1
|
Simmons P, Corley C, Allen AR. Fractionated Proton Irradiation Does Not Impair Hippocampal-Dependent Short-Term or Spatial Memory in Female Mice. TOXICS 2022; 10:toxics10090507. [PMID: 36136472 PMCID: PMC9503909 DOI: 10.3390/toxics10090507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 05/14/2023]
Abstract
The environment outside the Earth's protective magnetosphere is a much more threatening and complex space environment. The dominant causes for radiation exposure, solar particle events and galactic cosmic rays, contain high-energy protons. In space, astronauts need healthy and highly functioning cognitive abilities, of which the hippocampus plays a key role. Therefore, understanding the effects of 1H exposure on hippocampal-dependent cognition is vital for developing mitigative strategies and protective countermeasures for future missions. To investigate these effects, we subjected 6-month-old female CD1 mice to 0.75 Gy fractionated 1H (250 MeV) whole-body irradiation at the NASA Space Radiation Laboratory. The cognitive performance of the mice was tested 3 months after irradiation using Y-maze and Morris water maze tests. Both sham-irradiated and 1H-irradiated mice significantly preferred exploration of the novel arm compared to the familiar and start arms, indicating intact spatial and short-term memory. Both groups statistically spent more time in the target quadrant, indicating spatial memory retention. There were no significant differences in neurogenic and gliogenic cell counts after irradiation. In addition, proteomic analysis revealed no significant upregulation or downregulation of proteins related to behavior, neurological disease, or neural morphology. Our data suggests 1H exposure does not impair hippocampal-dependent spatial or short-term memory in female mice.
Collapse
Affiliation(s)
- Pilar Simmons
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Little Rock, AR 72205, USA
| | - Christa Corley
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Little Rock, AR 72205, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, 4301 W Markham, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-686-7553
| |
Collapse
|
2
|
Anderson JE, Trujillo M, McElroy T, Groves T, Alexander T, Kiffer F, Allen AR. Early Effects of Cyclophosphamide, Methotrexate, and 5-Fluorouracil on Neuronal Morphology and Hippocampal-Dependent Behavior in a Murine Model. Toxicol Sci 2021; 173:156-170. [PMID: 31651976 DOI: 10.1093/toxsci/kfz213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Breast cancer (BC) is the most common cancer among women. Fortunately, BC survival rates have increased because the implementation of adjuvant chemotherapy leading to a growing population of survivors. However, chemotherapy-induced cognitive impairments (CICIs) affect up to 75% of BC survivors and may be driven by inflammation and oxidative stress. Chemotherapy-induced cognitive impairments can persist 20 years and hinder survivors' quality of life. To identify early effects of CMF administration in mice, we chose to evaluate adult female mice at 2-week postchemotherapy. Mice received weekly IP administration of CMF (or saline) for 4 weeks, completed behavioral testing, and were sacrificed 2 weeks following their final CMF injection. Behavioral results indicated long-term memory (LTM) impairments postchemotherapy, but did not reveal short-term memory deficits. Dendritic morphology and spine data found increases in overall spine density within CA1 basal and CA3 basal dendrites, but no changes in DG, CA1 apical, or CA3 apical dendrites. Further analysis revealed decreases in arborization across the hippocampus (DG, CA1 apical and basal, CA3 apical and basal). These physiological changes within the hippocampus correlate with our behavioral data indicating LTM impairments following CMF administration in female mice 2-week postchemotherapy. Hippocampal cytokine analysis identified decreases in IL-1α, IL-1β, IL-3, IL-10, and TNF-α levels.
