kip family of inhibitors, caspases, bax and p53 have been identified to be involved in impaired cell cycle regulation and associated with neural pathology. The pharmacological modulators of cell cycle that are shown to impart protection in various animal models of neurological deficits are summarised. Greater understanding of the molecular mechanisms that are indispensable to cell cycle regulation in neurons in health and disease conditions will facilitate targeted drug development for neuroprotection.
Collapse
Affiliation(s)
- Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | | | - Veer Gupta
- 2School of Medicine, Deakin University, Melbourne, VIC, Australia
| | - Nitin Chitranshi
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yogita Dheer
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Devaraj Kb
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- 3Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.,4Save Sight Institute, Sydney University, Sydney, NSW 2109, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
32
|
Ain Q, Schmeer C, Wengerodt D, Witte OW, Kretz A. Extrachromosomal Circular DNA: Current Knowledge and Implications for CNS Aging and Neurodegeneration. Int J Mol Sci 2020; 21:E2477. [PMID: 32252492 PMCID: PMC7177960 DOI: 10.3390/ijms21072477] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Still unresolved is the question of how a lifetime accumulation of somatic gene copy number alterations impact organ functionality and aging and age-related pathologies. Such an issue appears particularly relevant in the broadly post-mitotic central nervous system (CNS), where non-replicative neurons are restricted in DNA-repair choices and are prone to accumulate DNA damage, as they remain unreplaced over a lifetime. Both DNA injuries and consecutive DNA-repair strategies are processes that can evoke extrachromosomal circular DNA species, apparently from either part of the genome. Due to their capacity to amplify gene copies and related transcripts, the individual cellular load of extrachromosomal circular DNAs will contribute to a dynamic pool of additional coding and regulatory chromatin elements. Analogous to tumor tissues, where the mosaicism of circular DNAs plays a well-characterized role in oncogene plasticity and drug resistance, we suggest involvement of the "circulome" also in the CNS. Accordingly, we summarize current knowledge on the molecular biogenesis, homeostasis and gene regulatory impacts of circular extrachromosomal DNA and propose, in light of recent discoveries, a critical role in CNS aging and neurodegeneration. Future studies will elucidate the influence of individual extrachromosomal DNA species according to their sequence complexity and regional distribution or cell-type-specific abundance.
Collapse
Affiliation(s)
- Quratul Ain
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Christian Schmeer
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Diane Wengerodt
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
| | - Otto W. Witte
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| | - Alexandra Kretz
- Hans-Berger Department of Neurology, Jena University Hospital, 07747 Jena, Thuringia, Germany; (Q.A.); (C.S.); (D.W.); (O.W.W.)
- Jena Center for Healthy Ageing, Jena University Hospital, 07747 Jena, Thuringia, Germany
| |
Collapse
|
33
|
Meng L, He M, Xiong M, Zhang X, Nie S, Xiong J, Hu D, Zhang Z, Mao L, Zhang Z. 2',3'-Dideoxycytidine, a DNA Polymerase-β Inhibitor, Reverses Memory Deficits in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020; 67:515-525. [PMID: 30584144 DOI: 10.3233/jad-180798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The etiology and pathogenesis of Alzheimer's disease (AD) are not fully understood. Thus, there are no drugs available that can provide a cure for it. We and others found that DNA polymerase-β (DNA pol-β) is required for neuronal death in several neurodegenerative models. In the present study, we tested the effect of a DNA pol-β inhibitor 2',3'- Dideoxycytidine (DDC) in AD models both in vitro and in vivo. DDC protected primary neurons from amyloid-β (Aβ)-induced toxicity by inhibiting aberrant DNA replication mediated by DNA pol- β. Chronic oral administration of DDC alleviated Aβ deposition and memory deficits in the Tg2576 mouse model of AD. Moreover, DDC reversed synaptic loss in Tg2576 mice. These results suggest that DDC represents a novel therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingyang He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan Hu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Mao
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Nunes KM, Benzaquem DC, Carvalho NDM, Vianez TN, Fernandes ERDQGDSE, Fantin C. Investigation of chromosomal alterations in patients with Alzheimer's disease in the state of Amazonas, Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2020; 77:855-859. [PMID: 31939582 DOI: 10.1590/0004-282x20190163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) has as its main characteristic the deterioration of cerebral functions. Its etiology is still complex and undefined despite the progress made in understanding its neurological, infectious, biochemical, genetic and cytogenetic mechanisms. METHODS Considering this, the aim of this study was to investigate the presence of chromosomal alterations in the peripheral blood lymphocytes, and to verify if there was a high frequency of these alterations in patients diagnosed with AD at the University Hospital GetúLio Vargas Outpatient Clinic Araújo Lima in Manaus, Amazonas, Brazil. RESULTS Among the nine patients in the AD group, only one patient did not have metaphases with chromosomal alterations (2n = 46,XX), while eight patients with AD showed numerical chromosomal alterations, classified as X chromosome aneupLoidy (2n = 45,X) and double aneupLoidy (2n = 44,X,-X,-10; 2n = 44,X,-X,-13 and 2n = 44,X,-X,-21). CONCLUSION In the control group, no chromosomal changes were found in the karyotypes of these individuals. Therefore, the karyotypes of patients with AD undergo chromosomal alterations at different levels. These findings are being described for the first time in the population of Amazonas, and they highlight the importance of the inclusion of cytogenetic investigations in the routine management of patients with AD.
