1
|
Hernández Ruiz JJ, Romero Malacara AMC, López Mota LA, Pérez Guzmán MJ. Therapeutic development towards T follicular helper cells as a molecular target in myasthenia gravis disease. J Neuroimmunol 2025; 399:578503. [PMID: 39657358 DOI: 10.1016/j.jneuroim.2024.578503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
This review intends to gather literature to provide a comprehensive understanding of the molecular mechanisms and role of T follicular helper cells (Tfh) in the interaction with germinal centers (GCs) in Myasthenia Gravis (MG) disease regarding new developments focusing on Tfh as a therapeutic target and its key regulator B cell lymphoma 6 (Bcl6). Tfh cells are CD4+ T cells specialized in providing signals for the activation and maturation of B cells plus the formation and maintenance of GCs; the role of Bcl6 stands as the key transcriptional factor for the survival of GCs and promotion of Tfh generation. Previous studies have demonstrated gene therapy to be beneficial by achieving re-establishment of "immune homeostasis" and amelioration of the proinflammatory process.
Collapse
Affiliation(s)
- J J Hernández Ruiz
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico.
| | - A M C Romero Malacara
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - L A López Mota
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| | - M J Pérez Guzmán
- Facultad Mexicana de Medicina, Universidad La Salle, Fuentes # 17, Av. San Fernando, Col. Tlalpan, C.P.14000 Del. Tlalpan, Mexico City, Mexico
| |
Collapse
|
2
|
Çebi M, Çakar A, Durmuş H, Akan O, Aysal F, Parman Y, Saruhan-Direskeneli G. In vitro modulation of T cells in myasthenia gravis by low-dose IL-2. Eur J Immunol 2024; 54:e2451268. [PMID: 39285833 DOI: 10.1002/eji.202451268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 11/08/2024]
Abstract
Follicular helper (Tfh), peripheral helper (Tph), and regulatory (Treg) T cells are involved in myasthenia gravis (MG) pathogenesis, an autoimmune disorder arising from autoantibodies targeting neuromuscular junction proteins. This study explores the impact of low-dose IL-2 on Tfh, Tph, and Treg cells in vitro in MG. Acetylcholine-receptor antibody-positive MG (AChR-MG), muscle-specific kinase antibody-positive MG (MuSK-MG) patients, and healthy controls (HC) were studied. Blood cells were cultured with/without IL-2 and compared by the ratios of IL-2 stimulated/unstimulated cultures. In both AChR-MG and MuSK-MG patients, CD25+FoxP3+Tregs were lower, while CXCR5+PD-1+ or ICOS+Tfh and CXCR5-PD-1+ or ICOS+Tph cells were higher compared with HC. Among the MG group, the FoxP3+ Treg cells in AChR-MG patients were even lower compared with MuSK-MG patients. In vitro IL-2 stimulation increased Tregs in all groups while decreasing PD-1+/ICOS+Tfh and PD-1+/ICOS+Tph populations. The fold-increase ratio of Tregs and the fold-decrease ratio of PD-1+ or ICOS+Tfh and ICOS+Tph cells in AChR-MG and MuSK-MG patients were greater than in HCs. Low-dose IL-2 treatment may balance Tfh, Tph, and Treg cells in MG patients, offering a potential opportunity for disease modulation.
Collapse
Affiliation(s)
- Merve Çebi
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
- Department of Immunology, Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Arman Çakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hacer Durmuş
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Onur Akan
- Department of Neurology, Prof. Dr. Cemil Tascioglu City Hospital, University of Health Sciences, Istanbul, Turkey
| | | | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
3
|
Wang Z, Zhang Z, Luo T, Du X, Yang M, Yao Q, Su L, Li Y, Chen X, Huang X, Zhang Y. Increased serum interleukin-41 correlates with disease severity in myasthenia gravis. Int Immunopharmacol 2024; 134:112275. [PMID: 38759373 DOI: 10.1016/j.intimp.2024.112275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Myasthenia gravis (MG) is an autoimmune disease mediated by pathogenic antibodies produced by abnormally activated B cells, resulting in neuromuscular junction transmission dysfunction. Interleukin-41 (IL-41) is a novel immunomodulatory cytokine that has been implicated in various metabolic, inflammatory, and autoimmune diseases. The role of IL-41 in MG is still unclear up to now, our study aimed to investigate the level of IL-41 in MG patients and its correlation with clinical features and inflammatory indicators. METHODS Totally, 60 MG patients and 30 healthy controls (HC) were recruited. Baseline data and laboratory parameters were routinely recorded through electronic medical systems. IL-41 levels were measured by enzyme-linked immunosorbent assay. Proportions of T-cell and B-cell subsets and natural killer cells were analyzed by flow cytometry. The correlation between serum IL-41 and MG related parameters was investigated, and the clinical value of IL-41 in the diagnosis of MG was evaluated by receiver operator characteristic curve (ROC) analysis. RESULTS Serum IL-41 levels in MG patients were higher than in HC, and were higher in Myasthenia Gravis Foundation of America (MGFA) III + IV group than that in MGFA I + II group. Serum IL-41 was positively correlated with MG-specific activities of daily living scale (MG-ADL), MGFA classification, platelet to lymphocyte ratio (PLR), and proportion of CD19+ B cells, while it was negatively correlated with high-sensitive C-reactive protein (hs-CRP) and circulatory plasma cells in MG patients. Serum IL-41 levels increased in patients who were treated with efgartigimod during the first cycle of therapy. However, compared to disease initiation, serum IL-41 levels decreased when clinical features steadily improved. ROC analysis showed that IL-41 had a diagnostic value for MG. CONCLUSION The present findings suggested that serum IL-41 was increased in MG patients and was positively associated with the severity of the disease. IL-41 may be essential to the immunopathological mechanism of MG and a potential biomarker for MG.
