1
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
2
|
Leal J, Shaner S, Jedrusik N, Savelyeva A, Asplund M. Electrotaxis evokes directional separation of co-cultured keratinocytes and fibroblasts. Sci Rep 2023; 13:11444. [PMID: 37454232 PMCID: PMC10349865 DOI: 10.1038/s41598-023-38664-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Bioelectric communication plays a significant role in several cellular processes and biological mechanisms, such as division, differentiation, migration, cancer metastasis, and wound healing. Ion flow across cellular walls leads to potential gradients and subsequent formation of constant or time-varying electric fields(EFs), which regulate cellular processes. An EF is natively generated towards the wound center during epithelial wound healing, aiming to align and guide cell migration, particularly of macrophages, fibroblasts, and keratinocytes. While this phenomenon, known as electrotaxis or galvanotaxis, has been extensively investigated across many cell types, it is typically explored one cell type at a time, which does not accurately represent cellular interactions during complex biological processes. Here we show the co-cultured electrotaxis of epidermal keratinocytes and dermal fibroblasts with a salt-bridgeless microfluidic approach for the first time. The electrotactic response of these cells was first assessed in mono-culture to establish a baseline, resulting in the characteristic cathodic migration for keratinocytes and anodic for fibroblasts. Both cell types retained their electrotactic properties in co-culture leading to clear cellular partition even in the presence of cellular collisions. The methods leveraged here pave the way for future co-culture electrotaxis experiments where the concurrent influence of cell types can be thoroughly investigated.
Collapse
Affiliation(s)
- José Leal
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
| | - Sebastian Shaner
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Nicole Jedrusik
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Anna Savelyeva
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Maria Asplund
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany.
- BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 97187, Luleå, Sweden.
| |
Collapse
|
3
|
Alshawaf AJ, Alnassar SA, Al-Mohanna FA. The interplay of intracellular calcium and zinc ions in response to electric field stimulation in primary rat cortical neurons in vitro. Front Cell Neurosci 2023; 17:1118335. [PMID: 37180947 PMCID: PMC10174245 DOI: 10.3389/fncel.2023.1118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Recent pharmacological studies demonstrate a role for zinc (Zn2+) in shaping intracellular calcium (Ca2+) dynamics and vice versa in excitable cells including neurons and cardiomyocytes. Herein, we sought to examine the dynamic of intracellular release of Ca2+ and Zn2+ upon modifying excitability of primary rat cortical neurons using electric field stimulation (EFS) in vitro. We show that exposure to EFS with an intensity of 7.69 V/cm induces transient membrane hyperpolarization together with transient elevations in the cytosolic levels of Ca2+ and Zn2+ ions. The EFS-induced hyperpolarization was inhibited by prior treatment of cells with the K+ channel opener diazoxide. Chemical hyperpolarization had no apparent effect on either Ca2+ or Zn2+. The source of EFS-induced rise in Ca2+ and Zn2+ seemed to be intracellular, and that the dynamic inferred of an interplay between Ca2+ and Zn2+ ions, whereby the removal of extracellular Ca2+ augmented the release of intracellular Ca2+ and Zn2+ and caused a stronger and more sustained hyperpolarization. We demonstrate that Zn2+ is released from intracellular vesicles located in the soma, with major co-localizations in the lysosomes and endoplasmic reticulum. These studies further support the use of EFS as a tool to interrogate the kinetics of intracellular ions in response to changing membrane potential in vitro.
