1
|
Hu Y, Sun Y, Yuan H, Liu J, Chen L, Liu D, Xu Y, Zhou X, Ding L, Zhang Z, Xiong L, Xue L, Wang T. Vof16-miR-185-5p-GAP43 network improves the outcomes following spinal cord injury via enhancing self-repair and promoting axonal growth. CNS Neurosci Ther 2024; 30:e14535. [PMID: 38168094 PMCID: PMC11017428 DOI: 10.1111/cns.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION Self-repair of spinal cord injury (SCI) has been found in humans and experimental animals with partial recovery of neurological functions. However, the regulatory mechanisms underlying the spontaneous locomotion recovery after SCI are elusive. AIMS This study was aimed at evaluating the pathological changes in injured spinal cord and exploring the possible mechanism related to the spontaneous recovery. RESULTS Immunofluorescence staining was performed to detect GAP43 expression in lesion site after spinal cord transection (SCT) in rats. Then RNA sequencing and gene ontology (GO) analysis were employed to predict lncRNA that correlates with GAP43. LncRNA smart-silencing was applied to verify the function of lncRNA vof16 in vitro, and knockout rats were used to evaluate its role in neurobehavioral functions after SCT. MicroRNA sequencing, target scan, and RNA22 prediction were performed to further explore the underlying regulatory mechanisms, and miR-185-5p stands out. A miR-185-5p site-regulated relationship with GAP43 and vof16 was determined by luciferase activity analysis. GAP43-silencing, miR-185-5p-mimic/inhibitor, and miR-185-5p knockout rats were also applied to elucidate their effects on spinal cord neurite growth and neurobehavioral function after SCT. We found that a time-dependent increase of GAP43 corresponded with the limited neurological recovery in rats with SCT. CRNA chip and GO analysis revealed lncRNA vof16 was the most functional in targeting GAP43 in SCT rats. Additionally, silencing vof16 suppressed neurite growth and attenuated the motor dysfunction in SCT rats. Luciferase reporter assay showed that miR-185-5p competitively bound the same regulatory region of vof16 and GAP43. CONCLUSIONS Our data indicated miR-185-5p could be a detrimental factor in SCT, and vof16 may function as a ceRNA by competitively binding miR-185-5p to modulate GAP43 in the process of self-recovery after SCT. Our study revealed a novel vof16-miR-185-5p-GAP43 regulatory network in neurological self-repair after SCT and may underlie the potential treatment target for SCI.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Department of Anesthesia Operation, The First People's Hospital of Shuangliu DistrictWest China Airport Hospital of Sichuan UniversityChengduChina
| | - Yi‐Fei Sun
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Hao Yuan
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Jia Liu
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Li Chen
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Dong‐Hui Liu
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Yang Xu
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Xin‐Fu Zhou
- Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Li Ding
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Ze‐Tao Zhang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Lu‐Lu Xue
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| | - Ting‐Hua Wang
- Department of Anesthesiology, Institute of Neurological Disease, Translational Neuroscience Center, West China HospitalSichuan UniversityChengduChina
- Laboratory Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
- State Key Laboratory of BiotherapySichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Scholpa NE. Role of DNA methylation during recovery from spinal cord injury with and without β 2-adrenergic receptor agonism. Exp Neurol 2023; 368:114494. [PMID: 37488045 DOI: 10.1016/j.expneurol.2023.114494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Daily treatment with the FDA-approved β2-adrenergic receptor agonist formoterol beginning 8 h after severe spinal cord injury (SCI) induces mitochondrial biogenesis and improves recovery in mice. We observed decreased DNA methyltransferase (DNMT) expression, global DNA methylation and methylation of the mitochondrial genes PGC-1α and NDUFS1 in the injury site of formoterol-treated mice 1 DPI, but this effect was lost by 7 DPI. To investigate the role of DNA methylation on recovery post-SCI, injured mice were treated daily with formoterol or vehicle, plus the DNMT inhibitor decitabine (DAC) on days 7-9. While DAC had no apparent effect on formoterol-induced recovery, mice treated with vehicle plus DAC exhibited increased BMS scores compared to vehicle alone beginning 15 DPI, reaching a degree of functional recovery similar to that of formoterol-treated mice by 21 DPI. Furthermore, DAC treatment increased injury site mitochondrial protein expression in vehicle-treated mice to levels comparable to that of formoterol-treated mice. The effect of DNMT inhibition on pain response with and without formoterol was assessed following moderate SCI. While all injured mice not treated with DAC displayed thermal hyperalgesia by 21 DPI, mice treated with formoterol exhibited decreased thermal hyperalgesia compared to vehicle-treated mice by 35 DPI. Injured mice treated with DAC, regardless of formoterol treatment, did not demonstrate thermal hyperalgesia at any time point assessed. Although these data do not suggest enhanced formoterol-induced recovery with DNMT inhibition, our findings indicate the importance of DNA methylation post-SCI and support both DNMT inhibition and formoterol as potential therapeutic avenues.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Southern Arizona VA Health Care System, Tucson, AZ, United States of America; Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, United States of America.
| |
Collapse
|
4
|
Guha L, Singh N, Kumar H. Different Ways to Die: Cell Death Pathways and Their Association With Spinal Cord Injury. Neurospine 2023; 20:430-448. [PMID: 37401061 PMCID: PMC10323345 DOI: 10.14245/ns.2244976.488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 07/22/2023] Open
Abstract
Cell death is a systematic/nonsystematic process of cessation of normal morphology and functional properties of the cell to replace and recycle old cells with new also promoting inflammation in some cases. It is a complicated process comprising multiple pathways. Some are well-explored, and others have just begun to be. The research on appropriate control of cell death pathways after acute and chronic damage of neuronal cells is being widely researched today due to the lack of regeneration and recovering potential of a neuronal cell after sustaining damage and the inability to control the direction of neuronal growth. In the progression and onset of various neurological diseases, impairments in programmed cell death signaling processes, like necroptosis, apoptosis, ferroptosis, pyroptosis, and pathways directly or indirectly linked, like autophagy as in nonprogrammed necrosis, are observed. Spinal cord injury (SCI) involves the temporary or permanent disruption of motor activities due to the death of a neuronal and glial cell in the spinal cord accompanied by axonal degeneration. Recent years have seen a significant increase in research on the intricate biochemical interactions that occur after a SCI. Different cell death pathways may significantly impact the subsequent damage processes that lead to the eventual neurological deficiency after an injury to the spinal cord. A better knowledge of the molecular basis of the involved cell death pathways might help enhance neuronal and glial survival and neurological deficits, promoting a curative path for SCI.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)- Ahmedabad, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
5
|
Kim HN, McCrea MR, Li S. Advances in molecular therapies for targeting pathophysiology in spinal cord injury. Expert Opin Ther Targets 2023; 27:171-187. [PMID: 37017093 PMCID: PMC10148912 DOI: 10.1080/14728222.2023.2194532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) affects 25,000-50,000 people around the world each year and there is no cure for SCI patients currently. The primary injury damages spinal cord tissues and secondary injury mechanisms, including ischemia, apoptosis, inflammation, and astrogliosis, further exacerbate the lesions to the spinal cord. Recently, researchers have designed various therapeutic approaches for SCI by targeting its major cellular or molecular pathophysiology. AREAS COVERED Some strategies have shown promise in repairing injured spinal cord for functional recoveries, such as administering neuroprotective reagents, targeting specific genes to promote robust axon regeneration of disconnected spinal fiber tracts, targeting epigenetic factors to enhance cell survival and neural repair, and facilitating neuronal relay pathways and neuroplasticity for restoration of function after SCI. This review focuses on the major advances in preclinical molecular therapies for SCI reported in recent years. EXPERT OPINION Recent progress in developing novel and effective repairing strategies for SCI is encouraging, but many challenges remain for future design of effective treatments, including developing highly effective neuroprotectants for early interventions, stimulating robust neuronal regeneration with functional synaptic reconnections among disconnected neurons, maximizing the recovery of lost neural functions with combination strategies, and translating the most promising therapies into human use.