Collapse
Affiliation(s)
- Julie E Anderson
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Madison Trujillo
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Taylor McElroy
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Tyler Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
3
|
Florio TM. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas? AIMS Neurosci 2020; 7:136-152. [PMID: 32607417 PMCID: PMC7321770 DOI: 10.3934/neuroscience.2020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Comprehensive knowledge about higher executive functions of motor control has been covered in the last decades. Critical goals have been targeted through many different technological approaches. An abundant flow of new results greatly progressed our ability to respond at better-posited answers to look more than ever at the challenging neural system functioning. Behaviour is the observable result of the invisible, as complex cerebral functioning. Many pathological states are approached after symptomatology categorisation of behavioural impairments is achieved. Motor, non-motor and psychiatric signs are greatly shared by many neurological/psychiatric disorders. Together with the cerebral cortex, the basal ganglia contribute to the expression of behaviour promoting the correct action schemas and the selection of appropriate sub-goals based on the evaluation of action outcomes. The present review focus on the basic classification of higher motor control functioning, taking into account the recent advances in basal ganglia structural knowledge and the computational model of basal ganglia functioning. We discuss about the basal ganglia capability in executing ordered motor patterns in which any single movement is linked to each other into an action, and many actions are ordered into each other, giving them a syntactic value to the final behaviour. The stereotypic, automatized and habitual behaviour's constructs and controls are the expression of successive stages of rule internalization and categorisation aimed in producing the perfect spatial-temporal control of motor command.
Collapse
Affiliation(s)
- Tiziana M Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy
| |
Collapse
|
4
|
Li ZQ, Zhang Y, Wan YM, Zhou Q, Liu C, Wu HX, Mu YZ, He YF, Rauniyar R, Wu XN. Testing of behavioral and cognitive development in rats after prenatal exposure to 1800 and 2400 MHz radiofrequency fields. JOURNAL OF RADIATION RESEARCH 2020; 61:197-206. [PMID: 31927574 PMCID: PMC7246068 DOI: 10.1093/jrr/rrz097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/01/2019] [Indexed: 06/01/2023]
Abstract
The objective of the study was to explore the effects of behavioral and cognitive development in rats after prenatal exposure to 1800 and 2400 MHz radiofrequency fields. Pregnant female rats were exposed to radiofrequency fields beginning on the 21st day of pregnancy. The indicators of physiological and behavioral development were observed and measured in the offspring rats: Y maze measured at 3-weeks postnatal, open field at 7-weeks postnatal, and the expression of N-methyl-D-aspartate receptors (NMDARs) measured by reverse transcription-PCR in the hippocampus at 9-weeks postnatal. The body weight of the 1800 MHz group and the 1800 MHz + WiFi group showed a downward trend. The eye opening time of newborn rats was much earlier in the WiFi group than in the control group. Compared to the control group, the overall path length of the 1800 MHz + WiFi group was shortened and the stationary time was delayed. The path length of the WiFi group was shortened and the average velocity was increased in the error arm. The 1800 MHz + WiFi group displayed an increased trend in path length, duration, entry times and stationary time in the central area. In both the 1800 MHz + WiFi and WiFi groups, NR2A and NR2B expression was down-regulated, while NR2D, NR3A and NR3B were up-regulated. Moreover, NR1 and NR2C in the WiFi group were also up-regulated. Prenatal exposure to 1800 MHz and WiFi radiofrequency may affect the behavioral and cognitive development of offspring rats, which may be associated with altered mRNA expression of NMDARs in the hippocampus.
Collapse
Affiliation(s)
- Zhi-qiang Li
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yuan Zhang
- The Biomedical engineering research center, Kunming Medical University, Kunming Yunnan, 650500, China
| | - Yue-Meng Wan
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Qiong Zhou
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Chang Liu
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Hui-Xin Wu
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yun-Zheng Mu
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yue-Feng He
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ritika Rauniyar
- International Education School, Kunming Medical University, Kunming Yunnan, 650500, China
| | - Xi-Nan Wu
- The School of Public Health, Kunming Medical University, Kunming, Yunnan, 650500, China
| |
Collapse
|
5
|
Effects of Brain Ischemic Preconditioning on Cognitive Decline and Motor Incoordination in 3-Nitropropionic Acid-Intoxicated Rats: Probable Mechanisms of Action. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09809-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Han YY, Chen ZH, Shang YJ, Yan WW, Wu BY, Li CH. Cordycepin improves behavioral-LTP and dendritic structure in hippocampal CA1 area of rats. J Neurochem 2019; 151:79-90. [PMID: 31314908 DOI: 10.1111/jnc.14826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/21/2022]
Abstract
Cordycepin, an adenosine analog, has been reported to improve cognitive function, but which seems to be inconsistent with the reports showing that cordycepin inhibited long-term potentiation (LTP). Behavioral-LTP is usually used to study long-term synaptic plasticity induced by learning tasks in freely moving animals. In order to investigate simultaneously the effects of cordycepin on LTP and behavior in rats, we applied the model of behavioral-LTP induced by Y-maze learning task through recording population spikes in hippocampal CA1 region. Golgi staining and Sholl analysis were employed to assess the morphological structure of dendrites in pyramidal cells of hippocampal CA1 area, and western blotting was used to examine the level of adenosine A1 receptors and A2A receptors (A2AR). We found that cordycepin significantly improved behavioral-LTP magnitude, accompanied by increases in the total length of dendrites, the number of intersections and spine density but did not affect Y-maze learning task. Furthermore, cordycepin obviously reduced A2AR level without altering adenosine A1 receptors level; and the agonist of A2AR (CGS 21680) rather than antagonist (SCH 58261) could reverse the potentiation of behavioral-LTP induced by cordycepin. These results suggested that cordycepin improved behavioral-LTP and morphological structure of dendrite in hippocampal CA1 but did not contribute to the improvement of learning and memory. And cordycepin improved behavioral-LTP may be through reducing the level of A2AR in hippocampus. Collectively, the effects of cordycepin on cognitive function and LTP were complex and involved multiple mechanisms.
