1
|
He X, Li Y, Deng B, Lin A, Zhang G, Ma M, Wang Y, Yang Y, Kang X. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities. Cell Prolif 2022; 55:e13275. [PMID: 35754255 PMCID: PMC9436900 DOI: 10.1111/cpr.13275] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Objects Traumatic spinal cord injury (TSCI) causes neurological dysfunction below the injured segment of the spinal cord, which significantly impacts the quality of life in affected patients. The phosphoinositide 3kinase/serine‐threonine kinase (PI3K/AKT) signaling pathway offers a potential therapeutic target for the inhibition of secondary TSCI. This review summarizes updates concerning the role of the PI3K/AKT pathway in TSCI. Materials and Methods By searching articles related to the TSCI field and the PI3K/AKT signaling pathway, we summarized the mechanisms of secondary TSCI and the PI3K/AKT signaling pathway; we also discuss current and potential future treatment methods for TSCI based on the PI3K/AKT signaling pathway. Results Early apoptosis and autophagy after TSCI protect the body against injury; a prolonged inflammatory response leads to the accumulation of pro‐inflammatory factors and excessive apoptosis, as well as excessive autophagy in the surrounding normal nerve cells, thus aggravating TSCI in the subacute stage of secondary injury. Initial glial scar formation in the subacute phase is a protective mechanism for TSCI, which limits the spread of damage and inflammation. However, mature scar tissue in the chronic phase hinders axon regeneration and prevents the recovery of nerve function. Activation of PI3K/AKT signaling pathway can inhibit the inflammatory response and apoptosis in the subacute phase after secondary TSCI; inhibiting this pathway in the chronic phase can reduce the formation of glial scar. Conclusion The PI3K/AKT signaling pathway has an important role in the recovery of spinal cord function after secondary injury. Inducing the activation of PI3K/AKT signaling pathway in the subacute phase of secondary injury and inhibiting this pathway in the chronic phase may be one of the potential strategies for the treatment of TSCI.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Ying Li
- Medical School of Yan'an University, Yan'an University, Yan'an, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Aixin Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Miao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| |
Collapse
|
2
|
Nakao H, Seko A, Ito Y, Sakono M. Dimerization of ER-resident molecular chaperones mediated by ERp29. Biochem Biophys Res Commun 2020; 536:52-58. [PMID: 33360823 DOI: 10.1016/j.bbrc.2020.12.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
The lectin chaperones calnexin (CNX) and calreticulin (CRT) localized in the endoplasmic reticulum play important roles in glycoprotein quality control. Although the interaction between these lectin chaperones and ERp57 is well known, it has been recently reported that endoplasmic reticulum protein 29 (ERp29), a member of PDI family, interacts with CNX and CRT. The biochemical function of ERp29 is unclear because it exhibits no ERp57-like redox activity. In this study, we addressed the possibility that ER chaperones CNX and CRT are connected via ERp29, based on our observation that ERp29 exists as a dimer. As a result, we showed that CNX dimerizes through ERp29. These results endorse the hypothesis that ERp29 serves as a bridge that links two molecules of CNX. Also, we showed that similar complexes such as CNX-CRT were formed via ERp29.
Collapse
Affiliation(s)
- Hitomi Nakao
- Department of Applied Chemistry, University of Toyama 3190 Gofuku, Toyama, 930-855, Japan
| | - Akira Seko
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yukishige Ito
- Japan Science and Technology Agency (JST), ERATO Ito Glycotrilogy Project, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; RIKEN Cluster for Pioneering Research 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan; Graduate School of Science, Osaka University Machikaneyama 1-1 Toyonaka, Osaka, 560-0043, Japan
| | - Masafumi Sakono
- Department of Applied Chemistry, University of Toyama 3190 Gofuku, Toyama, 930-855, Japan.