Collapse
Affiliation(s)
- Abdullah J. Alshawaf
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sarah A. Alnassar
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Futwan A. Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- *Correspondence: Futwan A. Al-Mohanna,
| |
Collapse
|
4
|
Zhang C, Li Y, Huang S, Yang L, Zhao H. Effects of Different Types of Electric Fields on Mechanical Properties and Microstructure of Ex Vivo Porcine Brain Tissues. ACS Biomater Sci Eng 2022; 8:5349-5360. [PMID: 36346997 DOI: 10.1021/acsbiomaterials.2c00456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Electrotherapy plays a crucial role in regulating neuronal activity. Nevertheless, the relevant therapeutic mechanisms are still unclear; thus, the effects of electric fields on brain tissue's mechanical properties and microstructure need to be explored. In this study, focusing on the changes in mechanical properties and microstructure of ex vivo porcine brain tissues under different types of electric fields, directional and alternating electric fields (frequencies of 5, 20, 50, and 80 Hz, respectively) integrate with a custom-designed indentation device. The experimental results showed that for the ex vivo brain tissue, the directional electric field (DEF) can reduce the elastic properties of brain tissue. Simultaneously, the DEF can increase the cell spacing and reduce the proteoglycan content. The transmission electron microscope (TEM) analysis observed that the DEF can reduce the integrity of the plasma membrane, the endoplasmic reticulum's stress response, and the myelin lamella's separation. The alternating electric field (AEF) can accelerate the stress relaxation process of brain tissue and change the time-dependent mechanical properties of brain tissue. Meanwhile, with the increase in frequency, the cell spacing decreased, and the proteoglycan content gradually approached the control group without electric fields. TEM analysis observed that with the increase in frequency, the integrity of the plasma membrane increases, and the separation of the myelin lamella gradually disappears. Understanding the changes in the mechanical properties and microstructure of brain tissue under AEF and DEF enables a preliminary exploration of the therapeutic mechanism of electrotherapy. Simultaneously, the essential data was provided to support the development of embedded electrodes. In addition, the ex vivo experiments build a solid foundation for future in vivo experiments.
Collapse
Affiliation(s)
- Chi Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China.,Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China
| | - Yiqiang Li
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China.,Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China
| | - Sai Huang
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun130024, P. R. China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun130062, P. R. China
| | - Hongwei Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China.,Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun130025, P. R. China
| |
Collapse
|
5
|
Physiological Electric Field: A Potential Construction Regulator of Human Brain Organoids. Int J Mol Sci 2022; 23:ijms23073877. [PMID: 35409232 PMCID: PMC8999182 DOI: 10.3390/ijms23073877] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023] Open
Abstract
Brain organoids can reproduce the regional three-dimensional (3D) tissue structure of human brains, following the in vivo developmental trajectory at the cellular level; therefore, they are considered to present one of the best brain simulation model systems. By briefly summarizing the latest research concerning brain organoid construction methods, the basic principles, and challenges, this review intends to identify the potential role of the physiological electric field (EF) in the construction of brain organoids because of its important regulatory function in neurogenesis. EFs could initiate neural tissue formation, inducing the neuronal differentiation of NSCs, both of which capabilities make it an important element of the in vitro construction of brain organoids. More importantly, by adjusting the stimulation protocol and special/temporal distributions of EFs, neural organoids might be created following a predesigned 3D framework, particularly a specific neural network, because this promotes the orderly growth of neural processes, coordinate neuronal migration and maturation, and stimulate synapse and myelin sheath formation. Thus, the application of EF for constructing brain organoids in a3D matrix could be a promising future direction in neural tissue engineering.
Collapse
|
6
|
Abouelleil M, Deshpande N, Ali R. Emerging Trends in Neuromodulation for Treatment of Drug-Resistant Epilepsy. FRONTIERS IN PAIN RESEARCH 2022; 3:839463. [PMID: 35386582 PMCID: PMC8977768 DOI: 10.3389/fpain.2022.839463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
Abstract
Epilepsy is a neurological disorder that affects more than 70 million people globally. A considerable proportion of epilepsy is resistant to anti-epileptic drugs (AED). For patients with drug-resistant epilepsy (DRE), who are not eligible for resective or ablative surgery, neuromodulation has been a palliative option. Since the approval of vagus nerve stimulation (VNS) in 1997, expansion to include other modalities, such as deep brain stimulation (DBS) and responsive neurostimulation (RNS), has led to improved seizure control in this population. In this article, we discuss the current updates and emerging trends on neuromodulation for epilepsy.