Collapse
Affiliation(s)
- Kledson Moraes Nunes
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| | - Denise Corrêa Benzaquem
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| | - Natalia Dayane Moura Carvalho
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| | - Talísia Nascimento Vianez
- Universidade Federal do Amazonas, Hospital Universitário Getúlio Vargas, Departamento de Neurologia, Manaus AM, Brasil
| | | | - Cleiton Fantin
- Universidade do Estado do Amazonas, Escola Superior de Ciências da Saúde, Laboratório de Citogenética, Manaus AM, Brasil
| |
Collapse
|
35
|
Nuñez-Borque E, González-Naranjo P, Bartolomé F, Alquézar C, Reinares-Sebastián A, Pérez C, Ceballos ML, Páez JA, Campillo NE, Martín-Requero Á. Targeting Cannabinoid Receptor Activation and BACE-1 Activity Counteracts TgAPP Mice Memory Impairment and Alzheimer's Disease Lymphoblast Alterations. Mol Neurobiol 2020; 57:1938-1951. [PMID: 31898159 DOI: 10.1007/s12035-019-01813-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD), the leading cause of dementia in the elderly, is a neurodegenerative disorder marked by progressive impairment of cognitive ability. Patients with AD display neuropathological lesions including senile plaques, neurofibrillary tangles, and neuronal loss. There are no disease-modifying drugs currently available. With the number of affected individuals increasing dramatically throughout the world, there is obvious urgent need for effective treatment strategy for AD. The multifactorial nature of AD encouraged the development of multifunctional compounds, able to interact with several putative targets. Here, we have evaluated the effects of two in-house designed cannabinoid receptors (CB) agonists showing inhibitory actions on β-secretase-1 (BACE-1) (NP137) and BACE-1/butyrylcholinesterase (BuChE) (NP148), on cellular models of AD, including immortalized lymphocytes from late-onset AD patients. Furthermore, the performance of TgAPP mice in a spatial navigation task was investigated following chronic administration of NP137 and NP148. We report here that NP137 and NP148 showed neuroprotective effects in amyloid-β-treated primary cortical neurons, and NP137 in particular rescued the cognitive deficit of TgAPP mice. The latter compound was able to blunt the abnormal cell response to serum addition or withdrawal of lymphoblasts derived from AD patients. It is suggested that NP137 could be a good drug candidate for future treatment of AD.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | | | - Fernando Bartolomé
- Neurodegenerative Disorders Group, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carolina Alquézar
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.,Department of Neurology, Memory and Aging Center, University of California, Box 1207, San Francisco, CA, 94158, USA
| | | | | | - Maria L Ceballos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Insituto Cajal (CSIC), Madrid, Spain
| | - Juan A Páez
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Nuria E Campillo
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Ángeles Martín-Requero
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
36
|