| |
Collapse
|
3
|
de Seny D, Bianchi E, Baiwir D, Cobraiville G, Collin C, Deliège M, Kaiser MJ, Mazzucchelli G, Hauzeur JP, Delvenne P, Malaise MG. Proteins involved in the endoplasmic reticulum stress are modulated in synovitis of osteoarthritis, chronic pyrophosphate arthropathy and rheumatoid arthritis, and correlate with the histological inflammatory score. Sci Rep 2020; 10:14159. [PMID: 32887899 PMCID: PMC7473860 DOI: 10.1038/s41598-020-70803-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
It is now well recognized that osteoarthritis (OA) synovial membrane presents inflammatory components. The aim of this work is to provide evidence that similar inflammatory mechanisms exist in synovial membrane (n = 24) obtained from three pathologies presenting altogether an inflammatory gradient: OA, chronic pyrophosphate arthropathy (CPPA) and rheumatoid arthritis (RA). Synovial biopsies were first characterized by a histological score based on synovial hyperplasia and infiltration of lymphocytes, plasma cells, polymorphonuclear and macrophages. All biopsies were also analyzed by 2D-nano-UPLC-ESI-Q-Orbitrap for protein identification and quantification. Protein levels were correlated with the histological score. Histological score was in the range of 3 to 8 for OA, 5 to 13 for CPPA and 12 to 17 for RA. Of the 4,336 proteins identified by mass spectrometry, 51 proteins were selected for their strong correlation (p < 0.001) with the histological score of which 11 proteins (DNAJB11, CALR, ERP29, GANAB, HSP90B1, HSPA1A, HSPA5, HYOU1, LMAN1, PDIA4, and TXNDC5) were involved in the endoplasmic reticulum (ER) stress. Protein levels of S100A8 and S100A9 were significantly higher in RA compared to OA (for both) or to CPPA (for S100A8 only) and also significantly correlated with the histological score. Eighteen complement component proteins were identified, but only C1QB and C1QBP were weakly correlated with the histological score. This study highlights the inflammatory gradient existing between OA, CPPA and RA synovitis either at the protein level or at the histological level. Inflamed synovitis was characterized by the overexpression of ER stress proteins.
Collapse
Affiliation(s)
- Dominique de Seny
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium.
| | - Elettra Bianchi
- Department of Pathology, GIGA Research, CHU Liege, 4000, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, 4000, Liege, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Charlotte Collin
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Mégane Deliège
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Marie-Joëlle Kaiser
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Unit Research, University of Liege, 4000, Liege, Belgium
| | - Jean-Philippe Hauzeur
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| | - Philippe Delvenne
- Department of Pathology, GIGA Research, CHU Liege, 4000, Liège, Belgium
| | - Michel G Malaise
- Laboratory of Rheumatology, GIGA Research, CHU Liege, Tour GIGA, +2, 4000, Liege, Belgium
| |
Collapse
|
4
|
Wang K, Lou Y, Xu H, Zhong X, Huang Z. Harpagide from Scrophularia protects rat cortical neurons from oxygen-glucose deprivation and reoxygenation-induced injury by decreasing endoplasmic reticulum stress. JOURNAL OF ETHNOPHARMACOLOGY 2020; 253:112614. [PMID: 32007630 DOI: 10.1016/j.jep.2020.112614] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Harpagide is the main ingredient in Scrophularia ningpoensis Hemsl which is used for the therapeutic purpose of treating encephalopathy. Harpagide has shown promise in the treatment of oxygen-glucose deprivation and reoxygenation (OGD/R)-induced brain injury. However, the underlying mechanisms remain unclear. AIM OF STUDY In this study, we aimed to determine the neuroprotective effect of harpagide on rat cortical neurons under OGD/R conditions that induce the development of ischaemia-reperfusion (I/R). MATERIALS AND METHODS To explore the biological function of harpagide in cerebral ischaemia-reperfusion injury (CIRI), The CIRI model was established by oxygen-glucose deprivation and reoxygenation (OGD/R) on rat cortical neurons. It tested cell survival rate by 3-(4,5-dimethylthiazol-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, apoptosis by flow cytometry, intracellular Ca2+ concentration [Ca2+] i by cofocal laser, and expressions related to endoplasmic reticulum stress (ERS) by RT-PCR and Western blot. RESULTS We found that pretreatment with harpagide (50 μM) prevented OGD/R-induced apoptotic cell death. Harpagide also significantly decreased the gene expression levels and protein production of ERS-related proteins. We found that harpagide also exerted a neuroprotective effect on TG-induced apoptosis in rat cortical neurons and decreased the gene expression levels and protein production of GRP78, caspase-12 and CHOP. We also measured the intracellular calcium ion concentration ([Ca2+]i) in neurons and found that harpagide significantly decreased the [Ca2+]i induced by OGD/R and TG. CONCLUSION These results suggest that harpagide protects against OGD/R-induced cell apoptosis, likely by decreasing ERS. Collectively, harpagide was demonstrated to be a prominent suppressor of ERS and prevented the apoptosis of rat cortical neurons. Based on the results, harpagide could potentially serve as a therapeutic agent of ischaemia-like injury associated with excessive ERS and apoptosis.
Collapse
Affiliation(s)
- Ke Wang
- Medical College, Jiaxing University, Jiaxing, 314001, China.
| | - Yeliang Lou
- Institute of Traditional She Medicine, Department of Pharmacy, Lishui People's Hospital, Lishui, 323000, China.
| | - Huang Xu
- Medical College, Jiaxing University, Jiaxing, 314001, China.
| | - Xiaoming Zhong
- College of Pharmacy, Zhe Jiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhen Huang
- College of Pharmacy, Zhe Jiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
5
|
Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:2702-2726. [PMID: 32328876 DOI: 10.1007/s12035-020-01916-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
Degradomics is a proteomics sub-discipline whose goal is to identify and characterize protease-substrate repertoires. With the aim of deciphering and characterizing key signature breakdown products, degradomics emerged to define encryptic biomarker neoproteins specific to certain disease processes. Remarkable improvements in structural and analytical experimental methodologies as evident in research investigating cellular behavior in neuroscience and cancer have allowed the identification of specific degradomes, increasing our knowledge about proteases and their regulators and substrates along with their implications in health and disease. A physiologic balance between protein synthesis and degradation is sought with the activation of proteolytic enzymes such as calpains, caspases, cathepsins, and matrix metalloproteinases. Proteolysis is essential for development, growth, and regeneration; however, inappropriate and uncontrolled activation of the proteolytic system renders the diseased tissue susceptible to further neurotoxic processes. In this article, we aim to review the protease-substrate repertoires as well as emerging therapeutic interventions in spinal cord injury at the degradomic level. Several protease substrates and their breakdown products, essential for the neuronal structural integrity and functional capacity, have been characterized in neurotrauma including cytoskeletal proteins, neuronal extracellular matrix glycoproteins, cell junction proteins, and ion channels. Therefore, targeting exaggerated protease activity provides a potentially effective therapeutic approach in the management of protease-mediated neurotoxicity in reducing the extent of damage secondary to spinal cord injury.