Collapse
Affiliation(s)
- Ha Neui Kim
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Madeline R. McCrea
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center, Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
6
|
Wang Y, Luo H, Liu Y, Yang C, Yin Y, Tan B. Multimodal rehabilitation promotes axonal sprouting and functional recovery in a murine model of spinal cord injury (SCI). Neurosci Lett 2023; 795:137029. [PMID: 36566832 DOI: 10.1016/j.neulet.2022.137029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder affecting millions of people worldwide, resulting in severe and permanent disabilities that significantly impact the individual's life. Rehabilitation is a commonly accepted and effective clinical treatment modality for neurological disabilities. A single form of rehabilitation training is, however, limited. Indeed, recent studies have reported that a combination of various training strategies may be more promising in promoting functional recovery. However, few studies have focused on combining different forms of rehabilitative training. Here, we investigated the effect of combining treadmill training and single pellet grasping in a well-established model of murine SCI to assess whether combining rehabilitation approaches improve outcomes. In brief, one week following crush SCI, mice were subjected to the treadmill and single pellet grasping training (SPG) for a period of six weeks. Biotinylated dextran amine (BDA) was used to anterogradely trace corticospinal tract axons to assess functionally relevant axonal sprouting. Our results revealed that the combined training upregulated p-S6 expression, facilitated axonal sprouting, increased the formation of functional synaptic connections, and promoted functional recovery of the upper limb. Our study provides experimental evidence for the benefit of combining multiple modalities of rehabilitative strategies.
Collapse
Affiliation(s)
- Yunhang Wang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Haodong Luo
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Special War Wound, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ying Yin
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Botao Tan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
7
|
Schreiner C, Powell TL, Palmer C, Jansson T. Placental proteins with predicted roles in fetal development decrease in premature infants. Pediatr Res 2022; 92:1316-1324. [PMID: 35132128 PMCID: PMC9357234 DOI: 10.1038/s41390-022-01942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Emerging evidence from animal experiments indicate that factors secreted by the placenta are critical for normal fetal organ development. Our objective was to characterize the umbilical vein and artery proteome in preterm infants and identify proteins that decrease in the neonatal circulation following delivery. METHODS Cord blood at delivery and neonatal blood at 48-72 h of life was collected in 25 preterm infants. Plasma protein abundance was determined using the SomaLogic platform. RESULTS When comparing protein levels of umbilical venous to arterial cord blood, 434 proteins were significantly higher indicating placental secretion into the fetal circulation. Moreover, when comparing neonatal blood to umbilical vein levels, 142 proteins were significantly lower. These proteins included Endoplasmic reticulum resident protein 29, CD59, Fibroblast growth factor 2 and Dynactin subunit 2, which are involved in brain development and prevention of brain damage as well as Fibroblast growth factor 1 which prevents lung fibrosis. CONCLUSIONS The late second trimester human placenta secretes proteins into the fetal circulation which decrease following delivery. Many of these proteins are predicted to be important in the development of fetal organs. Further studies are needed to directly link placental proteins to organ development and poor outcomes in preterm infants. IMPACT Prematurity remains a leading cause of morbidity and mortality requiring the development of novel treatments. Emerging evidence from animal studies suggest that factors secreted from the placenta may be critical in the development of the fetus. We report that the preterm human placenta secretes an array of proteins into the fetal circulation. Some of these proteins are predicted to be involved in the development of the brain and the lung. When born prematurely, infants are deprived of these placental proteins, which may contribute to their poor outcomes.
Collapse
Affiliation(s)
- Cynthia Schreiner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Pediatrics at Renown Children's Hospital, Reno, NV, USA.
| | - Theresa L Powell
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Claire Palmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas Jansson
- Department of Obstetrics, Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Bai X, Xiong LL, Fang CL, Zhou HL, Xue LL, Hu Y, Xia QJ, Liu J, Zhang JY, Wang TH, Yang SJ. Interleukin 10 Plays an Important Role in Neonatal Rats with Hypoxic-Ischemia Associated with B-Cell Lymphoma 2 and Endoplasmic Reticulum Protein 29. Anal Cell Pathol (Amst) 2021; 2021:6622713. [PMID: 34123712 PMCID: PMC8189815 DOI: 10.1155/2021/6622713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/10/2021] [Indexed: 02/05/2023] Open
Abstract
Interleukin 10 (IL-10) is a synthetic inhibitor of human cytokines with immunomodulatory and anti-inflammatory effects. This study was designed to investigate the expression variation of IL-10 in the multiple sites including cortex, hippocampus, and lung tissues of neonatal hypoxic-ischemic (HI) rats and explore the crucial role of IL-10 in alleviating HI brain damage. In this study, neonatal Sprague-Dawley rats were subjected to the right common carotid artery ligation, followed by 2 h of hypoxia. The expression of IL-10 in the cortex, hippocampus, and lung tissues was measured with immunohistochemistry, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot (WB). Immunofluorescence double staining was performed to observe the localization of IL-10 in neurons and astrocytes. Moreover, not-targeting and targeting IL-10 siRNA lentivirus vectors were injected into the rats of the negative control (NC) and IL-10 group, respectively, and the mRNA levels of B-cell lymphoma 2 (Bcl-2) and endoplasmic reticulum protein 29 (ERp29) were detected by RT-qPCR following IL-10 silence. The results demonstrated that the IL-10 expression was markedly increased after HI and IL-10 were colocalized with neurons and astrocytes which were badly injured by HI insult. In addition, Bcl-2 and ERp29 were remarkably decreased following IL-10 mRNA interference compared with the NC group. Our findings revealed that IL-10 exerted its antiapoptotic and neuroprotective effects by regulating the expression of Bcl-2 and ERp29, indicating that IL-10 may be a promising molecule target for HIE treatment.