Collapse
Affiliation(s)
- Zhouyi Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China; Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China; Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tiancheng Luo
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China; Central Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Mingjin Yang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Qian Yao
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Luyao Su
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Yuting Li
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xiao Chen
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China; Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Okuzono Y, Miyakawa S, Itou T, Sagara M, Iwata M, Ishizuchi K, Sekiguchi K, Motegi H, Oyama M, Warude D, Kikukawa Y, Suzuki S. B-cell immune dysregulation with low soluble CD22 levels in refractory seronegative myasthenia gravis. Front Immunol 2024; 15:1382320. [PMID: 38711503 PMCID: PMC11071663 DOI: 10.3389/fimmu.2024.1382320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Myasthenia gravis (MG), primarily caused by acetylcholine receptor (AChR) autoantibodies, is a chronic autoimmune disorder causing severe muscle weakness and fatigability. In particular, seronegative MG constitutes 10%-15% of MG cases and presents diagnostic challenges especially in early-onset female patients who often show severe disease and resistance to immunosuppressive therapy. Furthermore, the immunopathology of seronegative MG remains unclear. Thus, in this study, we aimed to elucidate the pathogenic mechanism of seronegative MG using scRNA-seq analysis and plasma proteome analysis; in particular, we investigated the relationship between immune dysregulation status and disease severity in refractory seronegative MG. Employing single-cell RNA-sequencing and plasma proteome analyses, we analyzed peripheral blood samples from 30 women divided into three groups: 10 healthy controls, 10 early-onset AChR-positive MG, and 10 refractory early-onset seronegative MG patients, both before and after intravenous immunoglobulin treatment. The disease severity was evaluated using the MG-Activities of Daily Living (ADL), MG composite (MGC), and revised 15-item MG-Quality of Life (QOL) scales. We observed numerical abnormalities in multiple immune cells, particularly B cells, in patients with refractory seronegative MG, correlating with disease activity. Notably, severe MG cases had fewer regulatory T cells without functional abnormalities. Memory B cells were found to be enriched in peripheral blood cells compared with naïve B cells. Moreover, plasma proteome analysis indicated significantly lower plasma protein levels of soluble CD22, expressed in the lineage of B-cell maturation (including mature B cells and memory B cells), in refractory seronegative MG patients than in healthy donors or patients with AChR-positive MG. Soluble CD22 levels were correlated with disease severity, B-cell frequency, and RNA expression levels of CD22. In summary, this study elucidates the immunopathology of refractory seronegative MG, highlighting immune disorders centered on B cells and diminished soluble CD22 levels. These insights pave the way for novel MG treatment strategies focused on B-cell biology.
Collapse
Affiliation(s)
- Yuumi Okuzono
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shuuichi Miyakawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Tatsuo Itou
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masaki Sagara
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Masashi Iwata
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Kei Ishizuchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Koji Sekiguchi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Department of Neurology, The Jikei University School of Medicine, Tokyo, Japan
| | - Munenori Oyama
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Dnyaneshwar Warude
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Yusuke Kikukawa
- Oncology Drug Discovery Unit Japan, Research, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shigeaki Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Wang B, Zhu Y, Liu D, Hu C, Zhu R. The intricate dance of non-coding RNAs in myasthenia gravis pathogenesis and treatment. Front Immunol 2024; 15:1342213. [PMID: 38605954 PMCID: PMC11007667 DOI: 10.3389/fimmu.2024.1342213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Myasthenia gravis (MG) stands as a perplexing autoimmune disorder affecting the neuromuscular junction, driven by a multitude of antibodies targeting postsynaptic elements. However, the mystery of MG pathogenesis has yet to be completely uncovered, and its heterogeneity also challenges diagnosis and treatment. Growing evidence shows the differential expression of non-coding RNAs (ncRNAs) in MG has played an essential role in the development of MG in recent years. Remarkably, these aberrantly expressed ncRNAs exhibit distinct profiles within diverse clinical subgroups and among patients harboring various antibody types. Furthermore, they have been implicated in orchestrating the production of inflammatory cytokines, perturbing the equilibrium of T helper 1 cells (Th1), T helper 17 cells (Th17), and regulatory T cells (Tregs), and inciting B cells to generate antibodies. Studies have elucidated that certain ncRNAs mirror the clinical severity of MG, while others may hold therapeutic significance, showcasing a propensity to return to normal levels following appropriate treatments or potentially foretelling the responsiveness to immunosuppressive therapies. Notably, the intricate interplay among these ncRNAs does not follow a linear trajectory but rather assembles into a complex network, with competing endogenous RNA (ceRNA) emerging as a prominent hub in some cases. This comprehensive review consolidates the landscape of dysregulated ncRNAs in MG, briefly delineating their pivotal role in MG pathogenesis. Furthermore, it explores their promise as prospective biomarkers, aiding in the elucidation of disease subtypes, assessment of disease severity, monitoring therapeutic responses, and as novel therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Lee Y, Kim SW, Lee E, Shin HY, Kim M, Lee CY, Park BJ, Kim HE, Yang YH, Choi J, Ju S, Park J, Kim N, Choi J, Lee JG, Kwon S, Chung J. Stereotypic T cell receptor clonotypes in the thymus and peripheral blood of Myasthenia gravis patients. Heliyon 2024; 10:e26663. [PMID: 38420468 PMCID: PMC10901099 DOI: 10.1016/j.heliyon.2024.e26663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Myasthenia Gravis (MG) patients with anti-acetylcholine receptor (AChR) antibodies frequently show hyperplastic thymi with ectopic germinal centers, where autoreactive B cells proliferate with the aid of T cells. In this study, thymus and peripheral blood (PB) samples were collected from ten AChR antibody-positive MG patients. T cell receptor (TCR) repertoires were analyzed using next-generation sequencing (NGS), and compared with that of an age and sex matched control group generated from a public database. Certain V genes and VJ gene recombination pairs were significantly upregulated in the TCR chains of αβ-T cells in the PB of MG patients compared to the control group. Furthermore, the TCR chains found in the thymi of MG patients had a weighted distribution to longer CDR3 lengths when compared to the PB of MG patients, and the TCR beta chains (TRB) in the MG group's PB showed increased clonality encoded by one upregulated V gene. When TRB sequences were sub-divided into groups based on their CDR3 lengths, certain groups showed decreased clonality in the MG group's PB compared to the control group's PB. Finally, we demonstrated that stereotypic MG patient-specific TCR clonotypes co-exist in both the PB and thymi at a much higher frequency than that of the clonotypes confined to the PB. These results strongly suggest the existence of a biased T cell-mediated immune response in MG patients, as observed in other autoimmune diseases.