Collapse
|
6
|
γ-Oryzanol Improves Cognitive Function and Modulates Hippocampal Proteome in Mice. Nutrients 2019; 11:nu11040753. [PMID: 30935111 PMCID: PMC6520752 DOI: 10.3390/nu11040753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the richest source of γ-oryzanol, a compound endowed with antioxidant and anti-inflammatory properties. γ-Oryzanol has been demonstrated to cross the blood-brain barrier in intact form and exert beneficial effects on brain function. This study aimed to clarify the effects of γ-oryzanol in the hippocampus in terms of cognitive function and protein expression. Adult mice were administered with γ-oryzanol 100 mg/kg or vehicle (control) once a day for 21 consecutive days following which cognitive behavior and hippocampal proteome were investigated. Cognitive tests using novel object recognition and Y-maze showed that long-term consumption of γ-oryzanol improves cognitive function in mice. To investigate the hippocampal proteome modulated by γ-oryzanol, 2D-difference gel electrophoresis (2D-DIGE) was performed. Interestingly, we found that γ-oryzanol modulates quantitative changes of proteins involved in synaptic plasticity and neuronal trafficking, neuroprotection and antioxidant activity, and mitochondria and energy metabolism. These findings suggested γ-oryzanol as a natural compound able to maintain and reinforce brain function. Although more intensive studies are needed, we propose γ-oryzanol as a putative dietary phytochemical for preserving brain reserve, the ability to tolerate age-related changes, thereby preventing clinical symptoms or signs of neurodegenerative diseases.
Collapse
|
7
|
Guo L, Ma L, Liu C, Lei Y, Tang N, Huang Y, Huang G, Li D, Wang Q, Liu G, Tang M, Jing Z, Deng Y. ERp29 counteracts the suppression of malignancy mediated by endoplasmic reticulum stress and promotes the metastasis of colorectal cancer. Oncol Rep 2018; 41:1603-1615. [PMID: 30569094 PMCID: PMC6365697 DOI: 10.3892/or.2018.6943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 11/29/2018] [Indexed: 01/11/2023] Open
Abstract
Endoplasmic reticulum protein 29 (ERp29), an endoplasmic reticulum (ER) protein, participates in ER stress (ERS), but little is known about the association of ERp29 with ERS in the metastasis and prognosis of cancerous diseases. The present study revealed that ERp29 was important to ERS and interfered with the malignant behaviors of colorectal cancer (CRC). Experiments in in vitro and in animal models revealed that ERS inhibited the cell growth and suppressed the metastatic capacity of CRC cells, but ERp29 counteracted these effects. Furthermore, it was demonstrated that ERp29 recovered the migration and metastatic behaviors of CRC cells suppressed by ERS, mediated only when it combined with cullin5 (CUL5). ERp29 also relied on CUL5 to promote epithelial-mesenchymal transition. From the immunohistochemical examination of CRC tissues, the high expression of ERp29 was revealed to predict the poor prognosis of 457 CRC cases. The retrospective analysis of the clinicopathological data of patients with CRC was consistent with the results of the in vitro and in vivo experiments. Thus, ERp29 protected CRC cells from ERS-mediated reduction of malignancy to promote metastasis and may be a potential target of medical intervention for CRC therapy.
Collapse
Affiliation(s)
- Lili Guo
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lili Ma
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chao Liu
- Department of Pathology and Laboratory Medicine, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yan Lei
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Na Tang
- Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R. China
| | - Yingxin Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guan Huang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Dazhou Li
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qi Wang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Minshan Tang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhiliang Jing
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yongjian Deng
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Ye W, Li Z, Tang T, Du J, Zhou X, Wu H, Li X, Qin G. ERp29 downregulation enhances lung adenocarcinoma cell chemosensitivity to gemcitabine by upregulating HSP27 phosphorylation. Exp Ther Med 2018; 17:817-823. [PMID: 30651868 DOI: 10.3892/etm.2018.7040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of the current study was to assess the underlying mechanism of endoplasmic reticulum protein 29 (ERp29) in lung adenocarcinoma chemosensitivity to gemcitabine. Western blot analysis was performed to detect ERp29 expression following lung adenocarcinoma cell treatment with gemcitabine. The effects of gemcitabine in combination with ERp29 siRNA on cell apoptosis, cell cycle and heat shock protein 27 (HSP27) expression were assessed. The results demonstrated that ERp29 expression was increased on exposure to gemcitabine. The apoptotic rate of lung adenocarcinoma cells were also increased following gemcitabine treatment and the combined application of gemcitabine and ERp29 siRNA synergistically increased apoptotic rates further. It was also revealed that gemcitabine and ERp29 siRNA synergistically increased the ratio of phosphorylated to total HSP27 protein. In addition, downregulation of HSP27 significantly reduced lung adenocarcinoma chemosensitivity to gemcitabine. These data indicate that ERp29 affects lung adenocarcinoma cell chemosensitivity to gemcitabine by regulating phosphorylated HSP27. ERp29 is a novel target, which may be used to enhance the therapeutic effect of lung adenocarcinoma treatment with gemcitabine.