Collapse
Affiliation(s)
- Xue Bai
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Liu-Lin Xiong
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide 5000, Australia
| | - Chang-Le Fang
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Hao-Li Zhou
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu-Lu Xue
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming 650031, China
| | - Yue Hu
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia Liu
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming 650031, China
| | - Jun-Yan Zhang
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming 650031, China
| | - Si-Jin Yang
- Department of Cardiac and Cerebral Diseases, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
9
|
Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X, Feng S. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif 2021; 54:e12992. [PMID: 33506613 PMCID: PMC7941236 DOI: 10.1111/cpr.12992] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) always leads to functional deterioration due to a series of processes including cell death. In recent years, programmed cell death (PCD) is considered to be a critical process after SCI, and various forms of PCD were discovered in recent years, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis. Unlike necrosis, PCD is known as an active cell death mediated by a cascade of gene expression events, and it is crucial for elimination unnecessary and damaged cells, as well as a defence mechanism. Therefore, it would be meaningful to characterize the roles of PCD to not only enhance our understanding of the pathophysiological processes, but also improve functional recovery after SCI. This review will summarize and explore the most recent advances on how apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis are involved in SCI. This review can help us to understand the various functions of PCD in the pathological processes of SCI, and contribute to our novel understanding of SCI of unknown aetiology in the near future.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiahe Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| |
Collapse
|
10
|
Nakao H, Seko A, Ito Y, Sakono M. Dimerization of ER-resident molecular chaperones mediated by ERp29. Biochem Biophys Res Commun 2020; 536:52-58. [PMID: 33360823 DOI: 10.1016/j.bbrc.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
The lectin chaperones calnexin (CNX) and calreticulin (CRT) localized in the endoplasmic reticulum play important roles in glycoprotein quality control. Although the interaction between these lectin chaperones and ERp57 is well known, it has been recently reported that endoplasmic reticulum protein 29 (ERp29), a member of PDI family, interacts with CNX and CRT. The biochemical function of ERp29 is unclear because it exhibits no ERp57-like redox activity. In this study, we addressed the possibility that ER chaperones CNX and CRT are connected via ERp29, based on our observation that ERp29 exists as a dimer. As a result, we showed that CNX dimerizes through ERp29. These results endorse the hypothesis that ERp29 serves as a bridge that links two molecules of CNX. Also, we showed that similar complexes such as CNX-CRT were formed via ERp29.
Collapse
Affiliation(s)
- Hitomi Nakao
- Department of Applied Chemistry, University of Toyama 3190 Gofuku, Toyama, 930-855, Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Graduate School of Science, Osaka University Machikaneyama 1-1 Toyonaka, Osaka, 560-0043, Japan
| | - Masafumi Sakono
- Department of Applied Chemistry, University of Toyama 3190 Gofuku, Toyama, 930-855, Japan.
| |
Collapse
|
11
|
Zhong L, Zhang H, Ding ZF, Li J, Lv JW, Pan ZJ, Xu DX, Yin ZS. Erythropoietin-Induced Autophagy Protects Against Spinal Cord Injury and Improves Neurological Function via the Extracellular-Regulated Protein Kinase Signaling Pathway. Mol Neurobiol 2020; 57:3993-4006. [PMID: 32647973 DOI: 10.1007/s12035-020-01997-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022]
Abstract
The objective of this study was to explore the neuroprotective molecular mechanisms of erythropoietin (EPO) in rats following spinal cord injury (SCI). First, a standard SCI model was established. After drug or saline treatment was administered, locomotor function was evaluated in rats using the Basso, Beattie, and Bresnahan (BBB) locomotor rating scale. H&E, Nissl, and TUNEL staining were performed to assess the ratio of cavities, number of motor neurons, and apoptotic cells in the damaged area. The relative protein and mRNA expressions were examined using western blot and qRT-PCR analyses, and the inflammatory markers, axon special protein, and neuromuscular junctions (NMJs) were detected by immunofluorescence. Both doses of EPO notably improved locomotor function, but high-dose EPO was more effective than low-dose EPO. Moreover, EPO reduced the cavity ratio, cell apoptosis, and motor neuron loss in the damaged area, but enhanced the autophagy level and extracellular-regulated protein kinase (ERK) activity. Treatment with an ERK inhibitor significantly prevented the effect of EPO on SCI, and an activator mimicked the benefits of EPO. Further investigation revealed that EPO promoted SCI-induced autophagy via the ERK signaling pathway. EPO activates autophagy to promote locomotor function recovery in rats with SCI via the ERK signaling pathway.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.,Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Zheng-Fei Ding
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China
| | - Jian Li
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jin-Wei Lv
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China.,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Zheng-Jun Pan
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, #81 Mei Shan Road, Hefei, 230032, China. .,Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
12
|
Xiong L, Zhou H, Zhao Q, Xue L, Al-Hawwas M, He J, Wu M, Zou Y, Yang M, Dai J, He M, Wang T. Overexpression of miR-124 Protects Against Neurological Dysfunction Induced by Neonatal Hypoxic-Ischemic Brain Injury. Cell Mol Neurobiol 2020; 40:737-750. [PMID: 31916069 DOI: 10.1007/s10571-019-00769-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/29/2019] [Indexed: 12/20/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of lifelong disabilities worldwide, without effective therapies and clear regulatory mechanisms. MicroRNAs (miRNAs) act as a significant regulator in neuroregeneration and neuronal apoptosis, thus holding great potential as therapeutic targets in HIE. In this study, we established the hypoxia-ischemia (HI) model in vivo and oxygen-glucose deprivation (OGD) model in vitro. Zea-longa score and magnetic resonance imaging were applied to verify HI-induced neuronal dysfunction and brain infarction. Subsequently, a miRNA microarray analysis was employed to profile miRNA transcriptomes. Down-regulated miR-124 was found 24 h after HIE, which corresponded to the change in PC12, SHSY5Y, and neurons after OGD. To determine the function of miR-124, mimics and lentivirus-mediated overexpression were used to regulate miR-124 in vivo and in vitro, respectively. Our results showed that miR-124 overexpression obviously promoted cell survival and suppressed neuronal apoptosis. Further, the memory and neurological function of rats was also obviously improved at 1 and 2 months after HI, indicated by the neurological severity score, Y-maze test, open field test, and rotating rod test. Our findings showed that overexpression of miR-124 can be a promising new strategy for HIE therapy in future clinical practice.