Collapse
Affiliation(s)
- Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eunjae Lee
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - MinGi Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Young Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Byung Jo Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ha Eun Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Ho Yang
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinny Choi
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Soyeon Ju
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jungheum Park
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Namphil Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaewon Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Chung
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Interdisciplinary Program in Cancer Biology Major, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
7
|
Peng Y, Yang H, Chen Q, Jin H, Xue YH, Du MQ, Liu S, Yao SY. An angel or a devil? Current view on the role of CD8 + T cells in the pathogenesis of myasthenia gravis. J Transl Med 2024; 22:183. [PMID: 38378668 PMCID: PMC10877804 DOI: 10.1186/s12967-024-04965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Myasthenia gravis (MG) and the experimental autoimmune MG (EAMG) animal model are characterized by T-cell-induced and B-cell-dominated autoimmune diseases that affect the neuromuscular junction. Several subtypes of CD4+ T cells, including T helper (Th) 17 cells, follicular Th cells, and regulatory T cells (Tregs), contribute to the pathogenesis of MG. However, increasing evidence suggests that CD8+ T cells also play a critical role in the pathogenesis and treatment of MG. MAIN BODY Herein, we review the literature on CD8+ T cells in MG, focusing on their potential effector and regulatory roles, as well as on relevant evidence (peripheral, in situ, cerebrospinal fluid, and under different treatments), T-cell receptor usage, cytokine and chemokine expression, cell marker expression, and Treg, Tc17, CD3+CD8+CD20+ T, and CXCR5+ CD8+ T cells. CONCLUSIONS Further studies on CD8+ T cells in MG are necessary to determine, among others, the real pattern of the Vβ gene usage of autoantigen-specific CD8+ cells in patients with MG, real images of the physiology and function of autoantigen-specific CD8+ cells from MG/EAMG, and the subset of autoantigen-specific CD8+ cells (Tc1, Tc17, and IL-17+IFN-γ+CD8+ T cells). There are many reports of CD20-expressing T (or CD20 + T) and CXCR5+ CD8 T cells on autoimmune diseases, especially on multiple sclerosis and rheumatoid arthritis. Unfortunately, up to now, there has been no report on these T cells on MG, which might be a good direction for future studies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China.
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China.
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, 412000, Hunan, China
- Department of Neurology, The Third Affiliated Hospital of Hunan University of Chinese Medicine, Zhuzhou, 412000, Hunan, China
| |
Collapse
|
8
|
Wu C, Jiang ML, Pang T, Zhang CJ. Role of regulatory T cells in pathogenesis and therapeutics of myasthenia gravis. REGULATORY T CELLS AND AUTOIMMUNE DISEASES 2024:267-281. [DOI: 10.1016/b978-0-443-13947-5.00036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Li S, Zhang Z, Liu Z. Therapeutic effect of ofatumumab in patients with myasthenia gravis: immunoregulation of follicular T helper cells and T helper type 17 cells. Front Neurol 2023; 14:1278250. [PMID: 38146439 PMCID: PMC10749496 DOI: 10.3389/fneur.2023.1278250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction This study aimed to study the therapeutic effects of ofatumumab in patients with myasthenia gravis (MG) in addition to the immunomodulatory effects on peripheral follicular T helper (Tfh) cells and T helper type 17 (Th17) cells. Methods Thirty-one patients with anti-acetylcholine receptor (AChR) antibody-positive MG were included in this study. At weeks 0, 1, 2, and 4, an initial dose of 20 mg of ofatumumab was injected subcutaneously, with a 2-month follow-up after completing this first cycle. At baseline, 1 month, and 3 months, we assessed the Quantitative MG (QMG), 15-item MG-Quality of Life (MG-QOL15), and MG-Activities of Daily Living (MG-ADL) scales and measured the frequencies of Tfh, Th17, and B cells and the levels of anti-AChR antibody, IL-6, IL-21, and IL-17 in the peripheral blood. Results At 1 month and 3 months, the QMG, MG-QOL15, and MG-ADL scores were all significantly reduced. At 3 months, doses of prednisone were reduced by an average of 37%. Decreased frequencies of Tfh and Th17 cells, depletion of B cells, and reduced levels of IL-6, IL-21, and IL-17 were all observed at 1 month or 3 months. Discussion Therefore, the therapeutic effect of ofatumumab could be detected after one cycle of treatment, which was maintained for 2 months. The immunomodulatory effect of ofatumumab during the observation period may involve depletion of B cells, reduction of Tfh and Th17 cells frequencies, and reduced levels of IL-6, IL-21, and IL-17. The findings provide novel data for the potential application of ofatumumab in MG.