Mitochondrial Dysfunction and Alpha-Lipoic Acid: Beneficial or Harmful in Alzheimer's Disease? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8409329. [PMID: 31885820 PMCID: PMC6914903 DOI: 10.1155/2019/8409329] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/30/2019] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterised by impairments in the cognitive domains associated with orientation, recording, and memory. This pathology results from an abnormal deposition of the β-amyloid (Aβ) peptide and the intracellular accumulation of neurofibrillary tangles. Mitochondrial dysfunctions play an important role in the pathogenesis of AD, due to disturbances in the bioenergetic properties of cells. To date, the usual therapeutic drugs are limited because of the diversity of cellular routes in AD and the toxic potential of these agents. In this context, alpha-lipoic acid (α-LA) is a well-known fatty acid used as a supplement in several health conditions and diseases, such as periphery neuropathies and neurodegenerative disorders. It is produced in several cell types, eukaryotes, and prokaryotes, showing antioxidant and anti-inflammatory properties. α-LA acts as an enzymatic cofactor able to regulate metabolism, energy production, and mitochondrial biogenesis. In addition, the antioxidant capacity of α-LA is associated with two thiol groups that can be oxidised or reduced, prevent excess free radical formation, and act on improvement of mitochondrial performance. Moreover, α-LA has mechanisms of epigenetic regulation in genes related to the expression of various inflammatory mediators, such PGE2, COX-2, iNOS, TNF-α, IL-1β, and IL-6. Regarding the pharmacokinetic profile, α-LA has rapid uptake and low bioavailability and the metabolism is primarily hepatic. However, α-LA has low risk in prolonged use, although its therapeutic potential, interactions with other substances, and adverse reactions have not been well established in clinical trials with populations at higher risk for diseases of aging. Thus, this review aimed to describe the pharmacokinetic profile, bioavailability, therapeutic efficacy, safety, and effects of combined use with centrally acting drugs, as well as report in vitro and in vivo studies that demonstrate the mitochondrial mechanisms of α-LA involved in AD protection.
Collapse
|
37
|
Potter H, Chial HJ, Caneus J, Elos M, Elder N, Borysov S, Granic A. Chromosome Instability and Mosaic Aneuploidy in Neurodegenerative and Neurodevelopmental Disorders. Front Genet 2019; 10:1092. [PMID: 31788001 PMCID: PMC6855267 DOI: 10.3389/fgene.2019.01092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Evidence from multiple laboratories has accumulated to show that mosaic neuronal aneuploidy and consequent apoptosis characterizes and may underlie neuronal loss in many neurodegenerative diseases, particularly Alzheimer’s disease and frontotemporal dementia. Furthermore, several neurodevelopmental disorders, including Seckel syndrome, ataxia telangiectasia, Nijmegen breakage syndrome, Niemann–Pick type C, and Down syndrome, have been shown to also exhibit mosaic aneuploidy in neurons in the brain and in other cells throughout the body. Together, these results indicate that both neurodegenerative and neurodevelopmental disorders with apparently different pathogenic causes share a cell cycle defect that leads to mosaic aneuploidy in many cell types. When such mosaic aneuploidy arises in neurons in the brain, it promotes apoptosis and may at least partly underlie the cognitive deficits that characterize the neurological symptoms of these disorders. These findings have implications for both diagnosis and treatment/prevention.