Collapse
Affiliation(s)
- Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou, China
| | - Zhao-Hui Chen
- School of Life Science, South China Normal University, Guangzhou, China
| | - Ying-Jie Shang
- School of Life Science, South China Normal University, Guangzhou, China
| | - Wen-Wen Yan
- School of Life Science, South China Normal University, Guangzhou, China
| | - Bao-Yan Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou, China
| |
Collapse
|
7
|
Kodumuri PK, Thomas C, Jetti R, Pandey AK. Fenugreek seed extract ameliorates cognitive deficits in streptozotocin-induced diabetic rats. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2018-0140. [PMID: 31326961 DOI: 10.1515/jbcpp-2018-0140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/25/2019] [Indexed: 02/06/2023]
Abstract
Background Natural medicinal plants have been the focus of current research for developing neuroprotective agents to be used in the diabetes-linked cognitive dysfunction. Trigonella foenum-graecum seeds (known as fenugreek, methi in Hindi), is a well-known traditional medicinal herb and possesses anti-diabetic, anti-oxidant, and anti-inflammatory properties. Purpose This study was undertaken to explore the ameliorative effects of T. foenum-graecum seed extract on diabetes-induced cognitive dysfunction. Methods Experimental diabetes was induced by administering a single dose of streptozotocin (60 mg/kg) through intraperitoneal dose. Cognitive function was assessed using a T-maze and the Morris water maze. Lipid peroxidation levels and oxidative stress in the hippocampus was measured. Quantification of hippocampal CA1 and CA3 regions was done using cresyl violet stain. Results Diabetic rats demonstrated learning and memory impairment, which was evident from poor performance in behavioral tasks, i.e. T-maze and Morris water maze tasks. Learning and memory impairment in diabetic animals is associated with increased blood glucose levels, increased oxidative stress in the hippocampus and decreased number of neurons in the CA1 and CA3 regions of the hippocampus. The diabetic rats administered with T. foenum-graecum showed improved performance in behavioral tasks, and these changes were associated with decreased blood glucose levels, decreased oxidative stress in the hippocampus, and decreased neuronal loss from the CA1 and CA3 regions of the hippocampus. Conclusion In conclusion, administration of T. foenum-graecum seed extract ameliorates diabetes-linked cognitive dysfunction in rats by decreasing blood glucose levels, reducing lipid peroxidation and oxidative stress in the hippocampus, and preventing neuronal loss from the hippocampus.