Collapse
Affiliation(s)
- Shasha Li
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Zhaoxu Zhang
- Department of Neurology, Peking University People's Hospital, Beijing, China
| | - Zunjing Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
10
|
Li S, Liu H, Ruan Z, Guo R, Sun C, Tang Y, Huang X, Gao T, Hao S, Li H, Song N, Su Y, Ning F, Li Z, Chang T. Landscape analysis of m6A modification regulators related biological functions and immune characteristics in myasthenia gravis. J Transl Med 2023; 21:166. [PMID: 36864526 PMCID: PMC9983271 DOI: 10.1186/s12967-023-03947-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/01/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification has been recognized to play fundamental roles in the development of autoimmune diseases. However, the implication of m6A modification in myasthenia gravis (MG) remains largely unknown. Thus, we aimed to systematically explore the potential functions and related immune characteristics of m6A regulators in MG. METHODS The GSE85452 dataset with MG and healthy samples was downloaded from Gene Expression Omnibus (GEO) database. m6A modification regulators were manually curated. The targets of m6A regulators were obtained from m6A2Target database. The differential expressed m6A regulators in GSE85452 dataset were identified by "limma" package and were validated by RT-PCR. Function enrichment analysis of dysregulated m6A regulators was performed using "clusterProfiler" package. Correlation analysis was applied for analyzing the relationships between m6A regulators and immune characteristics. Unsupervised clustering analysis was used to identify distinct m6A modification subtypes. The differences between subtypes were analyzed, including the expression level of all genes and the enrichment degree of immune characteristics. Weighted gene co-expression network analysis (WGCNA) was conducted to obtain modules associated with m6A modification subtypes. RESULTS We found that CBLL1, RBM15 and YTHDF1 were upregulated in MG samples of GSE85452 dataset, and the results were verified by RT-PCR in blood samples from19 MG patients and 19 controls. The targeted genes common modified by CBLL1, RBM15, and YTHDF1 were mainly enriched in histone modification and Wnt signaling pathway. Correlation analysis showed that three dysregulated m6A regulators were closely associated with immune characteristics. Among them, RBM15 possessed the strongest correlation with immune characteristics, including CD56dim natural killer cell (r = 0.77, P = 0.0023), T follicular helper cell (r = - 0.86, P = 0.0002), Interferon Receptor (r = 0.78, P = 0.0017), and HLA-DOA (r = 0.64, P = 0.0200). Further two distinct m6A modification patterns mediated by three dysregulated m6A regulators was identified. Bioinformatics analysis found that there were 3029 differentially expressed genes and different immune characteristics between two m6A modification patterns. Finally, WGCNA analysis obtained a total of 12 modules and yellow module was the most positively correlated to subtype-2. CONCLUSION Our findings suggested that m6A RNA modification had an important effect on immunity molecular mechanism of MG and provided a new perspective into understanding the pathogenesis of MG.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Hui Liu
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.,Xi'an Medical University, Xi'an, 710021, Shaanxi, China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yonglan Tang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Xiaoxi Huang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Ting Gao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Sijia Hao
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Na Song
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Yue Su
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Fan Ning
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
11
|
Huda R. Inflammation and autoimmune myasthenia gravis. Front Immunol 2023; 14:1110499. [PMID: 36793733 PMCID: PMC9923104 DOI: 10.3389/fimmu.2023.1110499] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular autoimmune disorder characterized by chronic but intermittent fatigue of the eye- and general body muscles. Muscle weakness is caused primarily by the binding of an autoantibody to the acetylcholine receptors, resulting in blockage of normal neuromuscular signal transmission. Studies revealed substantial contributions of different proinflammatory or inflammatory mediators in the pathogenesis of MG. Despite these findings, compared to therapeutic approaches that target autoantibody and complements, only a few therapeutics against key inflammatory molecules have been designed or tested in MG clinical trials. Recent research focuses largely on identifying unknown molecular pathways and novel targets involved in inflammation associated with MG. A well-designed combination or adjunct treatment utilizing one or more selective and validated promising biomarkers of inflammation as a component of targeted therapy may yield better treatment outcomes. This review briefly discusses some preclinical and clinical findings of inflammation associated with MG and current therapy approaches and suggest the potential of targeting important inflammatory marker(s) along with current monoclonal antibody or antibody fragment based targeted therapies directed to a variety of cell surface receptors.
Collapse
|
12
|
Xu H, Liu F, Liang Y, Wang L. Giant thymoma with myasthenia gravis: A case report. Asian J Surg 2022; 46:1771-1772. [PMID: 36307265 DOI: 10.1016/j.asjsur.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/13/2022] [Indexed: 11/02/2022] Open
|
13
|
Huan X, Zhao R, Song J, Zhong H, Su M, Yan C, Wang Y, Chen S, Zhou Z, Lu J, Xi J, Luo S, Zhao C. Increased serum IL-2, IL-4, IL-5 and IL-12p70 levels in AChR subtype generalized myasthenia gravis. BMC Immunol 2022; 23:26. [PMID: 35624411 PMCID: PMC9145157 DOI: 10.1186/s12865-022-00501-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular junctions. Cytokines play important roles in facilitating the immune response and augmenting the pathogenic antibody production. The current study aims to sensitively characterize the serum levels of cytokines with very low concentration in generalized MG (gMG). Methods Using ultrasensitive single-molecule arrays (SIMOA), we measured serum IL-2, IL-4, IL-5 and IL-12p70 in 228 participants including 152 immunotherapy-naïve anti-acetylcholine receptor (AChR) subtype gMG from Huashan MG registry and 76 age-matched healthy controls. Subgroup analysis was then performed by stratifying patients according to the onset ages, MGFA classification, disease duration at baseline. Results Serum IL-2, IL-4, IL-5 and IL-12p70 levels were significantly elevated in gMG compared to controls (0.179 pg/mL versus 0.011 pg/mL, P < 0.0001; 0.029 pg/mL versus 0.018 pg/mL, P = 0.0259; 0.215 pg/mL versus 0.143 pg/mL, P = 0.0007; 0.132 pg/mL versus 0.118 pg/mL, P = 0.0401). Subgroup analysis revealed that IL-2 levels were slightly elevated in gMG with MGFA II compared to MGFA III/IV (0.195 pg/mL versus 0.160 pg/mL, P = 0.022), as well as elevated levels of IL-2 (0.220 pg/mL versus 0.159 pg/mL, P = 0.0002) and IL-5 (0.251 pg/mL versus 0.181 pg/mL, P = 0.004) in late-onset gMG compared with the early-onset gMG. gMG patients with a long duration had a significant increased serum IL-12p70 than those with a short duration (0.163 pg/mL versus 0.120 pg/mL, P = 0.011). Conclusion Serum IL-2, IL-4, IL-5 and IL-12p70 levels were increased in AChR subtype gMG using ultrasensitive measurement. Serum cytokines with very low concentrations may provide as potential biomarkers in stratifying gMG patients in future prospective cohort studies.
Collapse
Affiliation(s)
- Xiao Huan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Rui Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Jie Song
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Huahua Zhong
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Manqiqige Su
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Chong Yan
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Ying Wang
- Department of Pharmacy, Huashan Hospital Fudan University, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhirui Zhou
- Radiation Oncology Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Jianying Xi
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, China
| | - Sushan Luo
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,National Center for Neurological Disorders, Shanghai, China.
| | - Chongbo Zhao
- Huashan Rare Disease Center and Department of Neurology, Huashan Hospital Fudan University, No. 12 Middle Wulumuqi Road, Shanghai, 200040, China. .,National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
14
|
Alterations in B- and circulating T-follicular helper cell subsets in immune thrombotic thrombocytopenic purpura. Blood Adv 2022; 6:3792-3802. [PMID: 35507753 PMCID: PMC9631570 DOI: 10.1182/bloodadvances.2022007025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Abnormal B-cell phenotype in acute iTTP with decreased transitional and post–germinal center memory cells and increased plasmablasts. Decreased total and PD1+ circulating T-follicular helper cells and changes in B-cell CD80 expression suggest altered B- and T-cell interactions.