Collapse
Affiliation(s)
- Huntington Potter
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Heidi J Chial
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Julbert Caneus
- NanoScience Technology Center, University of Central Florida, Orlando, FL, United States
| | - Mihret Elos
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Nina Elder
- Department of Neurology, Rocky Mountain Alzheimer's Disease Center, University of Colorado, Aurora, CO, United States.,Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, United States
| | - Sergiy Borysov
- Department of Math and Science, Saint Leo University, Saint Leo, FL, United States
| | - Antoneta Granic
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom.,Newcastle University Institute for Ageing, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom.,Newcastle upon Tyne Hospitals, NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
38
|
Synthesis of 11C-labeled DNA polymerase-β inhibitor 5-methoxyflavone and PET/CT imaging thereof. Nucl Med Biol 2019; 78-79:17-22. [PMID: 31678783 DOI: 10.1016/j.nucmedbio.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 02/05/2023]
Abstract
INTRODUCTION "Cell-cycle hypothesis" is emerging in recent years to suggest that aberrant cell cycle re-entry of differentiated neurons leads to a remarkable genetic disequilibrium which is likely to be the primary cause of neuronal apoptosis. DNA polymerase-β is involved in neuronal DNA replication during cell cycle re-entry, thus constituting a promising target for Alzheimer's disease treatment. Recently, 5-methoxyflavone was identified as a candidate molecule endowed with good biological activity and selectivity on the DNA pol-β in multiple in vitro AD models. In vivo assays, especially the brain uptake of 5-methoxyflavone, is need to be evaluated for further development for AD treatment. We report herein the synthesis of 11C-labeled 5-methoxyflavone, and the evaluation of in vivo properties of 5-[11C]methoxyflavone in rodents. METHODS The strategy for synthesis of 5-[11C]methoxyflavone was developed by treating precursor 5-hydroxyflavone with [11C]CH3I and KOH in anhydrous DMF. 5-[11C]Methoxyflavone was purified, then evaluated in mice by using PET/CT imaging. RESULTS The 5-[11C]methoxyflavone was synthesized conveniently in an average decay corrected yield of 22% (n = 3) with a radiochemical purity >99%. The average molar radioactivity of 5-[11C]methoxyflavone was 383 GBq/μmol. The average concentration was 0.107 μg/mL. PET/CT imaging in mice showed 5-[11C]methoxyflavone rapidly passed through the blood-brain barrier with 8.36 ± 0.61%ID/g at 2 min post injection, and the radioactivity accumulation in brain was still noticeable with 2.48 ± 0.59%ID/g at 28 min post injection. The clearance rate was 3.37 (brain2 min/brain28 min ratio). The blood and muscle uptakes were low. The lung displayed high initial uptake and subsequent rapid clearance, while the liver and kidney displayed a relatively slow clearance. Real-time imaging showed that 5-[11C]methoxyflavone accumulated immediately in the heart, then transferred to the liver and intestine, and was not observed in lower digestive tract. CONCLUSIONS 5-[11C]Methoxyflavone was synthesized conveniently in one step. The results of PET/CT imaging in C57BL/6 mice suggested 5-[11C]methoxyflavone possesses appropriate pharmacokinetic properties and favorable brain uptake, thus being proved to be suitable for further development for AD treatment.
Collapse
|
39
|
Nudelman KNH, McDonald BC, Lahiri DK, Saykin AJ. Biological Hallmarks of Cancer in Alzheimer's Disease. Mol Neurobiol 2019; 56:7173-7187. [PMID: 30993533 PMCID: PMC6728183 DOI: 10.1007/s12035-019-1591-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/01/2019] [Indexed: 11/26/2022]
Abstract
Although Alzheimer's disease (AD) is an international health research priority for our aging population, little therapeutic progress has been made. This lack of progress may be partially attributable to disease heterogeneity. Previous studies have identified an inverse association of cancer and AD, suggesting that cancer history may be one source of AD heterogeneity. These findings are particularly interesting in light of the number of common risk factors and two-hit models hypothesized to commonly drive both diseases. We reviewed the ten hallmark biological alterations of cancer cells to investigate overlap with the AD literature and identified overlap of all ten hallmarks in AD, including (1) potentially common underlying risk factors, such as increased inflammation, deregulated cellular energetics, and genome instability; (2) inversely regulated mechanisms, including cell death and evading growth suppressors; and (3) functions with more complex, pleiotropic mechanisms, some of which may be stage-dependent in AD, such as cell adhesion/contact inhibition and angiogenesis. Additionally, we discuss the recent observation of a biological link between cancer and AD neuropathology. Finally, we address the therapeutic implications of this topic. The significant overlap of functional pathways and molecules between these diseases, some similarly and some oppositely regulated or functioning in each disease, supports the need for more research to elucidate cancer-related AD genetic and functional heterogeneity, with the aims of better understanding AD risk mediators, as well as further exploring the potential for some types of drug repurposing towards AD therapeutic development.