Collapse
Affiliation(s)
- Praveen K Kodumuri
- Tomo Riba Institute of Health and Medical Sciences, Physiology, Old Assembly Complex,Naharlagun, India.,Department of Physiology, Varun Arjun Medical College and Rohilkand Hospital, Banthra, Shahjahanpur (Uttar Pradesh), India
| | - Christofer Thomas
- Department of Physiology, Sapthagiri Institute of Medical Science and Research Center, Bangalore, India
| | - Raghu Jetti
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Anil Kumar Pandey
- ESIC Medical College, Physiology, Faridabad, India.,Department of Physiology, ESIC Medical College and Hospital, Faridabad, Haryana, India, Phone: + 91-7042918222
| |
Collapse
|
8
|
Shu SY, Jiang G, Zheng Z, Ma L, Wang B, Zeng Q, Li H, Tan S, Liu B, Chan WY, Wu S, Zhu C, Li C, Wang P, Wu JY. A New Neural Pathway from the Ventral Striatum to the Nucleus Basalis of Meynert with Functional Implication to Learning and Memory. Mol Neurobiol 2019; 56:7222-7233. [PMID: 31001802 PMCID: PMC6728281 DOI: 10.1007/s12035-019-1588-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/27/2019] [Indexed: 11/30/2022]
Abstract
The cholinergic neurons in the nucleus basalis of Meynert (NBM) are among the first group of neurons known to become degenerated in Alzheimer’s disease, and thus the NBM is proposed to be involved in learning and memory. The marginal division (MrD) of the striatum is a newly discovered subdivision at the ventromedial border of the mammalian striatum and is considered to be one part of the ventral striatum involved in learning and memory. The present study provided evidence to support the hypothesis that the MrD and the NBM were structurally connected at cellular and subcellular levels with functional implications in learning and memory. First, when wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was stereotaxically injected into the NBM, fusiform neurons in the MrD were retrogradely labeled with WGA-HRP gray-blue particles and some of them were double stained in brown color by AchE staining method. Thus, cholinergic neurons of the MrD were shown to project to the neurons in the NBM. Second, in anterograde tract-tracing experiments where WGA-HRP was injected to the MrD, the labeled WGA-HRP was found to be anterogradely transported in axons from the MrD to the synaptic terminals with dendrites, axons, and perikaryons of the cholinergic neurons in the NBM when observed under an electronic microscope, indicating reciprocal structural connections between the MrD and the NBM. Third, when bilateral lesions of the MrD were injured with kainic acid in rats, degenerative terminals were observed in synapses of the NBM by an electronic microscope and severe learning and memory deficiency was found in these rats by the Y-maze behavioral test. Our results suggest reciprocal cholinergic connections between the MrD of the ventral striatum and the NBM, and implicate a role of the MrD-NBM pathway in learning and memory. The efferent fibers of cholinergic neurons in the NBM mainly project to the cortex, and severe reduction of the cholinergic innervation in the cortex is the common feature of Alzheimer’s patients. The newly discovered cholinergic neural pathway between the MrD of the ventral striatum and the NBM is supposed involved in the memory circuitries of the brain and probably might play a role in the pathogenesis of the Alzheimer’s disease.
Collapse
Affiliation(s)
- Si Yun Shu
- Pediatric Center, Zhujiang Hospital of the Southern Medical University, A- 3103, Building 39, No. 253 Gong-ye Road, Haizhu District, Guangzhou, 510280 Guangdong China
| | - Gang Jiang
- Department of Ear, Nose and Throat, Zhujiang Hospital of the Southern Medical University, Guangzhou, 510282 Guangdong China
| | - Zhaocong Zheng
- Department of Neurosurgery, Fuzhou Central Hospital of Nanjing Military Region, Fuzhou, 350025 Fujian China
| | - Lin Ma
- Department of Radiology, General Hospital of People’s Liberation Army, Beijing, 100853 China
| | - Bin Wang
- Pediatric Center, Zhujiang Hospital of the Southern Medical University, A- 3103, Building 39, No. 253 Gong-ye Road, Haizhu District, Guangzhou, 510280 Guangdong China
| | - Qiyi Zeng
- Pediatric Center, Zhujiang Hospital of the Southern Medical University, A- 3103, Building 39, No. 253 Gong-ye Road, Haizhu District, Guangzhou, 510280 Guangdong China
| | - Hong Li
- Pediatric Center, Zhujiang Hospital of the Southern Medical University, A- 3103, Building 39, No. 253 Gong-ye Road, Haizhu District, Guangzhou, 510280 Guangdong China
| | - Shen Tan
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 Guangdong China
| | - Bin Liu
- Emergency Department, Zhujiang Hospital of Southern Medical University, Guangzhou, 510282 Guangdong China
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sheng Wu
- Nanjing Junqu Hangzhou Sanatorium, 5 Long-jin Road, Hangzhou, 310007 China
| | - Chunhua Zhu
- Nanjing Junqu Hangzhou Sanatorium, 5 Long-jin Road, Hangzhou, 310007 China
| | - Changke Li