T follicular helper (Tfh) cells regulate development of antigen-specific B-cell immunity. We prospectively investigated B-cell and circulating Tfh (cTfh) cell subsets in 45 patients with immune thrombotic thrombocytopenic purpura (iTTP) at presentation and longitudinally after rituximab (RTX). B-cell phenotype was altered at acute iTTP presentation with decreased transitional cells and post–germinal center (post-GC) memory B cells and increased plasmablasts compared with healthy controls. A higher percentage of plasmablasts was associated with higher anti-ADAMTS13 IgG and lower ADAMTS13 antigen levels. In asymptomatic patients with ADAMTS13 relapse, there were increased naïve B cells and a global decrease in memory subsets, with a trend to increased plasmablasts. Total circulating Tfh (CD4+CXCR5+) and PD1+ Tfh cells were decreased at iTTP presentation. CD80 expression was decreased on IgD+ memory cells and double-negative memory cells in acute iTTP. At repopulation after B-cell depletion in de novo iTTP, post-GC and double-negative memory B cells were reduced compared with pre-RTX. RTX did not cause alteration in cTfh cell frequency. The subsequent kinetics of naïve, transitional, memory B cells and plasmablasts did not differ significantly between patients who went on to relapse vs those who remained in remission. In summary, acute iTTP is characterized by dysregulation of B- and cTfh cell homeostasis with depletion of post-GC memory cells and cTfh cells and increased plasmablasts. Changes in CD80 expression on B cells further suggest altered interactions with T cells.
Collapse
|
15
|
Zhao G, Liang J, Cao J, Jiang S, Lu J, Jiang B. Abnormal Function of Circulating Follicular Helper T Cells Leads to Different Manifestations of B Cell Maturation and Differentiation in Patients with Osteosarcoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3724033. [PMID: 35494526 PMCID: PMC9042599 DOI: 10.1155/2022/3724033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/24/2022]
Abstract
Objective The objective of this study is to investigate the effect of dysfunctional circulating follicular helper T cells (Tfh) on B cell maturation and differentiation in patients with osteosarcoma (OS). Method Data from 30 OS patients who underwent diagnosis and treatment in our hospital, as well as those of 30 healthy subjects (HC), were collected at the same time. Flow cytometry was employed to identify proportions of CD4+CXCR5+Tfh cells and Tfh cell subtypes Tfh17, Tfh1, and Tfh2 in the patient's peripheral blood. CD40 L and IFNγ levels were detected after stimulating Tfh cells with an influenza antigen; the positive rates of CD27 and CD38 in B cells were detected before and after coculture with Tfh cells. qRT-PCR was carried out for Blimp-1 expression in B cells, and ELISA was employed to identify the levels of IgM, IgG, and IgA in B cells and IL-2, IL-10, and IL-4 in Tfh cells before and after coculture. Results The percentage of CD4+CXCR5+Tfh cells in OS patients' peripheral blood increased significantly. The Tfh cell ratio increased along with the TNM stage, and the Tfh cell ratio in OS metastasis patients is greater than that in nonmetastatic patients. In addition, Tfh2 and Tfh17 cells increased drastically in OS patients, and no meaningful change was seen in Tfh1 cells. CD40 L levels of Tfh cells in OS patients were less than those of the HC group, and IFNγ was substantially increased. After coculturing the OS group's B cells with Tfh cells, the CD27+ and CD38+ cells of B cells were drastically greater, and Blimp-1 expression was also significantly increased. In addition, the levels of IL-21, IL-4, and IL-10 of Tfh cells in the OS group and the levels of IgA, IgG, and IgM in B cells were significantly reduced after coculture. Conclusion Dysfunctional Tfh in OS patients can severely inhibit B cell development, maturation, and differentiation.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Jianxiao Liang
- Department of Radiology, Dongying People's Hospital, Dongying, Shandong, China
| | - Jingjing Cao
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Shanyong Jiang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Jianshu Lu
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| | - Baoen Jiang
- Department of Traumatic Orthopaedics, Dongying People's Hospital, Dongying, Shandong, China
| |
Collapse
|
16
|
Lin Y, Chang T, Lin J, Sun C, Wei C, Zhao J, Liu R, Yang K, Li Z. Regulatory B Cells Are Decreased and Functionally Impaired in Myasthenia Gravis Patients. Front Neurol 2022; 13:808322. [PMID: 35295834 PMCID: PMC8918563 DOI: 10.3389/fneur.2022.808322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by B cells secreting autoantibodies. Regulatory B (Breg) cells confirmed to have an immunosuppressive function play an important role in many autoimmune diseases. However, what about the changes in Breg cells in the thymus and peripheral blood of MG patients? The changes in the proportion of Breg cells in the peripheral blood of 41 MG patients without any drug treatment and 30 healthy controls were detected by flow cytometry. We found that the proportions of CD19+ IL-10+ cells and CD19+CD24hiCD38hi cell subsets in MG patients were significantly lower than those in healthy controls. Then, we detected the proportion of CD19+ IL-10+ cells in thymus tissues of 10 healthy children, 4 healthy adults, and 12 MG patients by flow cytometry. However, the percentage of CD19+ IL-10+ cells was highest in healthy children (~8%), followed by healthy adults (~3%), and was lowest in MG patients (~0.5%). CD19+CD24hiCD38hi B cells exerted immunosuppressive functions in healthy people but were refractory in MG patients. Moreover, p-STAT3 downstream of CD40 may be impaired in CD24hiCD38hi B cells from the peripheral blood of MG patients.