Collapse
Affiliation(s)
- Kelly N. H. Nudelman
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
| | - Brenna C. McDonald
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
| | - Debomoy K. Lahiri
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| | - Andrew J. Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, IN, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, IN, USA
| |
Collapse
|
40
|
Iourov IY, Vorsanova SG, Yurov YB, Kutsev SI. Ontogenetic and Pathogenetic Views on Somatic Chromosomal Mosaicism. Genes (Basel) 2019; 10:E379. [PMID: 31109140 PMCID: PMC6562967 DOI: 10.3390/genes10050379] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/27/2022] Open
Abstract
Intercellular karyotypic variability has been a focus of genetic research for more than 50 years. It has been repeatedly shown that chromosome heterogeneity manifesting as chromosomal mosaicism is associated with a variety of human diseases. Due to the ability of changing dynamically throughout the ontogeny, chromosomal mosaicism may mediate genome/chromosome instability and intercellular diversity in health and disease in a bottleneck fashion. However, the ubiquity of negligibly small populations of cells with abnormal karyotypes results in difficulties of the interpretation and detection, which may be nonetheless solved by post-genomic cytogenomic technologies. In the post-genomic era, it has become possible to uncover molecular and cellular pathways to genome/chromosome instability (chromosomal mosaicism or heterogeneity) using advanced whole-genome scanning technologies and bioinformatic tools. Furthermore, the opportunities to determine the effect of chromosomal abnormalities on the cellular phenotype seem to be useful for uncovering the intrinsic consequences of chromosomal mosaicism. Accordingly, a post-genomic review of chromosomal mosaicism in the ontogenetic and pathogenetic contexts appears to be required. Here, we review chromosomal mosaicism in its widest sense and discuss further directions of cyto(post)genomic research dedicated to chromosomal heterogeneity.
Collapse
Affiliation(s)
- Ivan Y Iourov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Svetlana G Vorsanova
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Yuri B Yurov
- Yurov's Laboratory of Molecular Genetics and Cytogenomics of the Brain, Mental Health Research Center, 117152 Moscow, Russia.
- Laboratory of Molecular Cytogenetics of Neuropsychiatric Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, 125412 Moscow, Russia.
| | - Sergei I Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia.
- Molecular & Cell Genetics Department, Pirogov Russian National Research Medical University, 117997 Moscow, Russia.
| |
Collapse
|
41
|
Majd S, Power J, Majd Z. Alzheimer's Disease and Cancer: When Two Monsters Cannot Be Together. Front Neurosci 2019; 13:155. [PMID: 30881282 PMCID: PMC6407038 DOI: 10.3389/fnins.2019.00155] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) and cancer are among the leading causes of human death around the world. While neurodegeneration is the main feature of AD, the most important characteristic of malignant tumors is cell proliferation, placing these two diseases in opposite sides of cell division spectrum. Interestingly, AD and cancer's pathologies consist of a remarkable common feature and that is the presence of active cell cycle in both conditions. In an in vitro model of primary adult neuronal culture, we previously showed that treating cell with beta amyloid forced neurons to start a cell cycle. Instead of cell division, however, neuronal cell cycle was aborted and a massive neurodegeneration was left behind as the consequence. A high level of cell cycle entry, which is a requirement for cancer pathogenesis, was reported in clinically diagnosed cases of AD, leading to neurodegeneration. The diverse clinical manifestation of a similar etiology, have puzzled researchers for many years. In fact, the evidence showed an inverse association between AD and cancer prevalence, suggesting that switching pathogenesis toward AD protects patients against cancer and vice versa. In this mini review, we discussed the possibility of involvement of cell proliferation and survival dysregulation as the underlying mechanism of neurodegeneration in AD, and the leading event to develop both disorders' pathology. As examples, the role of phosphoinositide 3 kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway in cell cycle re-entry and blocking autophagy are discussed as potential common intracellular components between AD and cancer pathogenesis, with diverse clinical diagnosis.