Collapse
Affiliation(s)
- Wu Ye
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Zhijun Li
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Tingyu Tang
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Jianzong Du
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xiaoxi Zhou
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Haiyan Wu
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xuefang Li
- Department of Cardiovascular Medicine, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Guangyue Qin
- Department of Respiratory Diseases, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
9
|
Saito A, Imaizumi K. The broad spectrum of signaling pathways regulated by unfolded protein response in neuronal homeostasis. Neurochem Int 2018; 119:26-34. [DOI: 10.1016/j.neuint.2017.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/19/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023]
|
10
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the Alignment of the Preclinical and Clinical Stroke Recovery Research Pipeline: Consensus-Based Core Recommendations From the Stroke Recovery and Rehabilitation Roundtable Translational Working Group. Neurorehabil Neural Repair 2017; 31:699-707. [DOI: 10.1177/1545968317724285] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S. Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H. Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A. Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E. Schwab
- Institute for Brain Research, University of Zurich, Zurich, Switzerland
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux Central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T. Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Corbett D, Carmichael ST, Murphy TH, Jones TA, Schwab ME, Jolkkonen J, Clarkson AN, Dancause N, Weiloch T, Johansen-Berg H, Nilsson M, McCullough LD, Joy MT. Enhancing the alignment of the preclinical and clinical stroke recovery research pipeline: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable translational working group. Int J Stroke 2017; 12:462-471. [DOI: 10.1177/1747493017711814] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Stroke recovery research involves distinct biological and clinical targets compared to the study of acute stroke. Guidelines are proposed for the pre-clinical modeling of stroke recovery and for the alignment of pre-clinical studies to clinical trials in stroke recovery.
Collapse
Affiliation(s)
- Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa, Canadian Partnership for Stroke Recovery, Ottawa, Canada
| | - S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| | - Timothy H Murphy
- Department of Psychiatry, Kinsmen Laboratory of Neurological Research, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Theresa A Jones
- Department of Psychology and Neuroscience Institute, University of Texas at Austin, Austin, TX, USA
| | - Martin E Schwab
- Institute for Brain Research, University of Zurich
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jukka Jolkkonen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland and Neurocenter, Neurology, University Hospital of Kuopio, Kuopio, Finland
| | - Andrew N Clarkson
- Department of Anatomy, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
- Faculty of Pharmacy, The University of Sydney, Sydney, Australia
| | - Numa Dancause
- Groupe de Recherche sur le Système Nerveux central (GRSNC), Département de Neurosciences, Université de Montréal, Montréal, Canada
| | - Tadeusz Weiloch
- Department of Clinical Sciences, Laboratory for Experimental Brain Research, Lund, Sweden
| | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, John Radcliffe Hospital, Headington, Oxford, UK
| | - Michael Nilsson
- Hunter Medical Research Institute, University of Newcastle, New Lambton, Australia
| | - Louise D McCullough
- Department of Neurology, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Mary T Joy
- Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Wang G, Zhang JN, Guo JK, Cai Y, Sun HS, Dong K, Wu CG. Neuroprotective effects of cold-inducible RNA-binding protein during mild hypothermia on traumatic brain injury. Neural Regen Res 2016; 11:771-8. [PMID: 27335561 PMCID: PMC4904468 DOI: 10.4103/1673-5374.182704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5°C on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP mRNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.