Collapse
Affiliation(s)
- Ye Lin
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Ting Chang
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiaji Lin
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Chenjing Sun
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Chao Wei
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Jiao Zhao
- Department of Neurology, Chinese PLA General Hospital, Beijing, China
| | - Rui Liu
- Department of Rehabilitation, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
- Kun Yang
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- *Correspondence: Zhuyi Li
| |
Collapse
|
17
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
18
|
Greaves RB, Chen D, Green EA. Thymic B Cells as a New Player in the Type 1 Diabetes Response. Front Immunol 2021; 12:772017. [PMID: 34745148 PMCID: PMC8566354 DOI: 10.3389/fimmu.2021.772017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 12/27/2022] Open
Abstract
Type 1 diabetes (T1d) results from a sustained autoreactive T and B cell response towards insulin-producing β cells in the islets of Langerhans. The autoreactive nature of the condition has led to many investigations addressing the genetic or cellular changes in primary lymphoid tissues that impairs central tolerance- a key process in the deletion of autoreactive T and B cells during their development. For T cells, these studies have largely focused on medullary thymic epithelial cells (mTECs) critical for the effective negative selection of autoreactive T cells in the thymus. Recently, a new cellular player that impacts positively or negatively on the deletion of autoreactive T cells during their development has come to light, thymic B cells. Normally a small population within the thymus of mouse and man, thymic B cells expand in T1d as well as other autoimmune conditions, reside in thymic ectopic germinal centres and secrete autoantibodies that bind selective mTECs precipitating mTEC death. In this review we will discuss the ontogeny, characteristics and functionality of thymic B cells in healthy and autoimmune settings. Furthermore, we explore how in silico approaches may help decipher the complex cellular interplay of thymic B cells with other cells within the thymic microenvironment leading to new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Richard B Greaves
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - Dawei Chen
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| | - E Allison Green
- Centre for Experimental Medicine and Biomedicine, Hull York Medical School, University of York, York, United Kingdom
| |
Collapse
|
19
|
Tao Z, Lu C, Gao S, Zhang P, Chen Y, Wang Y, Yang Z, Xiong K, Liu Y, Zhang P. Two types of immune infiltrating cells and six hub genes can predict the occurrence of myasthenia gravis in patients with thymoma. Bioengineered 2021; 12:5004-5016. [PMID: 34620045 PMCID: PMC8806799 DOI: 10.1080/21655979.2021.1958634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Thymoma is the most common primary mass in anterior mediastinum. Although associated with low malignancy, it is often accompanied by myasthenia gravis resulting in poor prognosis. Due to the dual factors of tumor immune tolerance and autoimmune reaction, it is urgent to understand the immune status of MG with thymoma. In this study, RNA sequencing data were obtained from the TCGA and GEO cohorts to identify differentially expressed messenger RNAs and infiltrated immune cells. A total of 121 samples in TCGA and 43 samples in GEO were screened out. The infiltrated immune cells were identified by CIBERSORT, in which Tfh cells and activated DC cells were abnormal in thymoma patients. The differently expressed genes were performed by package LIMMA. The functional characteristics of differently expression genes were analyzed by GO and KEGG; one GO and seven KEGG pathways were both found in both TCGA and GEO cohorts. Meanwhile, 27 common differently expressed genes were obtained and were displayed by a Venn diagram. The TRRUST was used to screen the hub genes for the common 27 different genes and 6 genes were found. Then, PPI networks were constructed. Subsequently, the relationship between SCNAs of common genes and related immune cells tested by TIMER. Kaplan–Meier plots, ROC curve and Cox’s expression model for immune infiltration and hub genes were also tested. In conclusion, we found that two types of immune infiltrated cells and six hub genes can predict the occurrence of myasthenia gravis in thymoma patients.
Collapse
Affiliation(s)
- Ziyou Tao
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Chao Lu
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Gao
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Chen
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuanguo Wang
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyu Yang
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Kai Xiong
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxin Liu
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Cardiovascular Thoracic Surgery Department, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Liu RT, Li W, Guo D, Yang CL, Ding J, Xu JX, Duan RS. Natural killer cells promote the differentiation of follicular helper T cells instead of inducing apoptosis in myasthenia gravis. Int Immunopharmacol 2021; 98:107880. [PMID: 34174703 DOI: 10.1016/j.intimp.2021.107880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/06/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Recent evidence has shown that natural killer (NK) cells have an immunoregulatory function in the pathogenesis of myasthenia gravis (MG). In this study, the phenotype and function of NK cell subsets in peripheral blood of new-onset MG (N-MG) and stable MG (S-MG) patients were explored. Circulating CD56dim and CD56bright NK cells were increased and decreased, respectively, in patients with N-MG and S-MG compared with healthy control (HC). Moreover, all circulating NK cell subsets from N-MG patients showed significantly lower expression of activating receptor NKG2D and production of Interferon (IFN) -γ than that from HC. The killing effects of NK cells on CD4+ T cells and Tfh cells were impaired in MG patients, whereas, they promoted the differentiation and activation of Tfh cells. These data indicated that the immune-regulation of NK cells on CD4+ T cells and Tfh cells in MG patients was abnormal, which may contribute to the immune-pathological mechanism of MG.
Collapse
Affiliation(s)
- Rui-Ting Liu
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Wei Li
- The Neurosurgical Department, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Dong Guo
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jie Ding
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, Shandong 252000, PR China
| | - Jian-Xin Xu
- Department of Neurology, Liaocheng People's Hospital, Liaocheng 252000, Shandong Province, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China; Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, PR China; Shandong Institute of Neuroimmunology, Jinan 250014, PR China.