Collapse
Affiliation(s)
- Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - John Power
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - Zohreh Majd
- Psychosomatische Tagesklinik, Passau, Germany
| |
Collapse
|
42
|
Nicolas G, Veltman JA. The role of de novo mutations in adult-onset neurodegenerative disorders. Acta Neuropathol 2019; 137:183-207. [PMID: 30478624 PMCID: PMC6513904 DOI: 10.1007/s00401-018-1939-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022]
Abstract
The genetic underpinnings of the most common adult-onset neurodegenerative disorders (AOND) are complex in majority of the cases. In some families, however, the disease can be inherited in a Mendelian fashion as an autosomal-dominant trait. Next to that, patients carrying mutations in the same disease genes have been reported despite a negative family history. Although challenging to demonstrate due to the late onset of the disease in most cases, the occurrence of de novo mutations can explain this sporadic presentation, as demonstrated for severe neurodevelopmental disorders. Exome or genome sequencing of patient-parent trios allows a hypothesis-free study of the role of de novo mutations in AOND and the discovery of novel disease genes. Another hypothesis that may explain a proportion of sporadic AOND cases is the occurrence of a de novo mutation after the fertilization of the oocyte (post-zygotic mutation) or even as a late-somatic mutation, restricted to the brain. Such somatic mutation hypothesis, that can be tested with the use of novel sequencing technologies, is fully compatible with the seeding and spreading mechanisms of the pathological proteins identified in most of these disorders. We review here the current knowledge and future perspectives on de novo mutations in known and novel candidate genes identified in the most common AONDs such as Alzheimer's disease, Parkinson's disease, the frontotemporal lobar degeneration spectrum and Prion disorders. Also, we review the first lessons learned from recent genomic studies of control and diseased brains and the challenges which remain to be addressed.
Collapse
Affiliation(s)
- Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics and CNR-MAJ, Normandy Center for Genomic and Personalized Medicine, 22, Boulevard Gambetta, 76000, 76031, Rouen Cedex, France.
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Joris A Veltman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
43
|
Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, Orr ME. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell 2018; 17:e12840. [PMID: 30126037 PMCID: PMC6260915 DOI: 10.1111/acel.12840] [Citation(s) in RCA: 382] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Tau protein accumulation is the most common pathology among degenerative brain diseases, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), traumatic brain injury (TBI), and over twenty others. Tau-containing neurofibrillary tangle (NFT) accumulation is the closest correlate with cognitive decline and cell loss (Arriagada, Growdon, Hedley-Whyte, & Hyman, ), yet mechanisms mediating tau toxicity are poorly understood. NFT formation does not induce apoptosis (de Calignon, Spires-Jones, Pitstick, Carlson, & Hyman, 2009), which suggests that secondary mechanisms are driving toxicity. Transcriptomic analyses of NFT-containing neurons microdissected from postmortem AD brain revealed an expression profile consistent with cellular senescence. This complex stress response induces aberrant cell cycle activity, adaptations to maintain survival, cellular remodeling, and metabolic dysfunction. Using four AD transgenic mouse models, we found that NFTs, but not Aβ plaques, display a senescence-like phenotype. Cdkn2a transcript level, a hallmark measure of senescence, directly correlated with brain atrophy and NFT burden in mice. This relationship extended to postmortem brain tissue from humans with PSP to indicate a phenomenon common to tau toxicity. Tau transgenic mice with late-stage pathology were treated with senolytics to remove senescent cells. Despite the advanced age and disease progression, MRI brain imaging and histopathological analyses indicated a reduction in total NFT density, neuron loss, and ventricular enlargement. Collectively, these findings indicate a strong association between the presence of NFTs and cellular senescence in the brain, which contributes to neurodegeneration. Given the prevalence of tau protein deposition among neurodegenerative diseases, these findings have broad implications for understanding, and potentially treating, dozens of brain diseases.
Collapse
Affiliation(s)
- Nicolas Musi
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- San Antonio Geriatric ResearchEducation and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesSan AntonioTexas
| | - Joseph M. Valentine
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Kathryn R. Sickora
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Eric Baeuerle
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Cody S. Thompson
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Qiang Shen
- Research Imaging InstituteUniversity of Texas Health Science Center San AntonioSan AntonioTexas
| | - Miranda E. Orr
- Barshop Institute for Longevity and Aging StudiesUniversity of Texas Health Science Center at San AntonioSan AntonioTexas
- San Antonio Geriatric ResearchEducation and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative DiseasesSan AntonioTexas
| |
Collapse
|
44
|
Kodis EJ, Choi S, Swanson E, Ferreira G, Bloom GS. N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer's disease. Alzheimers Dement 2018; 14:1302-1312. [PMID: 30293574 DOI: 10.1016/j.jalz.2018.05.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/11/2018] [Accepted: 05/24/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) symptoms reflect synaptic dysfunction and neuron death. Amyloid-β oligomers (AβOs) induce excess calcium entry into neurons via N-methyl-D-aspartate receptors (NMDARs), contributing to synaptic dysfunction. The study described here tested the hypothesis that AβO-stimulated calcium entry also drives neuronal cell cycle reentry (CCR), a prelude to neuron death in AD. METHODS Pharmacologic modulators of calcium entry and gene expression knockdown were used in cultured neurons and AD model mice. RESULTS In cultured neurons, AβO-stimulated CCR was blocked by NMDAR antagonists, total calcium chelation with 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), or knockdown of the NMDAR subunit, NR1. NMDAR antagonists also blocked the activation of calcium-calmodulin-dependent protein kinase II and treatment of Tg2576 AD model mice with the NMDAR antagonist, memantine, prevented CCR. DISCUSSION This study demonstrates a role for AβO-stimulated calcium influx via NMDAR and CCR in AD and suggests the use of memantine as a disease-modifying therapy for presymptomatic AD.