- Anesthesia Department of Yue-Bei People Hospital, Shaoguan City, 512026 Guangdong China
| | - Peng Wang
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510900 China
| | - Jang-Yen Wu
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| |
Collapse
|
9
|
Nie J, Zhang Z, Wang B, Li H, Xu J, Wu S, Zhu C, Yang X, Liu B, Wu Y, Tan S, Wen Z, Zheng J, Shu S, Ma L. Different memory patterns of digits: a functional MRI study. J Biomed Sci 2019; 26:22. [PMID: 30832663 PMCID: PMC6398246 DOI: 10.1186/s12929-019-0516-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 02/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background Psychological investigations and functional imaging technology have been used to describe neural correlations of different types of memory with various stimuli. Memory with limited storage capacity and a short retention time can be classified as short-term memory (STM) while long-term memory (LTM) can be life-long without defined capacity. Methods To identify brain activation pattern associated with different modes of memory for numerical figures, we detected brain activities from twenty-two healthy subjects when performing three types of memory tasks for numbers, namely STM, LTM and working memory (WM), by using functional magnetic resonance imaging (fMRI) technique. Results The result revealed variable patterns of activation in different brain regions responding to different types of memory tasks. The activation regions with primary processing and transient maintenance of STM for numerical figures are located in the visual cortex and mainly encoded by visual representations, while LTM was encoded by semantics and mainly recruiting left frontal cortex. We also found that subcortical structures, such as the caudate nucleus and the marginal division of the striatum, plays important roles in working memory. Conclusions Activation of different brain regions in these three kinds of memories, indicating that different kinds of memories rely on different neural correlates and mental processes.
Collapse
Affiliation(s)
- Jingxin Nie
- School of Psychology, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China
| | - Zengqiang Zhang
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Bin Wang
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hong Li
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianghua Xu
- Hangzhou Sanatorium of air force, 15th Yanggongdi Road, Hangzhou, 310007, China
| | - Sheng Wu
- Hangzhou Sanatorium of Army, 27 Yang-gong Di, Hangzhou, 310007, China
| | - Chunhua Zhu
- Hangzhou Sanatorium of Army, 27 Yang-gong Di, Hangzhou, 310007, China
| | - Xin Yang
- The first Sanatorium of PLA Navy, Qingdao, 266071, China
| | - Bin Liu
- Department of Emergency, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sheng Tan
- Department of Neurology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jinlong Zheng
- Department of Neurology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an Jiangsu, 223300, China
| | - Siyun Shu
- Pediatric Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Lin Ma
- Department of Radiology, The General Hospital of Chinese People's Liberation Army, Bejing, 100853, China.
| |
Collapse
|
10
|
Chen Y, Milenkovic M, Horsfall W, Salahpour A, Soderling SH, Ramsey AJ. Restoring striatal WAVE-1 improves maze exploration performance of GluN1 knockdown mice. PLoS One 2018; 13:e0199341. [PMID: 30352064 PMCID: PMC6198945 DOI: 10.1371/journal.pone.0199341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/06/2018] [Indexed: 11/19/2022] Open
Abstract
NMDA receptors are important for cognition and are implicated in neuropsychiatric disorders. GluN1 knockdown (GluN1KD) mice have reduced NMDA receptor levels, striatal spine density deficits, and cognitive impairments. However, how NMDA depletion leads to these effects is unclear. Since Rho GTPases are known to regulate spine density and cognition, we examined the levels of RhoA, Rac1, and Cdc42 signaling proteins. Striatal Rac1-pathway components are reduced in GluN1KD mice, with Rac1 and WAVE-1 deficits at 6 and 12 weeks of age. Concurrently, medium spiny neuron (MSN) spine density deficits are present in mice at these ages. To determine whether WAVE-1 deficits were causal or compensatory in relation to these phenotypes, we intercrossed GluN1KD mice with WAVE-1 overexpressing (WAVE-Tg) mice to restore WAVE-1 levels. GluN1KD-WAVE-Tg hybrids showed rescue of striatal WAVE-1 protein levels and MSN spine density, as well as selective behavioral rescue in the Y-maze and 8-arm radial maze tests. GluN1KD-WAVE-Tg mice expressed normalized WAVE-1 protein levels in the hippocampus, yet spine density of hippocampal CA1 pyramidal neurons was not significantly altered. Our data suggest a nuanced role for WAVE-1 effects on cognition and a delineation of specific cognitive domains served by the striatum. Rescue of striatal WAVE-1 and MSN spine density may be significant for goal-directed exploration and associated long-term memory in mice.