Collapse
Affiliation(s)
- Liulin Xiong
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.,School of Pharmacy and Medical Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Haoli Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiong Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Lulu Xue
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Faculty of Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jingyuan He
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650031, China
| | - Maxiu Wu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yu Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Mingan Yang
- Division of Biostatistics and Epidemiology, School of Public Health, San Diego State University, San Diego, 92182, USA
| | - Jing Dai
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Manxi He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Tinghua Wang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China. .,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, 611731, China. .,Institute of Neuroscience, Animal Zoology Department, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
13
|
Xiong LL, Xue LL, Al-Hawwas M, Huang J, Niu RZ, Tan YX, Xu Y, Su YY, Liu J, Wang TH. Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage. Neural Regen Res 2020; 15:86-95. [PMID: 31535656 PMCID: PMC6862396 DOI: 10.4103/1673-5374.264469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A single-nucleotide polymorphism (SNP) is an alteration in one nucleotide in a certain position within a genome. SNPs are associated with disease susceptibility. However, the influences of SNPs on the pathogenesis of neonatal hypoxic-ischemic brain damage remain elusive. Seven-day-old rats were used to establish a hypoxic ischemic encephalopathy model. SNPs and expression profiles of mRNAs were analyzed in hypoxic ischemic encephalopathy model rats using RNA sequencing. Genes exhibiting SNPs associated with hypoxic ischemic encephalopathy were identified and studied by gene ontology and pathway analysis to identify their possible involvement in the disease mechanism. We identified 89 up-regulated genes containing SNPs that were mainly located on chromosome 1 and 2. Gene ontology analysis indicated that the up-regulated genes containing SNPs are mainly involved in angiogenesis, wound healing and glutamatergic synapse and biological processing of calcium-activated chloride channels. Signaling pathway analysis indicated that the differentially expressed genes play a role in glutamatergic synapses, long-term depression and oxytocin signaling. Moreover, intersection analysis of high throughput screening following PubMed retrieval and RNA sequencing for SNPs showed that CSRNP1, DUSP5 and LRRC25 were most relevant to hypoxic ischemic encephalopathy. Significant up-regulation of genes was confirmed by quantitative real-time polymerase chain reaction analysis of oxygen-glucose-deprived human fetal cortical neurons. Our results indicate that CSRNP1, DUSP5 and LRRC25, containing SNPs, may be involved in the pathogenesis of hypoxic ischemic encephalopathy. These findings indicate a novel direction for further hypoxic ischemic encephalopathy research. This animal study was approved on February 5, 2017 by the Animal Care and Use Committee of Kunming Medical University, Yunnan Province, China (approval No. kmmu2019038). Cerebral tissue collection from a human fetus was approved on September 30, 2015 by the Ethics Committee of Kunming Medical University, China (approval No. 2015-9).
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China; School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lu-Lu Xue
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jin Huang
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Rui-Ze Niu
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ya-Xin Tan
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying-Ying Su
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jia Liu
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ting-Hua Wang
- Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province; Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
14
|
Lin Q, Wang DG, Zhang ZQ, Liu DP. Applications of Virus Vector-Mediated Gene Therapy in China. Hum Gene Ther 2019; 29:98-109. [PMID: 29284296 DOI: 10.1089/hum.2017.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Due to the increased safety and efficiency of virus vectors, virus vector-mediated gene therapy is now widely used for various diseases, including monogenic diseases, complex disorders, and infectious diseases. Recent gene therapy trials have shown significant therapeutic benefits, and Chinese researchers have contributed significantly to this progress. This review highlights disease applications and strategies for virus vector-mediated gene therapy in preclinical studies and clinical trials in China.
Collapse
Affiliation(s)
- Qiong Lin
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Deng-Gao Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhu-Qin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Li X, Liu D, Xiao Z, Zhao Y, Han S, Chen B, Dai J. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation. Biomaterials 2019; 197:20-31. [PMID: 30639547 DOI: 10.1016/j.biomaterials.2019.01.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/10/2018] [Accepted: 01/05/2019] [Indexed: 01/18/2023]
Abstract
Complete transected spinal cord injury (SCI) severely influences the quality of life and mortality rates of animals and patients. In the past decade, many simple and combinatorial therapeutic treatments have been tested in improving locomotor function in animals with this extraordinarily challenging SCI. The potential mechanism for promotion of locomotor function relies either on direct motor axon regeneration through the lesion gap or indirect neuronal relay bridging to functionally reconnect transected spinal stumps. In this review, we first compare the advantages and problems of complete transection SCI animal models with other prevailing SCI models used in motor axon regeneration research. Next, we enumerate some of the popular bio-scaffolds utilized in complete SCI repair in the last decade. Then, the current state of motor axon regeneration as well as its role on locomotor improvement of animals after complete SCI is discussed. Last, the current approach of directing endogenous neuronal relays formation to achieve motor function recovery by well-designed functional bio-scaffolds implantation in complete transected SCI animals is reviewed. Although facilitating neuronal relays formation by bio-scaffolds implantation appears to be more practical and feasible than directing motor axon regeneration in promoting locomotor outcome in animals after complete SCI, there are still challenges in neuronal relays formation, maintaining and debugging for spinal cord regenerative repair.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University (CSU), Changsha, Hunan, 410008, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan Province, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sufang Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
Ye W, Li Z, Tang T, Du J, Zhou X, Wu H, Li X, Qin G. ERp29 downregulation enhances lung adenocarcinoma cell chemosensitivity to gemcitabine by upregulating HSP27 phosphorylation. Exp Ther Med 2018; 17:817-823. [PMID: 30651868 DOI: 10.3892/etm.2018.7040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of the current study was to assess the underlying mechanism of endoplasmic reticulum protein 29 (ERp29) in lung adenocarcinoma chemosensitivity to gemcitabine. Western blot analysis was performed to detect ERp29 expression following lung adenocarcinoma cell treatment with gemcitabine. The effects of gemcitabine in combination with ERp29 siRNA on cell apoptosis, cell cycle and heat shock protein 27 (HSP27) expression were assessed. The results demonstrated that ERp29 expression was increased on exposure to gemcitabine. The apoptotic rate of lung adenocarcinoma cells were also increased following gemcitabine treatment and the combined application of gemcitabine and ERp29 siRNA synergistically increased apoptotic rates further. It was also revealed that gemcitabine and ERp29 siRNA synergistically increased the ratio of phosphorylated to total HSP27 protein. In addition, downregulation of HSP27 significantly reduced lung adenocarcinoma chemosensitivity to gemcitabine. These data indicate that ERp29 affects lung adenocarcinoma cell chemosensitivity to gemcitabine by regulating phosphorylated HSP27. ERp29 is a novel target, which may be used to enhance the therapeutic effect of lung adenocarcinoma treatment with gemcitabine.