Collapse
Affiliation(s)
- Erin J Kodis
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| | - Sophie Choi
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Eric Swanson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Gonzalo Ferreira
- Departamento de Biofisica de la Facultad de Medicina, Universidad de la República, Monetivideo, Uruguay
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
45
|
Hunter S, Smailagic N, Brayne C. Dementia Research: Populations, Progress, Problems, and Predictions. J Alzheimers Dis 2018; 64:S119-S143. [DOI: 10.3233/jad-179927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sally Hunter
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Nadja Smailagic
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| |
Collapse
|
46
|
Rossi G, Redaelli V, Contiero P, Fabiano S, Tagliabue G, Perego P, Benussi L, Bruni AC, Filippini G, Farinotti M, Giaccone G, Buiatiotis S, Manzoni C, Ferrari R, Tagliavini F. Tau Mutations Serve as a Novel Risk Factor for Cancer. Cancer Res 2018; 78:3731-3739. [PMID: 29794074 DOI: 10.1158/0008-5472.can-17-3175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/23/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
In addition to its well-recognized role in neurodegeneration, tau participates in maintenance of genome stability and chromosome integrity. In particular, peripheral cells from patients affected by frontotemporal lobar degeneration carrying a mutation in tau gene (genetic tauopathies), as well as cells from animal models, show chromosome numerical and structural aberrations, chromatin anomalies, and a propensity toward abnormal recombination. As genome instability is tightly linked to cancer development, we hypothesized that mutated tau may be a susceptibility factor for cancer. Here we conducted a retrospective cohort study comparing cancer incidence in families affected by genetic tauopathies to control families. In addition, we carried out a bioinformatics analysis to highlight pathways associated with the tau protein interactome. We report that the risk of developing cancer is significantly higher in families affected by genetic tauopathies, and a high proportion of tau protein interactors are involved in cellular processes particularly relevant to cancer. These findings disclose a novel role of tau as a risk factor for cancer, providing new insights in the various pathologic roles of mutated tau.Significance: This study reveals a novel role for tau as a risk factor for cancer, providing new insights beyond its role in neurodegeneration. Cancer Res; 78(13); 3731-9. ©2018 AACR.
Collapse
Affiliation(s)
- Giacomina Rossi
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Veronica Redaelli
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Contiero
- Environmental Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sabrina Fabiano
- Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giovanna Tagliabue
- Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Luisa Benussi
- NeuroBioGen Lab-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Graziella Filippini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mariangela Farinotti
- Neuroepidemiology - Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giorgio Giaccone
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
47
|
Omais S, Jaafar C, Ghanem N. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Front Neurosci 2018; 12:144. [PMID: 29593485 PMCID: PMC5854681 DOI: 10.3389/fnins.2018.00144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
48
|
Kozlov S, Afonin A, Evsyukov I, Bondarenko A. Alzheimer's disease: as it was in the beginning. Rev Neurosci 2018; 28:825-843. [PMID: 28704198 DOI: 10.1515/revneuro-2017-0006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/19/2017] [Indexed: 01/09/2023]
Abstract
Since Alzheimer's disease was first described in 1907, many attempts have been made to reveal its main cause. Nowadays, two forms of the disease are known, and while the hereditary form of the disease is clearly caused by mutations in one of several genes, the etiology of the sporadic form remains a mystery. Both forms share similar sets of neuropathological and molecular manifestations, including extracellular deposition of amyloid-beta, intracellular accumulation of hyperphosphorylated tau protein, disturbances in both the structure and functions of mitochondria, oxidative stress, metal ion metabolism disorders, impairment of N-methyl-D-aspartate receptor-related signaling pathways, abnormalities of lipid metabolism, and aberrant cell cycle reentry in some neurons. Such a diversity of symptoms led to proposition of various hypotheses for explaining the development of Alzheimer's disease, the amyloid hypothesis, which postulates the key role of amyloid-beta in Alzheimer's disease development, being the most prominent. However, this hypothesis does not fully explain all of the molecular abnormalities and is therefore heavily criticized. In this review, we propose a hypothetical model of Alzheimer's disease progression, assuming a key role of age-related mitochondrial dysfunction, as was postulated in the mitochondrial cascade hypothesis. Our model explains the connections between all the symptoms of Alzheimer's disease, with particular attention to autophagy, metal metabolism disorders, and aberrant cell cycle re-entry in neurons. Progression of the Alzheimer's disease appears to be a complex process involving aging and too many protective mechanisms affecting one another, thereby leading to even greater deleterious effects.