Collapse
Affiliation(s)
- Yuxiao Chen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Marija Milenkovic
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Scott H. Soderling
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States of America
| | - Amy J. Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Association between Y-Maze Acquisition Learning and Major Histocompatibility Complex Class II Polymorphisms in Mice. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6381932. [PMID: 30112411 PMCID: PMC6077659 DOI: 10.1155/2018/6381932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 11/18/2022]
Abstract
Objective To explore the association between the acquisition process in the Y-maze and H-2 class II polymorphisms in mice. Methods Mice were trained for 5 consecutive days in the Y-maze. The value of the slope of the latent period was considered an indication for the acquisition process. A slope < 0 indicated learning during the training and a slope > 0 indicated no learning. The H-2 polymorphism was determined with PCR amplification, and the correlation between the alleles and the acquisition process was analyzed. Results The overall percentage of mice that learned was 46.1%. The percentage of mice that had learned with MudoEb5 (37.9%) was significantly lower than that of mice without MudoEb5 (61.1%; P < 0.05). The percentage of mice that had learned with MudoEb7 (26.1%) was significantly lower than that of mice without MudoEb7 (51.9%; P < 0.05). Conclusions The major histocompatibility complex (MHC) and other alleles may be involved in the acquisition process. There may be a biological basis for learning in mice.
Collapse
|
12
|
Carr H, Alexander TC, Groves T, Kiffer F, Wang J, Price E, Boerma M, Allen AR. Early effects of 16O radiation on neuronal morphology and cognition in a murine model. LIFE SCIENCES IN SPACE RESEARCH 2018; 17:63-73. [PMID: 29753415 DOI: 10.1016/j.lssr.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/23/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Astronauts exposed to high linear energy transfer radiation may experience cognitive injury. The pathogenesis of this injury is unknown but may involve glutamate receptors or modifications to dendritic structure and/or dendritic spine density and morphology. Glutamate is the major excitatory neurotransmitter in the central nervous system, where it acts on ionotropic and metabotropic glutamate receptors located at the presynaptic terminal and in the postsynaptic membrane at synapses in the hippocampus. Dendritic spines are sites of excitatory synaptic transmission, and changes in spine structure and dendrite morphology are thought to be morphological correlates of altered brain function associated with hippocampal-dependent learning and memory. The aim of the current study is to assess whether behavior, glutamate receptor gene expression, and dendritic structure in the hippocampus are altered in mice after early exposure to 16O radiation in mice. Two weeks post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Y-maze. During Y-maze testing, mice exposed to 0.1 Gy and 0.25 Gy radiation failed to distinguish the novel arm, spending approximately the same amount of time in all 3 arms during the retention trial. Exposure to 16O significantly reduced the expression of Nr1 and GluR1 in the hippocampus and modulated spine morphology in the dentate gyrus and cornu Ammon 1 within the hippocampus. The present data provide evidence that 16O radiation has early deleterious effects on mature neurons that are associated with hippocampal learning and memory.
Collapse
Affiliation(s)
- Hannah Carr
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Tyler C Alexander
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Thomas Groves
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Frederico Kiffer
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Jing Wang
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Elvin Price
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| | - Antiño R Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
13
|
Alexander TC, Butcher H, Krager K, Kiffer F, Groves T, Wang J, Carter G, Allen AR. Behavioral Effects of Focal Irradiation in a Juvenile Murine Model. Radiat Res 2018; 189:605-617. [PMID: 29584587 DOI: 10.1667/rr14847.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemotherapy has been successfully used to reduce radiation dose and volume for most pediatric patients. However, because of the failure of chemotherapeutic agents to cross the blood-brain barrier and the lack of response of some brain tumors to these agents, radiation therapy is still used to treat many childhood cancers with CNS involvement. In this study, we investigated the radiation effects on cognition and dendritic structure in the hippocampus in juvenile male mice. Twenty-one-day-old male C57BL/6 mice were irradiated using the small animal radiation research platform (SARRP). Animals were exposed to either a 10 Gy single dose or 10 Gy × 2 fractionated doses of X-ray cranial radiation. Five weeks after irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water maze. Significant impairment in spatial memory retention was observed in the probe trial after the first day of hidden-platform training (first probe trial) in animals that received either 10 Gy single-dose or 10 Gy × 2 fractionated doses. However, by day 5, mice that received a 10 Gy single dose showed spatial memory retention in the probe trials, whereas mice that received the 20 Gy fractionated doses remained impaired. During Y-maze testing, animals exposed to radiation were impaired; the irradiated mice were not able to distinguish among the three Y-maze arms and spent approximately the same amount of time in all three arms during the retention trial. Radiation significantly compromised the dendritic architecture and reduced spine density throughout the hippocampal trisynaptic network.