Collapse
Affiliation(s)
- Mohamed Abouelleil
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
| | - Nachiket Deshpande
- College of Human Medicine, Michigan State University, East Lansing, MI, United States
| | - Rushna Ali
- Division of Neurological Surgery, Spectrum Health, Grand Rapids, MI, United States
- *Correspondence: Rushna Ali
| |
Collapse
|
7
|
SIROF stabilized PEDOT/PSS allows biocompatible and reversible direct current stimulation capable of driving electrotaxis in cells. Biomaterials 2021; 275:120949. [PMID: 34153784 DOI: 10.1016/j.biomaterials.2021.120949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/18/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Electrotaxis is a naturally occurring phenomenon in which ionic gradients dictate the directed migration of cells involved in different biological processes such as wound healing, embryonic development, or cancer metastasis. To investigate these processes, direct current (DC) has been used to generate electric fields capable of eliciting an electrotactic response in cells. However, the need for metallic electrodes to deliver said currents has hindered electrotaxis research and the application of DC stimulation as medical therapy. This study aimed to investigate the capability of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) on sputtered iridium oxide film (SIROF) electrodes to generate stable direct currents. The electrochemical properties of PEDOT/PSS allow ions to be released and reabsorbed depending on the polarity of the current flow. SIROF stabilized PEDOT/PSS electrodes demonstrated exceptional stability in voltage and current controlled DC stimulation for periods of up to 12 hours. These electrodes were capable of directing cell migration of the rat prostate cancer cell line MAT-LyLu in a microfluidic chamber without the need for chemical buffers. This material combination shows excellent promise for accelerating electrotaxis research and facilitating the translation of DC stimulation to medical applications thanks to its biocompatibility, ionic charge injection mechanisms, and recharging capabilities in a biological environment.
Collapse
|
8
|
Zangiabadi N, Ladino LD, Sina F, Orozco-Hernández JP, Carter A, Téllez-Zenteno JF. Deep Brain Stimulation and Drug-Resistant Epilepsy: A Review of the Literature. Front Neurol 2019; 10:601. [PMID: 31244761 PMCID: PMC6563690 DOI: 10.3389/fneur.2019.00601] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/21/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction: Deep brain stimulation is a safe and effective neurointerventional technique for the treatment of movement disorders. Electrical stimulation of subcortical structures may exert a control on seizure generators initiating epileptic activities. The aim of this review is to present the targets of the deep brain stimulation for the treatment of drug-resistant epilepsy. Methods: We performed a structured review of the literature from 1980 to 2018 using Medline and PubMed. Articles assessing the impact of deep brain stimulation on seizure frequency in patients with DRE were selected. Meta-analyses, randomized controlled trials, and observational studies were included. Results: To date, deep brain stimulation of various neural targets has been investigated in animal experiments and humans. This article presents the use of stimulation of the anterior and centromedian nucleus of the thalamus, hippocampus, basal ganglia, cerebellum and hypothalamus. Anterior thalamic stimulation has demonstrated efficacy and there is evidence to recommend it as the target of choice. Conclusion: Deep brain stimulation for seizures may be an option in patients with drug-resistant epilepsy. Anterior thalamic nucleus stimulation could be recommended over other targets.