Collapse
|
49
|
Vorsanova SG, Zelenova MA, Yurov YB, Iourov IY. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis. Curr Genomics 2018; 19:158-162. [PMID: 29606902 PMCID: PMC5850503 DOI: 10.2174/1389202918666170719165339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/11/2016] [Accepted: 01/01/2017] [Indexed: 02/06/2023] Open
Abstract
Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual’s brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.
Collapse
Affiliation(s)
- Svetlana G Vorsanova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Maria A Zelenova
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Yuri B Yurov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Moscow State University of Psychology and Education, Moscow127051, Russian Federation
| | - Ivan Y Iourov
- Separated Structural Unit "Clinical Research Institute of Pediatrics at Pirogov Russian National Research Medical University named after Y.E Veltishev", Ministry of Health of Russian Federation, Moscow125412, Russian Federation.,Mental Health Research Center, Moscow117152, Russian Federation.,Department of Medical Genetics, Russian Medical Academy of Postgraduate Education, Moscow123995, Russian Federation
| |
Collapse
|
50
|
Shepherd CE, Yang Y, Halliday GM. Region- and Cell-specific Aneuploidy in Brain Aging and Neurodegeneration. Neuroscience 2018; 374:326-334. [PMID: 29432756 DOI: 10.1016/j.neuroscience.2018.01.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 01/02/2018] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Variations in genomic DNA content, or aneuploidy, are a well-recognized feature of normal human brain development. Whether changes in the levels of aneuploidy are a factor in Alzheimer's disease (AD) is less clear, as the data reported to date vary substantially in the levels of aneuploidy detected (0.7-11.5%), possibly due to methodological limitations, but also influenced by individual, regional and cellular heterogeneity as well as variations in cell subtypes. These issues have not been adequately addressed to date. While it is known that the DNA damage response increases with age, the limited human studies investigating aneuploidy in normal aging also show variable results, potentially due to susceptibility to age-related neurodegenerative processes. Neuronal aneuploidy has recently been reported in multiple brain regions in Lewy body disease, but similar genomic changes are not a feature of all synucleinopathies and aneuploidy does not appear to be related to alpha-synuclein aggregation. Rather, aneuploidy was associated with Alzheimer's pathology in the hippocampus and anterior cingulate cortex and neuronal degeneration in the substantia nigra. The association between Alzheimer's pathology and aneuploidy in regions with limited neurodegeneration is supported by a growing body of in vitro and in vivo data on aneuploidy and beta-amyloid and tau abnormalities. Large-scale studies using high-resolution techniques alongside other sensitive and specific methodologies are now required to assess the true extent of cell- and region-specific aneuploidy in aging and neurodegeneration, and to determine any associations with pathologies.
Collapse
Affiliation(s)
- C E Shepherd
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia.
| | - Y Yang
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia; Brain and Mind Centre, Sydney Medical School, The University of Sydney, Australia.
| | - G M Halliday
- Neuroscience Research Australia, Margarete Ainsworth Building, Barker Street, Randwick, Sydney 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney 2031, Australia; Brain and Mind Centre, Sydney Medical School, The University of Sydney, Australia.
| |
Collapse
|