Collapse
Affiliation(s)
- Guan Wang
- Postgraduate Institution, Tianjin Medical University, Tianjin, China; Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jian-Ning Zhang
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin, China
| | - Jia-Kui Guo
- Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ying Cai
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hong-Sheng Sun
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Kun Dong
- Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cheng-Gang Wu
- Department of Neurosurgery, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Flupirtine attenuates chronic restraint stress-induced cognitive deficits and hippocampal apoptosis in male mice. Behav Brain Res 2015; 288:1-10. [PMID: 25869780 DOI: 10.1016/j.bbr.2015.04.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/01/2015] [Accepted: 04/04/2015] [Indexed: 02/07/2023]
Abstract
Chronic restraint stress (CRS) causes hippocampal neurodegeneration and hippocampus-dependent cognitive deficits. Flupirtine represents neuroprotective effects and we have previously shown that flupirtine can protect against memory impairment induced by acute stress. The present study aimed to investigate whether flupirtine could alleviate spatial learning and memory impairment and hippocampal apoptosis induced by CRS. CRS mice were restrained in well-ventilated Plexiglass tubes for 6h daily beginning from 10:00 to 16:00 for 21 consecutive days. Mice were injected with flupirtine (10mg/kg and 25mg/kg) or vehicle (10% DMSO) 30min before restraint stress for 21 days. After stressor cessation, the spatial learning and memory, dendritic spine density, injured neurons and the levels of Bcl-2, Bax, p-Akt, p-GSK-3β, p-Erk1/2 and synaptophysin of hippocampal tissues were examined. Our results showed that flupirtine significantly prevented spatial learning and memory impairment induced by CRS in the Morris water maze. In addition, flupirtine (10mg/kg and 25mg/kg) treatment alleviated neuronal apoptosis and the reduction of dendritic spine density and synaptophysin expression in the hippocampal CA1 region of CRS mice. Furthermore, flupirtine (10mg/kg and 25mg/kg) treatment significantly decreased the expression of Bax and increased the p-Akt and p-GSK-3β, and flupirtine (25mg/kg) treatment up-regulated the p-Erk1/2 in the hippocampus of CRS mice. These results suggested that flupirtine exerted protective effects on the CRS-induced cognitive impairment and hippocampal neuronal apoptosis, which is possibly associated with the activation of Akt/GSK-3β and Erk1/2 signaling pathways.
Collapse
|
14
|
Chen S, Zhang D. Friend or foe: Endoplasmic reticulum protein 29 (ERp29) in epithelial cancer. FEBS Open Bio 2015; 5:91-8. [PMID: 25709888 PMCID: PMC4329646 DOI: 10.1016/j.fob.2015.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/12/2022] Open
Abstract
ERp29 regulates epithelial cell plasticity and the mesenchymal–epithelial transition. ERp29 shows a tumor suppressive function in primary tumor development. ERp29 is potentially associated with distant metastasis in cancer. ERp29 modulates cell survival against genotoxic stress. Thus, ERp29 displays dual functions as a “friend or foe” in epithelial cancer.
The endoplasmic reticulum (ER) protein 29 (ERp29) is a molecular chaperone that plays a critical role in protein secretion from the ER in eukaryotic cells. Recent studies have also shown that ERp29 plays a role in cancer. It has been demonstrated that ERp29 is inversely associated with primary tumor development and functions as a tumor suppressor by inducing cell growth arrest in breast cancer. However, ERp29 has also been reported to promote epithelial cell morphogenesis, cell survival against genotoxic stress and distant metastasis. In this review, we summarize the current understanding on the biological and pathological functions of ERp29 in cancer and discuss the pivotal aspects of ERp29 as “friend or foe” in epithelial cancer.
Collapse
Affiliation(s)
- Shaohua Chen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Daohai Zhang
- Cancer Research Group, The Canberra Hospital, ANU Medical School, Australia National University, ACT 2605, Australia
| |
Collapse
|