Collapse
Affiliation(s)
- Nasser Zangiabadi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Lady Diana Ladino
- Epilepsy Program, Hospital Pablo Tobón Uribe, Neuroclinica, University of Antioquia, Medellín, Colombia
| | - Farzad Sina
- Department of Neurology, Rasool Akram Hospital, IUMS, Tehran, Iran
| | - Juan Pablo Orozco-Hernández
- Departamento de Investigación Clínica, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira-Clínica Comfamiliar, Pereira, Colombia
| | - Alexandra Carter
- Saskatchewan Epilepsy Program, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
9
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Wang X, Ren Y, Liu J. Liquid Metal Enabled Electrobiology: A New Frontier to Tackle Disease Challenges. MICROMACHINES 2018; 9:E360. [PMID: 30424293 PMCID: PMC6082282 DOI: 10.3390/mi9070360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 01/06/2023]
Abstract
In this article, a new conceptual biomedical engineering strategy to tackle modern disease challenges, called liquid metal (LM) enabled electrobiology, is proposed. This generalized and simple method is based on the physiological fact that specially administrated electricity induces a series of subsequent desired biological effects, either shortly, transitionally, or permanently. Due to high compliance within biological tissues, LM would help mold a pervasive method for treating physiological or psychological diseases. As highly conductive and non-toxic multifunctional flexible materials, such LMs can generate any requested electric treating fields (ETFields), which can adapt to various sites inside the human body. The basic mechanisms of electrobiology in delivering electricity to the target tissues and then inducing expected outputs for disease treatment are interpreted. The methods for realizing soft and conformable electronics based on LM are illustrated. Furthermore, a group of typical disease challenges are observed to illustrate the basic strategies for performing LM electrobiology therapy, which include but are not limited to: tissue electronics, brain disorder, immunotherapy, neural functional recovery, muscle stimulation, skin rejuvenation, cosmetology and dieting, artificial organs, cardiac pacing, cancer therapy, etc. Some practical issues regarding electrobiology for future disease therapy are discussed. Perspectives in this direction for incubating a simple biomedical tool for health care are pointed out.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Yi Ren
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China.
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
11
|
Tang M, Yan X, Tang Q, Guo R, Da P, Li D. Potential Application of Electrical Stimulation in Stem Cell-Based Treatment against Hearing Loss. Neural Plast 2018; 2018:9506387. [PMID: 29853854 PMCID: PMC5964586 DOI: 10.1155/2018/9506387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/23/2018] [Accepted: 04/08/2018] [Indexed: 12/02/2022] Open
Abstract
Deafness is a common human disease, which is mainly caused by irreversible damage to hair cells and spiral ganglion neurons (SGNs) in the mammalian cochlea. At present, replacement of damaged or missing hair cells and SGNs by stem cell transplantation therapy is an effective treatment. However, the survival rate of stem cell transplantation is low, with uncontrollable differentiation hindering its application. Most researchers have focused on biochemical factors to regulate the growth and differentiation of stem cells, whereas little study has been performed using physical factors. This review intends to illustrate the current problems in stem cell-based treatment against deafness and to introduce electric field stimulation as a physical factor to regulate stem cell behavior and facilitate stem cell therapy to treat hearing loss in the future.
Collapse
Affiliation(s)
- Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Xiaoqian Yan
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Qilin Tang
- The First Clinical Medical School, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Rongrong Guo
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| | - Peng Da
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Dan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Joint Research Institute of Southeast University and Monash University, Suzhou 215123, China
| |
Collapse
|
12
|
Schönfeld LM, Jahanshahi A, Lemmens E, Bauwens M, Hescham SA, Schipper S, Lagiere M, Hendrix S, Temel Y. Motor cortex stimulation does not lead to functional recovery after experimental cortical injury in rats. Restor Neurol Neurosci 2018; 35:295-305. [PMID: 28506001 DOI: 10.3233/rnn-160703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Motor impairments are among the major complications that develop after cortical damage caused by either stroke or traumatic brain injury. Motor cortex stimulation (MCS) can improve motor functions in animal models of stroke by inducing neuroplasticity. OBJECTIVE In the current study, the therapeutic effect of chronic MCS was assessed in a rat model of severe cortical damage. METHODS A controlled cortical impact (CCI) was applied to the forelimb area of the motor cortex followed by implantation of a flat electrode covering the lesioned area. Forelimb function was assessed using the Montoya staircase test and the cylinder test before and after a period of chronic MCS. Furthermore, the effect of MCS on tissue metabolism and lesion size was measured using [18F]-fluorodesoxyglucose (FDG) μPET scanning. RESULTS CCI caused a considerable lesion at the level of the motor cortex and dorsal striatum together with a long-lasting behavioral phenotype of forelimb impairment. However, MCS applied to the CCI lesion did not lead to any improvement in limb functioning when compared to non-stimulated control rats. Also, MCS neither changed lesion size nor distribution of FDG. CONCLUSION The use of MCS as a standalone treatment did not improve motor impairments in a rat model of severe cortical damage using our specific treatment modalities.