Collapse
Affiliation(s)
- Tyler C Alexander
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Hannah Butcher
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kimberly Krager
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Frederico Kiffer
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Thomas Groves
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,c Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Jing Wang
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Gwendolyn Carter
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Antiño R Allen
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,b Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.,c Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
14
|
Kiffer F, Carr H, Groves T, Anderson JE, Alexander T, Wang J, Seawright JW, Sridharan V, Carter G, Boerma M, Allen AR. Effects of 1H + 16O Charged Particle Irradiation on Short-Term Memory and Hippocampal Physiology in a Murine Model. Radiat Res 2017; 189:53-63. [PMID: 29136391 DOI: 10.1667/rr14843.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiation from galactic cosmic rays (GCR) poses a significant health risk for deep-space flight crews. GCR are unique in their extremely high-energy particles. With current spacecraft shielding technology, some of the predominant particles astronauts would be exposed to are 1H + 16O. Radiation has been shown to cause cognitive deficits in mice. The hippocampus plays a key role in memory and cognitive tasks; it receives information from the cortex, undergoes dendritic-dependent processing and then relays information back to the cortex. In this study, we investigated the effects of combined 1H + 16O irradiation on cognition and dendritic structures in the hippocampus of adult male mice three months postirradiation. Six-month-old male C57BL/6 mice were irradiated first with 1H (0.5 Gy, 150 MeV/n) and 1 h later with 16O (0.1 Gy, 600 MeV/n) at the NASA Space Radiation Laboratory (Upton, NY). Three months after irradiation, animals were tested for hippocampus-dependent cognitive performance using the Y-maze. Upon sacrifice, molecular and morphological assessments were performed on hippocampal tissues. During Y-maze testing, the irradiated mice failed to distinguish the novel arm, spending approximately the same amount of time in all three arms during the retention trial relative to sham-treated controls. Irradiated animals also showed changes in expression of glutamate receptor subunits and synaptic density-associated proteins. 1H + 16O radiation compromised dendritic morphology in the cornu ammonis 1 and dentate gyrus within the hippocampus. These data indicate cognitive injuries due to 1H + 16O at three months postirradiation.
Collapse
Affiliation(s)
- Frederico Kiffer
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | - Hannah Carr
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | - Thomas Groves
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences.,c Center for Translational Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Julie E Anderson
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | - Tyler Alexander
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | - Jing Wang
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | - John W Seawright
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | | | - Gwendolyn Carter
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | - Marjan Boerma
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences
| | - Antiño R Allen
- a Division of Radiation Health.,b Department of Pharmaceutical Sciences.,c Center for Translational Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
15
|
Wang B, Chen YC, Jiang G, Ning Q, Ma L, Chan WY, Wu S, Zhou GQ, Bao R, Zheng ZC, Yang X, Luo JX, Zheng W, Guo HW, Zeng C, Zeng QY, Shu SY. New learning and memory related pathways among the hippocampus, the amygdala and the ventromedial region of the striatum in rats. J Chem Neuroanat 2015; 71:13-9. [PMID: 26698223 DOI: 10.1016/j.jchemneu.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND The hippocampus, central amygdaloid nucleus and the ventromedial region (marginal division) of the striatum have been reported to be involved in the mechanism of learning and memory. This study aimed elucidating anatomical and functional connections among these brain areas during learning and memory. RESULTS In the first part of this study, the c-Fos protein was used to explore functional connections among these structures. Chemical stimulation of either hippocampus or central amygdaloid nucleus results in dense expression of c-Fos protein in nuclei of neurons in the marginal division of the striatum, indicating that the hippocampus and the central amygdaloid nucleus might be functionally connected with the marginal division. In the second part of the study, the cholera toxin subunit B-horseradish peroxidase was injected into the central amygdaloid nucleus to observe anatomical connections among them. The retrogradely transported conjugated horseradish peroxidase was observed in neurons of both the marginal division and dorsal part of the hippocampus following the injection. Hence, neural fibers from both the marginal division and the hippocampus directly projected to the central amygdaloid nucleus. CONCLUSION The results implicated potential new functional and structural pathways through these brain areas during the process of learning and memory. The pathways ran from ventromedial portion (the marginal division) of the striatum to the central amygdaloid nucleus and then to the hippocampus before going back to the marginal division of the striatum. Two smaller circuits were between the marginal division and the central amygdaloid nucleus, and between the central amygdaloid nucleus and the hippocampus. These connections have added new dimensions of neural networks of learning and memory, and might be involved in the pathogenesis of dementia and Alzheimer disease.