Collapse
Affiliation(s)
- Wu Ye
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhijun Li
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Tingyu Tang
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jianzong Du
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaoxi Zhou
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Haiyan Wu
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xuefang Li
- Department of Cardiovascular Medicine, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Guangyue Qin
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
17
|
Saito A, Imaizumi K. The broad spectrum of signaling pathways regulated by unfolded protein response in neuronal homeostasis. Neurochem Int 2018; 119:26-34. [DOI: 10.1016/j.neuint.2017.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023]
|
18
|
Yang Z, Zhang XR, Zhao Q, Wang SL, Xiong LL, Zhang P, Yuan B, Zhang ZB, Fan SY, Wang TH, Zhang YH. Knockdown of TNF‑α alleviates acute lung injury in rats with intestinal ischemia and reperfusion injury by upregulating IL‑10 expression. Int J Mol Med 2018; 42:926-934. [PMID: 29767265 PMCID: PMC6034932 DOI: 10.3892/ijmm.2018.3674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/26/2018] [Indexed: 02/05/2023] Open
Abstract
Intestinal ischemia and reperfusion (II/R) injury often triggers severe injury in remote organs, with the lungs being considered the main target. Excessive elevation of proinflammatory cytokines is a major contributor in the occurrence and development of II/R-induced acute lung injury (ALI). Therefore, the present study aimed to investigate whether blocking tumor necrosis factor-α (TNF-α) expression could protect the lungs from injury following II/R, and to explore the possible underlying mechanism involving interleukin-10 (IL-10). Briefly, II/R was induced in rats by 40 min occlusion of the superior mesenteric artery and celiac artery, followed by 8, 16 or 24 h of reperfusion. Subsequently, lentiviral vectors containing TNF-α short hairpin (sh)RNA were injected into the right lung tissues, in order to induce TNF-α knockdown. The severity of ALI was determined according to lung injury scores and lung edema (lung wet/dry weight ratio). The expression levels of TNF-α were analyzed by quantitative polymerase chain reaction (qPCR), western blotting and immunofluorescence (IF) staining. IL-10 expression, in response to TNF-α knockdown, was detected in lung tissues by qPCR and IF. The results detected marked inflammatory responses, and increased levels of lung wet/dry weight ratio and TNF-α expression, in the lungs of II/R rats. Conversely, treatment with TNF-α shRNA significantly alleviated the severity of ALI and upregulated the expression levels of IL-10 in lung tissues. These findings suggested that TNF-α RNA interference may exert a protective effect on II/R-induced ALI via the upregulation of IL-10. Therefore, TNF-α knockdown may be considered a potential strategy for the prevention or treatment of ALI induced by II/R in future clinical trials.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Xue-Rong Zhang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Qiong Zhao
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Sheng-Lan Wang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Liu-Lin Xiong
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Bing Yuan
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Zi-Bing Zhang
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shu-Yuan Fan
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yun-Hui Zhang
- Department of Respiration, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
19
|
McLaughlin T, Falkowski M, Wang JJ, Zhang SX. Molecular Chaperone ERp29: A Potential Target for Cellular Protection in Retinal and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:421-427. [PMID: 29721972 PMCID: PMC6040649 DOI: 10.1007/978-3-319-75402-4_52] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular chaperone endoplasmic reticulum protein 29 (ERp29) plays a critical role in protein folding, trafficking, and secretion. Though ubiquitously expressed, ERp29 is upregulated in response to ER stress and is found at higher levels in certain cell types such as secretory epithelial cells and neurons. As an ER resident protein, ERp29 shares many structural and functional similarities with protein disulfide isomerases, but is not regarded as part of this family due to several key differences. The broad expression and myriad roles of ERp29 coupled with its upregulation via the unfolded protein response (UPR) upon ER stress have implicated ERp29 in a range of cellular processes and diseases. We summarize the diverse activities of ERp29 in protein trafficking, cell survival and apoptosis, and ER homeostasis and highlight a potential role of ERp29 in neuroprotection in retinal and neurodegenerative diseases.
Collapse
Affiliation(s)
- Todd McLaughlin
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| | - Marek Falkowski
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Joshua J Wang
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA
| | - Sarah X Zhang
- Departments of Ophthalmology and Biochemistry, Ross Eye Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
- SUNY Eye Institute, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
20
|
Yang J, Xiong LL, Wang YC, He X, Jiang L, Fu SJ, Han XF, Liu J, Wang TH. Oligodendrocyte precursor cell transplantation promotes functional recovery following contusive spinal cord injury in rats and is associated with altered microRNA expression. Mol Med Rep 2017; 17:771-782. [PMID: 29115639 PMCID: PMC5780154 DOI: 10.3892/mmr.2017.7957] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 08/08/2017] [Indexed: 02/05/2023] Open
Abstract
It has been reported that oligodendrocyte precursor cells (OPCs) may be used to treat contusive spinal cord injury (SCC), and may alter microRNA (miRNA/miR) expression following SCC in rats. However, the association between miRNA expression and the treatment of rats with SCC with OPC transplantation remain unclear. The present study transplanted OPCs into the spinal cord of rats with SCC and subsequently used the Basso, Beattie and Bresnahan (BBB) score to assess the functional recovery and pain scores. An miRNA assay was performed to detect differentially expressed miRNAs in the spinal cord of SCC rats transplanted with OPCs, compared with SCC rats transplanted with medium. Quantitative polymerase chain reaction was used to verify significantly altered miRNA expression levels. The results demonstrated that OPC transplantation was able to improve motor recovery and relieve mechanical allodynia in rats with SCC. In addition, through a miRNA assay, 45 differentially expressed miRNAs (40 upregulated miRNAs and 5 downregulated miRNAs) were detected in the spinal cord of rats in the OPC group compared with in the Medium group. Differentially expressed miRNAs were identified according to the following criteria: Fold change >2 and P<0.05. Furthermore, quantitative polymerase chain reaction was used to verify the most highly upregulated (miR‑375‑3p and miR‑1‑3p) and downregulated (miR‑363‑3p, miR‑449a‑5p and miR‑3074) spinal cord miRNAs that were identified in the miRNA assay. In addition, a bioinformatics analysis of these miRNAs indicated that miR‑375 and miR‑1 may act primarily to inhibit cell proliferation and apoptosis via transcriptional and translational regulation, whereas miR‑363, miR‑449a and miR‑3074 may act primarily to inhibit cell proliferation and neuronal differentiation through transcriptional regulation. These results suggested that OPC transplantation may promote functional recovery of rats with SCC, which may be associated with the expression of various miRNAs in the spinal cord, including miR‑375‑3p, miR‑1‑3p, miR‑363‑3p, miR‑449a‑5p and miR‑3074.