Collapse
Affiliation(s)
- Lisa-Maria Schönfeld
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Ali Jahanshahi
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Evi Lemmens
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Matthias Bauwens
- Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Sarah-Anna Hescham
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sandra Schipper
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Melanie Lagiere
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute (BIOMED), Hasselt University, Hasselt, Belgium
| | - Yasin Temel
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
13
|
|
14
|
Chang WH, Kim H, Sun W, Kim JY, Shin YI, Kim YH. Effects of extradural cortical stimulation on motor recovery in a rat model of subacute stroke. Restor Neurol Neurosci 2016; 33:589-96. [PMID: 25735240 DOI: 10.3233/rnn-140445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Previous studies demonstrated that administering extradural cortical stimulation (ECS) to rats during the acute phase of a photothrombotic infarct enhances motor recovery. However, the effect of ECS during the subacute phase was unknown. We aimed to evaluate the effects of ECS on motor recovery in a rat model of subacute photothrombotic stroke. METHODS Photothrombotic ischemic injury to the left sensorimotor cortex (SMC) was induced in 41 male Sprague-Dawley rats using Rose-bengal dye (20 mg/kg) and cold light. The rats were randomly divided into two groups: ECS on infarcted SMC (ECS group) and no ECS on infarcted SMC (non-stimulated group). The ECS group received continuous ECS for 14 days starting from day 5 after the stroke onset. Behavioral training with the single-pellet reaching task (SPRT) was performed daily for all of the rats from the fifth day after stroke onset. After 19 days, brain sections were immunostained to allow the quantification of infarct volumes and the evaluation of the neuronal markers. RESULTS The SPRT scores showed significantly faster and greater improvement in the ECS group than in the non-stimulated group. There were no significant differences in infarct size. However, in the ECS group, significantly more doublecortin-labeled cells were identified close to the penumbra region of the cerebral cortex. CONCLUSIONS ECS in the subacute phase improved the behavior motor function in the stroke rat model, and induced a significant axonal sprouting in the peri-infarct area.
Collapse
Affiliation(s)
- Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul, Korea
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul, Korea
| | - Joo Yeon Kim
- Department of Anatomy, Korea University College of Medicine, Brain Korea 21, Seoul, Korea
| | - Yong-Il Shin
- Department of Physical and Rehabilitation Medicine, Pusan National University College of Medicine, Yangsan Hospital, Pusan, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
15
|
Kim JY, Sun W, Park E, Lee J, Kim H, Shin YI, Kim YH, Chang WH. Day/night difference in extradural cortical stimulation for motor relearning in a subacute stroke rat model. Restor Neurol Neurosci 2016; 34:379-87. [PMID: 26923617 DOI: 10.3233/rnn-150593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE The aim of this study was to assess the proper timing of extradural cortical stimulation (ECS) on the motor relearning in a rat model of subacute photothrombotic stroke. METHODS Photothrombotic infarction was induced on the dominant sensorimotor cortex in male Sprague-Dawley rats after training in a single-pellet reaching task (SPRT). Rats were randomly divided into three groups after stroke: ECS during the inactive period (Day-ECS group), ECS during the active period (Night-ECS group) and no ECS (Non-stimulated group). Six sham-operated rats were assigned to the control group. The Day- and Night-ECS group received continuous ECS for 12 hours during the day or night for 2 weeks from day 4 after the stroke. Behavioral assessment with SPRT was performed daily. RESULTS SPRT showed a significantly faster and greater improvement in the Day and Night-ECS groups than in the Non-stimulated group. In the Day- and Night-ECS groups, the success rate of SPRT differed significantly from Non-stimulated group on day 11 and day 8, respectively. In addition, the Night-ECS group showed a significantly higher SPRT success rate than the Day-ECS group from days 10 to 13. CONCLUSION ECS during the active period might be more effective for motor relearning in the subacute stroke rat model.