| |
Collapse
|
21
|
Uzawa A, Kuwabara S, Suzuki S, Imai T, Murai H, Ozawa Y, Yasuda M, Nagane Y, Utsugisawa K. Roles of cytokines and T cells in the pathogenesis of myasthenia gravis. Clin Exp Immunol 2020; 203:366-374. [PMID: 33184844 DOI: 10.1111/cei.13546] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by muscle weakness and fatigue caused by the presence of autoantibodies against the acetylcholine receptor (AChR) or the muscle-specific tyrosine kinase (MuSK). Activated T, B and plasma cells, as well as cytokines, play important roles in the production of pathogenic autoantibodies and the induction of inflammation at the neuromuscular junction in MG. Many studies have focused on the role of cytokines and lymphocytes in anti-AChR antibody-positive MG. Chronic inflammation mediated by T helper type 17 (Th17) cells, the promotion of autoantibody production from B cells and plasma cells by follicular Th (Tfh) cells and the activation of the immune response by dysfunction of regulatory T (Treg ) cells may contribute to the exacerbation of the MG pathogenesis. In fact, an increased number of Th17 cells and Tfh cells and dysfunction of Treg cells have been reported in patients with anti-AChR antibody-positive MG; moreover, the number of these cells was correlated with clinical parameters in patients with MG. Regarding cytokines, interleukin (IL)-17; a Th17-related cytokine, IL-21 (a Tfh-related cytokine), the B-cell-activating factor (BAFF; a B cell-related cytokine) and a proliferation-inducing ligand (APRIL; a B cell-related cytokine) have been reported to be up-regulated and associated with clinical parameters of MG. This review focuses on the current understanding of the involvement of cytokines and lymphocytes in the immunological pathogenesis of MG, which may lead to the development of novel therapies for this disease in the near future.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - T Imai
- Department of Neurology, Sapporo Medical University Hospital, Sapporo, Japan
| | - H Murai
- Department of Neurology, International University of Health and Welfare, Narita, Japan
| | - Y Ozawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Yasuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Y Nagane
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| | - K Utsugisawa
- Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan
| |
Collapse
|
22
|
Chang T, Niu C, Sun C, Ma Y, Guo R, Ruan Z, Gao Y, Lu X, Li H, Lin Y, Lin J, Li Z. Melatonin exerts immunoregulatory effects by balancing peripheral effector and regulatory T helper cells in myasthenia gravis. Aging (Albany NY) 2020; 12:21147-21160. [PMID: 33136553 PMCID: PMC7695404 DOI: 10.18632/aging.103785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Myasthenia gravis (MG) is a prototypic organ-specific autoimmune disorder that, in most cases, is mainly mediated by antibodies against the acetylcholine receptor. Evidence implicates CD4+ T helper (Th) cells in the development of MG, whereas regulatory T cells (Tregs) are associated with disease resolution. Melatonin has important immunoregulatory effects in many T cell-mediated autoimmune diseases. However, there are few studies on the role of melatonin in MG. In the present study, we investigated serum melatonin levels and melatonin receptor expression in MG patients and healthy controls (HCs). We also evaluated the impact of melatonin administration on peripheral CD4+ Th cells and related cytokine production. Serum melatonin levels were lower in MG patients than in HCs, and MT1 expression was lower in PBMCs from MG patients than in those from HCs. Administration of melatonin significantly decreased Th1 and Th17 cell responses and proinflammatory cytokine production. Further investigation in vitro revealed that melatonin administration increased FoxP3 and IL-10 expression in CD4+ T cells from MG patients and enhanced the suppressive function of Tregs. These findings indicate that melatonin exerts immunoregulatory activity in MG by balancing effector and regulatory Th cell populations as well as by suppressing proinflammatory cytokine production.
Collapse
Affiliation(s)
- Ting Chang
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Chunxiao Niu
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Chao Sun
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Ying Ma
- Department of Immunology, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Rongjing Guo
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Zhe Ruan
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Yanwu Gao
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Xiaodan Lu
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Huanhuan Li
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| | - Ye Lin
- Department of Neurology, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jiaji Lin
- Medical Corp in Unit 93246 of PLA, Changchun, Jilin Province, P.R. China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, The Air Force Medical University, Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|
23
|
Li Y, Guptill JT, Russo MA, Howard JF, Massey JM, Juel VC, Hobson-Webb LD, Emmett D, Chopra M, Raja S, Liu W, Yi JS. Imbalance in T follicular helper cells producing IL-17 promotes pro-inflammatory responses in MuSK antibody positive myasthenia gravis. J Neuroimmunol 2020; 345:577279. [PMID: 32497931 DOI: 10.1016/j.jneuroim.2020.577279] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
A detailed understanding of the role of Tfh cells in MuSK-antibody positive myasthenia gravis (MuSK-MG) is lacking. We characterized phenotype and function of Tfh cells in MuSK-MG patients and controls. We found similar overall Tfh and follicular regulatory (Tfr) T cell frequencies in MuSK-MG and healthy controls, but MuSK-MG patients exhibited higher frequencies of Tfh17 cells and a higher ratio of Tfh:Tfr cells. These results suggest imbalanced Tfh cell regulation, further supported by increased frequencies of CD4 T cells co-producing IL-21/IL-17 and IL-17/IFN-γ, and increased Tfh-supported IgG production. These results support a role for Tfh cell dysregulation in MuSK-MG immunopathology.
Collapse
Affiliation(s)
- Yingkai Li
- Department of Neurology, Duke University Medical Center, Durham, NC, USA; Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jeffrey T Guptill
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Melissa A Russo
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - James F Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janice M Massey
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Vern C Juel
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Lisa D Hobson-Webb
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Doug Emmett
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Manisha Chopra
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shruti Raja
- Department of Neurology, Duke University Medical Center, Durham, NC, USA
| | - Weibin Liu
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - John S Yi
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
24
|
Çebi M, Durmus H, Aysal F, Özkan B, Gül GE, Çakar A, Hocaoglu M, Mercan M, Yentür SP, Tütüncü M, Yayla V, Akan O, Dogan Ö, Parman Y, Saruhan-Direskeneli G. CD4 + T Cells of Myasthenia Gravis Patients Are Characterized by Increased IL-21, IL-4, and IL-17A Productions and Higher Presence of PD-1 and ICOS. Front Immunol 2020; 11:809. [PMID: 32508812 PMCID: PMC7248174 DOI: 10.3389/fimmu.2020.00809] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies predominantly against the acetylcholine receptor (AChR). Specific T cell subsets are required for long-term antibody responses, and cytokines secreted mainly from CD4+ T cells regulate B cell antibody production. The aim of this study was to assess the differences in the cytokine expressions of CD4+ T cells in MG patients with AChR antibodies (AChR-MG) and the effect of immunosuppressive (IS) therapy on cytokine activity and to test these findings also in MG patients without detectable antibodies (SN-MG). Clinically diagnosed AChR-MG and SN-MG patients were included. The AChR-MG patients were grouped as IS-positive and -negative and compared with age- and sex-matched healthy controls. Peripheral blood mononuclear cells were used for ex vivo intracellular cytokine production, and subsets of CD4+ T cells and circulating follicular helper T (cTfh) cells were detected phenotypically by the expression of the chemokine and the costimulatory receptors. Thymocytes obtained from patients who had thymectomy were also analyzed. IL-21, IL-4, IL-10, and IL-17A productions in CD4+ T cells were increased in AChR-MG compared to those in healthy controls. IS treatment enhanced IL-10 and reduced IFN-γ production in AChR-MG patients compared to those in IS-negative patients. Increased IL-21 and IL-4 productions were also demonstrated in SN-MG patients. Among CD4+ T cells, Th17 cells were increased in both disease subgroups. Treatment induced higher proportions of Th2 cells in AChR-MG patients. Both CXCR5+ and CXCR5− CD4+ T cells expressed higher programmed cell death protein 1 (PD-1) and inducible costimulatory (ICOS) in AChR-MG and SN-MG groups, mostly irrespective of the treatment. Based on chemokine receptors on CXCR5+PD-1+ in CD4+ T (cTfh) cells, in AChR-MG patients without treatment, the proportions of Tfh17 cells were higher than those in the treated group, whereas the Tfh1 cells were decreased compared with those in the controls. The relevance of CXCR5 and PD-1 in the pathogenesis of AChR-MG was also suggested by the increased presence of these molecules on mature CD4 single-positive thymocytes from the thymic samples. The study provides further evidence for the importance of IL-21, IL-17A, IL-4, and IL-10 in AChR-MG. Disease-related CD4+T cells are identified mainly as PD-1+ or ICOS+ with or without CXCR5, resembling cTfh cells in the circulation or probably in the thymus. AChR-MG and SN-MG seem to have some similar characteristics. IS treatment has distinctive effects on cytokine expression.