Collapse
Affiliation(s)
- Jin Yang
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Liu-Lin Xiong
- Department of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - You-Cui Wang
- Institute of Neurobiological Disease, State Key Laboratory of Biotherapy, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang He
- Department of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ling Jiang
- Department of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Song-Jun Fu
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xue-Fei Han
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jia Liu
- Experimental Animal Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ting-Hua Wang
- Institute of Neuroscience, College of Basic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
21
|
Xiong LL, Liu F, Deng SK, Liu J, Dan QQ, Zhang P, Zou Y, Xia QJ, Wang TH. Transplantation of Hematopoietic Stem Cells Promotes Functional Improvement Associated with NT-3-MEK-1 Activation in Spinal Cord-Transected Rats. Front Cell Neurosci 2017; 11:213. [PMID: 28769769 PMCID: PMC5515877 DOI: 10.3389/fncel.2017.00213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 07/04/2017] [Indexed: 02/05/2023] Open
Abstract
Transected spinal cord injury (SCT) is a devastating clinical disease that strongly affects a patient’s daily life and remains a great challenge for clinicians. Stem-cell therapy has been proposed as a potential therapeutic modality for SCT. To investigate the effects of hematopoietic stem cells (HSCs) on the recovery of structure and function in SCT rats and to explore the mechanisms associated with recovery, 57 adult Sprague-Dawley rats were randomly divided into sham (n = 15), SCT (n = 24), and HSC transplantation groups (n = 15). HSCs (passage 3) labeled by Hoechst 33342, were transplanted intraspinally into the rostral, scar and caudal sites of the transected lesion at 14 days post-operation. Both in vitro and in vivo, HSCs exhibited a capacity for cell proliferation and differentiation. Following HSC transplantation, the animals’ Basso, Beattie, and Bresnahan (BBB). locomotion scale scores increased significantly between weeks 4 and 24 post-SCT, which corresponded to an increased number of 5-hydroxytryptamine (5-HT) fibers and oligodendrocytes. The amount of astrogliosis indicated by immunohistochemical staining, was markedly decreased. Moreover, the decreased expression of neurotrophin- 3 (NT-3) and mitogen-activated protein kinase kinase-1 (MEK-1) after SCT was effectively restored by HSC transplantation. The data from the current study indicate that intraspinally administered HSCs in the chronic phase of SCT results in an improvement in neurological function. Further, the results indicate that intraspinally administered HSCs benefit the underlying mechanisms involved in the enhancement of 5-HT-positive fibers and oligogenesis, the suppression of excessive astrogliosis and the upregulation of NT3-regulated MEK-1 activation in the spinal cord. These crucial findings reveal not only the mechanism of cell therapy, but may also contribute to a novel therapeutic target for the treatment of spinal cord injury (SCI).
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Fei Liu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Shi-Kang Deng
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Qi-Qin Dan
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical UniversityKunming, China
| | - Yu Zou
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China.,Institute of Neuroscience, Kunming Medical UniversityKunming, China
| |
Collapse
|
22
|
Interleukin‑6 RNA knockdown ameliorates acute lung injury induced by intestinal ischemia reperfusion in rats by upregulating interleukin‑10 expression. Mol Med Rep 2017; 16:2529-2537. [PMID: 28713893 PMCID: PMC5548063 DOI: 10.3892/mmr.2017.6932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/07/2017] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury (ALI) is a common complication following intestinal ischemia/reperfusion (II/R) injury and contributes to the associated high mortality rate. However, the underlying mechanism is poorly understood and treatments are limited. RNA interference (RNAi) has been demonstrated to provide a promising disease treatment strategy both in vitro and in vivo. Therefore, the present study aimed to test whether blocking the proinflammatory cytokine IL‑6 by RNAi may protect the lungs from remote organ injury following II/R, and to investigate the potential underlying mechanisms. A total of 176 adult healthy male Sprague‑Dawley rats were randomly divided into sham, II/R, negative‑control and IL‑6‑short hairpin (sh)RNA groups. The rats underwent II/R injury with occlusion of the superior mesenteric artery and coeliac artery to induce ischemia for 40 min, and were subsequently reperfused for 0‑48 h. The negative‑control group received a control lentiviral vector containing scrambled or non‑specific sequences, and the IL‑6‑shRNA groups were administered with a vector containing an IL‑6 shRNA sequence to affect RNAi‑mediated knockdown of IL‑6. ALI severity was determined by lung edema (lung wet/dry ratio) and histological analysis (lung injury scores). IL‑6 localization, and mRNA and protein expression levels, were detected by immunofluorescence, reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. IL‑10 expression induced by IL‑6 knockdown in lung tissues was additionally detected. IL‑6 RNAi was revealed to significantly reduce the expression of IL‑6, which was associated with upregulated IL‑10 expression in lung tissues. Consequently, the severities of ALI and edema induced by II/R were substantially improved. In conclusion, the present study demonstrated that IL‑6 RNAi may protect the lung from ALI induced by II/R, and that this protective role may be associated with upregulation of IL‑10. These findings may contribute to the development of an IL‑6‑RNAi‑based therapeutic strategy for the treatment of II/R‑induced ALI.
Collapse
|
23
|
Xiong LL, Liu F, Lu BT, Zhao WL, Dong XJ, Liu J, Zhang RP, Zhang P, Wang TH. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews. Front Cell Neurosci 2017; 11:172. [PMID: 28701922 PMCID: PMC5487382 DOI: 10.3389/fncel.2017.00172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/07/2017] [Indexed: 02/05/2023] Open
Abstract
Hemi-sectioned spinal cord injury (hSCI) can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs) transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10). Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs) both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β) density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3) and ciliary neurotrophic factor (CNTF) mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB) locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3 signaling.