Collapse
Affiliation(s)
- Joo Yeon Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Woong Sun
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Eunhee Park
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jiyeong Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21 Plus Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University College of Medicine, Pusan National University Yangsan Hospital, Pusan, Korea
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Science and Technology, Department of Medical Device Management & Research, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Baer ML, Henderson SC, Colello RJ. Elucidating the Role of Injury-Induced Electric Fields (EFs) in Regulating the Astrocytic Response to Injury in the Mammalian Central Nervous System. PLoS One 2015; 10:e0142740. [PMID: 26562295 PMCID: PMC4643040 DOI: 10.1371/journal.pone.0142740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/25/2015] [Indexed: 12/22/2022] Open
Abstract
Injury to the vertebrate central nervous system (CNS) induces astrocytes to change their morphology, to increase their rate of proliferation, and to display directional migration to the injury site, all to facilitate repair. These astrocytic responses to injury occur in a clear temporal sequence and, by their intensity and duration, can have both beneficial and detrimental effects on the repair of damaged CNS tissue. Studies on highly regenerative tissues in non-mammalian vertebrates have demonstrated that the intensity of direct-current extracellular electric fields (EFs) at the injury site, which are 50-100 fold greater than in uninjured tissue, represent a potent signal to drive tissue repair. In contrast, a 10-fold EF increase has been measured in many injured mammalian tissues where limited regeneration occurs. As the astrocytic response to CNS injury is crucial to the reparative outcome, we exposed purified rat cortical astrocytes to EF intensities associated with intact and injured mammalian tissues, as well as to those EF intensities measured in regenerating non-mammalian vertebrate tissues, to determine whether EFs may contribute to the astrocytic injury response. Astrocytes exposed to EF intensities associated with uninjured tissue showed little change in their cellular behavior. However, astrocytes exposed to EF intensities associated with injured tissue showed a dramatic increase in migration and proliferation. At EF intensities associated with regenerating non-mammalian vertebrate tissues, these cellular responses were even more robust and included morphological changes consistent with a regenerative phenotype. These findings suggest that endogenous EFs may be a crucial signal for regulating the astrocytic response to injury and that their manipulation may be a novel target for facilitating CNS repair.
Collapse
Affiliation(s)
- Matthew L. Baer
- Department of Anatomy & Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Scott C. Henderson
- Department of Anatomy & Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Raymond J. Colello
- Department of Anatomy & Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Anderson M, Shelke NB, Manoukian OS, Yu X, McCullough LD, Kumbar SG. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits. Crit Rev Biomed Eng 2015; 43:131-59. [PMID: 27278739 PMCID: PMC5266796 DOI: 10.1615/critrevbiomedeng.2015014015] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration.
Collapse
Affiliation(s)
- Matthew Anderson
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
| | - Namdev B. Shelke
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
| | - Ohan S. Manoukian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| | - Xiaojun Yu
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ
| | | | - Sangamesh G. Kumbar
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT
- Institute for Regenerative Engineering, UConn Health, Farmington, CT
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT
| |
Collapse
|
18
|
Liu Q, Song B. Electric field regulated signaling pathways. Int J Biochem Cell Biol 2014; 55:264-8. [DOI: 10.1016/j.biocel.2014.09.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 02/01/2023]
|