Collapse
Affiliation(s)
- Bin Wang
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Yan-chen Chen
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Gang Jiang
- Department of Ear, Nose and Throat, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Qun Ning
- Department of Neurology, 153 PLA Central Hospital, Zhengzhou City, Henan Province 450042, China
| | - Lin Ma
- Department of Radiology, PLA General Hospital, Beijing, 100853, China
| | - Wood-yee Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sheng Wu
- Nanjing Junqu Hangzhou Sanatorium, 14 Ling-ying Road, Hangzhou, 310007, China
| | - Guo-qing Zhou
- Jinan Junqu Qingdao First Sanatorium, 27 West Xianggan Road, Qingdao,266071 China
| | - Rong Bao
- Department of Pediatrics, Sun Yet-San Hospital, Zhong-Shan University, Guangzhou, 510120, China
| | - Zhao-cong Zheng
- Department of Neurosurgery, Fuzhou Central Hospital of Nanjing Junqu, Fuzhou, Fujian, 350025, China
| | - Xin Yang
- Jinan Junqu Qingdao First Sanatorium, 27 West Xianggan Road, Qingdao,266071 China
| | - Ji-xuan Luo
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Wei Zheng
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Hai-wen Guo
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Cheng Zeng
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China
| | - Qi-yi Zeng
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| | - Si-yun Shu
- Center of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, China.
| |
Collapse
|
16
|
NMR-Based Metabolic Profiling Reveals Neurochemical Alterations in the Brain of Rats Treated with Sorafenib. Neurotox Res 2015; 28:290-301. [PMID: 26233726 DOI: 10.1007/s12640-015-9539-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 02/05/2023]
Abstract
Sorafenib, an active multi-kinase inhibitor, has been widely used as a chemotherapy drug to treat advanced clear-cell renal cell carcinoma patients. In spite of the relative safety, sorafenib has been shown to exert a negative impact on cognitive functioning in cancer patients, specifically on learning and memory; however, the underlying mechanism remains unclear. In this study, an NMR-based metabolomics approach was applied to investigate the neurochemical effects of sorafenib in rats. Male rats were once daily administrated with 120 mg/kg sorafenib by gavage for 3, 7, and 28 days, respectively. NMR-based metabolomics coupled with histopathology examinations for hippocampus, prefrontal cortex (PFC), and striatum were performed. The (1)H NMR spectra data were analyzed by using multivariate pattern recognition techniques to show the time-dependent biochemical variations induced by sorafenib. Excellent separation was obtained and distinguishing metabolites were observed between sorafenib-treated and control rats. A total of 36 differential metabolites in hippocampus of rats treated with sorafenib were identified, some of which were significantly changed. Furthermore, these modified metabolites mainly reflected the disturbances in neurotransmitters, energy metabolism, membrane, and amino acids. However, only a few metabolites in PFC and striatum were altered by sorafenib. Additionally, no apparent histological changes in these three brain regions were observed in sorafenib-treated rats. Together, our findings demonstrate the disturbed metabonomics pathways, especially, in hippocampus, which may underlie the sorafenib-induced cognitive deficits in patients. This work also shows the advantage of NMR-based metabolomics over traditional approach on the study of biochemical effects of drugs.
Collapse
|