Collapse
Affiliation(s)
- Liu-Lin Xiong
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China.,Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Fei Liu
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Bing-Tuan Lu
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Wen-Ling Zhao
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China
| | - Xiu-Juan Dong
- Key Laboratory of National Physical Fitness and Altitude Training Adaptation in Yunnan Province, Institute of Physical Education, Yunnan Normal UniversityKunming, China
| | - Jia Liu
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Rong-Ping Zhang
- Biomedical Engineering Research Center, Kunming Medical UniversityKunming, China
| | - Piao Zhang
- Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| | - Ting-Hua Wang
- Institute of Neurological Disease and Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengdu, China.,Institute of Neuroscience, Animal Zoology Department, Kunming Medical UniversityKunming, China
| |
Collapse
|
24
|
Wang PF, Xu DY, Zhang Y, Liu XB, Xia Y, Zhou PY, Fu QG, Xu SG. Deletion of mammalian sterile 20-like kinase 1 attenuates neuronal loss and improves locomotor function in a mouse model of spinal cord trauma. Mol Cell Biochem 2017; 431:11-20. [PMID: 28210902 DOI: 10.1007/s11010-017-2969-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/02/2017] [Indexed: 11/25/2022]
Abstract
Neuronal cell death following spinal cord injury (SCI) is an important contributor to neurological deficits. The purpose of our work was to delineate the function of mammalian sterile 20-like kinase 1 (Mst1), a pro-apoptotic kinase and key mediator of apoptotic signaling, in the pathogenesis of an experimental mouse model of SCI. Male mice received a mid-thoracic spinal contusion injury, and it was found that phosphorylation of Mst1 at the injured site was enhanced significantly following SCI. Furthermore, when compared to the wild-type controls, Mst1-deficient mice displayed improved locomotor function by increased Basso mouse scale score. Deletion of Mst1 in mice attenuated loss of motor neurons and suppressed microglial and glial activation following SCI. Deletion of Mst1 in mice reduced apoptosis via suppressing cytochrome c release and caspase-3 activation following SCI. Deletion of Mst1 attenuated mitochondrial dysfunction and increased ATP formation following SCI. Deletion of Mst1 in mice inhibited local inflammation following SCI, evidenced by reduced activities of myeloperoxidase and protein levels of TNF-α, IL-1β, and IL-6. In conclusion, the present study demonstrated that deletion of Mst1 attenuated neuronal loss and improved locomotor function in a mouse model of SCI, via preserving mitochondrial function, attenuating mitochondria-mediated apoptotic pathway, and suppressing inflammation, at least in part.
Collapse
Affiliation(s)
- Pan-Feng Wang
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Da-Yuan Xu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yuntong Zhang
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Xiao-Bin Liu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yan Xia
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Pan-Yu Zhou
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Qing-Ge Fu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Shuo-Gui Xu
- War and Traumat Emergency Centre, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|
25
|
Zafar S, Behrens C, Dihazi H, Schmitz M, Zerr I, Schulz-Schaeffer WJ, Ramljak S, Asif AR. Cellular prion protein mediates early apoptotic proteome alternation and phospho-modification in human neuroblastoma cells. Cell Death Dis 2017; 8:e2557. [PMID: 28102851 PMCID: PMC5386350 DOI: 10.1038/cddis.2016.384] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 01/08/2023]
Abstract
Anti-apoptotic properties of physiological and elevated levels of the cellular prion protein (PrPc) under stress conditions are well documented. Yet, detrimental effects of elevated PrPc levels under stress conditions, such as exposure to staurosporine (STS) have also been described. In the present study, we focused on discerning early apoptotic STS-induced proteome and phospho-proteome changes in SH-SY5Y human neuroblastoma cells stably transfected either with an empty or PRNP-containing vector, expressing physiological or supraphysiological levels of PrPc, respectively. PrPc-overexpression per se appears to stress the cells under STS-free conditions as indicated by diminished cell viability of PrPc-overexpressing versus control cells. However, PrPc-overexpression becomes advantageous following exposure to STS. Thus, only a short exposure (2 h) to 1 μM STS results in lower survival rates and significantly higher caspase-3 activity in control versus PrPc-overexpressing cells. Hence, by exposing both experimental groups to the same apoptotic conditions we were able to induce apoptosis in control, but not in PrPc-overexpressing cells (as assessed by caspase-3 activity), which allowed for filtering out proteins possibly contributing to protection against STS-induced apoptosis in PrPc-overexpressing cells. Among other proteins regulated by different PrPc levels following exposure to STS, those involved in maintenance of cytoskeleton integrity caught our attention. In particular, the finding that elevated PrPc levels significantly reduce profilin-1 (PFN-1) expression. PFN-1 is known to facilitate STS-induced apoptosis. Silencing of PFN-1 expression by siRNA significantly increased viability of PrPc-overexpressing versus control cells, under STS treatment. In addition, PrPc-overexpressing cells depleted of PFN-1 exhibited increased viability versus PrPc-overexpressing cells with preserved PFN-1 expression, both subjected to STS. Concomitant increase in caspase-3 activity was observed in control versus PrPc-overexpressing cells after treatment with siRNA- PFN-1 and STS. We suggest that reduction of PFN-1 expression by elevated levels of PrPc may contribute to protective effects PrPc-overexpressing SH-SY5Y cells confer against STS-induced apoptosis.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Christina Behrens
- Department of Neuropathology, Georg-August University, Goettingen 37075, Germany
| | - Hassan Dihazi
- Department of Nephrology and Rheumatology, Georg-August University, Goettingen 37075, Germany
| | - Matthias Schmitz
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | - Inga Zerr
- Department of Neurology, Georg-August University, Goettingen 37075, Germany
| | | | | | - Abdul R Asif
- Institute for Clinical Chemistry / UMG-Laboratories, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| |
Collapse
|
26
|
Zhang L, Dan Q, Zou Y, Xia Q, Yuan H. Breviscapine promotes functional recovery in rats with traumatic brain injury associated with netrin‐1 upregulation. IBRAIN 2017. [DOI: 10.1002/j.2769-2795.2017.tb00017.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lang‐Chun Zhang
- Center of Experimental Animals, Kunming Medical UniversityKunmingYunnanChina
| | - Qi‐Qin Dan
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Yu Zou
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qing‐Jie Xia
- Translational Neuroscience Center, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Hao Yuan
- Department of Spinal SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
27
|
Wang YC, Feng GY, Xia QJ, Hu Y, Xu Y, Xiong LL, Chen ZW, Wang HP, Wang TH, Zhou X. Knockdown of α-synuclein in cerebral cortex improves neural behavior associated with apoptotic inhibition and neurotrophin expression in spinal cord transected rats. Apoptosis 2016; 21:404-20. [PMID: 26822976 DOI: 10.1007/s10495-016-1218-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) often causes severe functional impairment with poor recovery. The treatment, however, is far from satisfaction, and the mechanisms remain unclear. By using proteomics and western blot, we found spinal cord transection (SCT) resulted in a significant down-regulation of α-synuclein (SNCA) in the motor cortex of SCT rats at 3 days post-operation. In order to detect the role of SNCA, we used SNCA-ORF/shRNA lentivirus to upregulate or knockdown SNCA expression. In vivo, SNCA-shRNA lentivirus injection into the cerebral cortex motor area not only inhibited SNCA expression, but also significantly enhanced neurons' survival, and attenuated neuronal apoptosis, as well as promoted motor and sensory function recovery in hind limbs. While, overexpression SNCA exhibited the opposite effects. In vitro, cortical neurons transfected with SNCA-shRNA lentivirus gave rise to an optimal neuronal survival and neurite outgrowth, while it was accompanied by reverse efficiency in SNCA-ORF group. In molecular level, SNCA silence induced the upregulation of Bcl-2 and the downregulation of Bax, and the expression of NGF, BDNF and NT3 was substantially upregulated in cortical neurons. Together, endogenous SNCA play a crucial role in motor and sensory function regulation, in which, the underlying mechanism may be linked to the regulation of apoptosis associated with apoptotic gene (Bax, Bcl2) and neurotrophic factors expression (NGF, BDNF and NT3). These finds provide novel insights to understand the role of SNCA in cerebral cortex after SCT, and it may be as a novel treatment target for SCI repair in future clinic trials.
Collapse
Affiliation(s)
- You-Cui Wang
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guo-Ying Feng
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qing-Jie Xia
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Hu
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Xu
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liu-Lin Xiong
- Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Wei Chen
- Institute of Physical Education, Yunnan Normal University, Kunming, 650500, China
| | - Hang-Ping Wang
- Institute of Physical Education, Yunnan Normal University, Kunming, 650500, China
| | - Ting-Hua Wang
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China. .,Institute of Neuroscience, Kunming Medical University, Kunming, 650031, China. .,Department of Anesthesiology and Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xue Zhou
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, State Key Lab of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 2016; 6:35205. [PMID: 27748416 PMCID: PMC5066253 DOI: 10.1038/srep35205] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Neuroregeneration and apoptosis are two important pathophysiologic changes after spinal cord injury (SCI), but their underlying mechanisms remain unclear. MicroRNAs (miRNAs) play a crucial role in the regulation of neuroregeneration and neuronal apoptosis, research areas that have been greatly expanded in recent years. Here, using miRNA arrays to profile miRNA transcriptomes, we demonstrated that miR-127-3p was significantly down-regulated after spinal cord transection (SCT). Then, bioinformatics analyses and experimental detection showed that miR-127-3p exhibited specific effects on the regulation of neurite outgrowth and the induction of neuronal apoptosis by regulating the expression of the mitochondrial membrane protein mitoNEET. Moreover, knockdown of MitoNEET leaded to neuronal loss and apoptosis in primary cultured spinal neurons. This study therefore revealed that miR-127-3p, which targets mitoNEET, plays a vital role in regulating neurite outgrowth and neuronal apoptosis after SCT. Thus, modificatioin of the mitoNEET expression, such as mitoNEET activition may provide a new strategy for the treatment of SCI in preclinical trials.
Collapse
|
29
|
Chen MR, Dai P, Wang SF, Song SH, Wang HP, Zhao Y, Wang TH, Liu J. BDNF Overexpression Exhibited Bilateral Effect on Neural Behavior in SCT Mice Associated with AKT Signal Pathway. Neurochem Res 2016; 41:2585-2597. [PMID: 27278760 DOI: 10.1007/s11064-016-1970-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/31/2023]
Abstract
Spinal cord injury (SCI), a severe health problem in worldwide, was commonly associated with functional disability and reduced quality of life. As the expression of brain-derived neurotrophic factor (BDNF) was substantial event in injured spinal cord, we hypothesized whether BDNF-overexpression could be in favor of the recovery of both sensory function and hindlimb function after SCI. By using BDNF-overexpression transgene mice [CMV-BDNF 26 (CB26) mice] we assessed the role of BDNF on the recovery of neurological behavior in spinal cord transection (SCT) model. BMS score and tail-flick test was performed to evaluate locomotor function and sensory function, respectively. Immunohistochemistry was employed to detect the location and the expression of BDNF, NeuN, 5-HT, GAP-43, GFAP as well as CGRP, and the level of p-AKT and AKT were examined through western blot analysis. BDNF overexpressing resulted in significant locomotor functional recovery from 21 to 28 days after SCT, compared with wild type (WT)+SCT group. Meanwhile, the NeuN, 5-HT and GAP-43 positive cells were markedly increased in ventral horn in BDNF overexpression animals, compared with WT mice with SCT. Moreover, the crucial molecular signal, p-AKT/AKT has been largely up-regulated, which is consistent with the improvement of locomotor function. However, in this study, thermal hyperpathia encountered in sham (CB26) group and WT+SCT mice and further aggravated in CB26 mice after SCT. Also, following SCT, the significant augment of positive-GFAP astrocytes and CGRP fibers were found in WT+SCT mice, and further increase was seen in BDNF over-expression transgene mice. BDNF-overexpression may not only facilitate the recovery of locomotor function via AKT pathway, but also contributed simultaneously to thermal hyperalgesia after SCT.
Collapse
Affiliation(s)
- Mei-Rong Chen
- Animal Center, Kunming Medical University, Kunming, 650031, China
| | - Ping Dai
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China
| | - Shu-Fen Wang
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China
| | - Shu-Hua Song
- Key Laboratory of National Physical Health and Altitude Training Adaptation in Yunnan Normal University, Kunming, 650000, China
| | - Hang-Ping Wang
- Key Laboratory of National Physical Health and Altitude Training Adaptation in Yunnan Normal University, Kunming, 650000, China
| | - Ya Zhao
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China
| | - Ting-Hua Wang
- Animal Center, Kunming Medical University, Kunming, 650031, China.
- Institute of Neuroscience, Molecular Clinic Institute, Kunming Medical University, Kunming, 650031, China.
| | - Jia Liu
- Animal Center, Kunming Medical University, Kunming, 650031, China.
| |
Collapse
|
30
|
Endoplasmic Reticulum Protein 29 Protects Axotomized Neurons from Apoptosis and Promotes Neuronal Regeneration Associated with Erk Signal. Mol Neurobiol 2014; 52:522-32. [DOI: 10.1007/s12035-014-8840-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
|