Collapse
Affiliation(s)
- Merve Çebi
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hacer Durmus
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Fikret Aysal
- Department of Neurology, Medipol University, Istanbul, Turkey
| | - Berker Özkan
- Department of Thoracic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | - Arman Çakar
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Mehmet Hocaoglu
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Metin Mercan
- Bakirköy Sadi Konuk State Hospital, Istanbul, Turkey
| | - Sibel P Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Melih Tütüncü
- Department of Neurology, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Vildan Yayla
- Bakirköy Sadi Konuk State Hospital, Istanbul, Turkey
| | - Onur Akan
- Okmeydani State Hospital, Istanbul, Turkey
| | - Öner Dogan
- Department of Pathology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Yeşim Parman
- Department of Neurology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
25
|
Hidalgo Y, Núñez S, Fuenzalida MJ, Flores-Santibáñez F, Sáez PJ, Dorner J, Lennon-Dumenil AM, Martínez V, Zorn E, Rosemblatt M, Sauma D, Bono MR. Thymic B Cells Promote Germinal Center-Like Structures and the Expansion of Follicular Helper T Cells in Lupus-Prone Mice. Front Immunol 2020; 11:696. [PMID: 32411134 PMCID: PMC7199236 DOI: 10.3389/fimmu.2020.00696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.
Collapse
Affiliation(s)
- Yessia Hidalgo
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Cells for Cells-Consorcio Regenero, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | - Maria Jose Fuenzalida
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | | | - Pablo J Sáez
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, France
| | - Jessica Dorner
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | | | - Victor Martínez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Emmanuel Zorn
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maria Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
26
|
Zhang XM, Liu CY, Shao ZH. Advances in the role of helper T cells in autoimmune diseases. Chin Med J (Engl) 2020; 133:968-974. [PMID: 32187054 PMCID: PMC7176439 DOI: 10.1097/cm9.0000000000000748] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 02/06/2023] Open
Abstract
Autoimmune diseases are primary immune diseases in which autoreactive antibodies or sensitized lymphocytes destroy and damage tissue and cellular components, resulting in tissue damage and organ dysfunction. Helper T cells may be involved in the pathogenesis of autoimmune diseases under certain conditions. This review summarizes recent research on the role of helper T cells in autoimmune diseases from two aspects, helper T cell-mediated production of autoantibodies by B cells and helper T cell-induced activation of abnormal lymphocytes, and provides ideas for the treatment of autoimmune diseases. The abnormal expression of helper T cells promotes the differentiation of B cells that produce autoantibodies, which leads to the development of different diseases. Among them, abnormal expression of Th2 cells and T follicular helper cells is more likely to cause antibody-mediated autoimmune diseases. In addition, abnormal activation of helper T cells also mediates autoimmune diseases through the production of abnormal cytokines and chemokines. Helper T cells play an essential role in the pathogenesis of autoimmune diseases, and a full understanding of their role in autoimmune diseases is helpful for providing ideas for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Xiao-Mei Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | | | | |
Collapse
|
27
|
Yang CL, Zhang P, Liu RT, Zhang N, Zhang M, Li H, Du T, Li XL, Dou YC, Duan RS. CXCR5-negative natural killer cells ameliorate experimental autoimmune myasthenia gravis by suppressing follicular helper T cells. J Neuroinflammation 2019; 16:282. [PMID: 31884963 PMCID: PMC6935501 DOI: 10.1186/s12974-019-1687-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
Background Recent studies have demonstrated that natural killer (NK) cells can modulate other immune components and are involved in the development or progression of several autoimmune diseases. However, the roles and mechanisms of NK cells in regulating experimental autoimmune myasthenia gravis (EAMG) remained to be illustrated. Methods To address the function of NK cells in experimental autoimmune myasthenia gravis in vivo, EAMG rats were adoptively transferred with splenic NK cells. The serum antibodies, and splenic follicular helper T (Tfh) cells and germinal center B cells were determined by ELISA and flow cytometry. The roles of NK cells in regulating Tfh cells were further verified in vitro by co-culturing splenocytes or isolated T cells with NK cells. Moreover, the phenotype, localization, and function differences between different NK cell subtypes were determined by flow cytometry, immunofluorescence, and ex vivo co-culturation. Results In this study, we found that adoptive transfer of NK cells ameliorated EAMG symptoms by suppressing Tfh cells and germinal center B cells. Ex vivo studies indicated NK cells inhibited CD4+ T cells and Tfh cells by inducing the apoptosis of T cells. More importantly, NK cells could be divided into CXCR5- and CXCR5+ NK subtypes according to the expression of CXCR5 molecular. Compared with CXCR5- NK cells, which were mainly localized outside B cell zone, CXCR5+ NK were concentrated in the B cell zone and exhibited higher expression levels of IL-17 and ICOS, and lower expression level of CD27. Ex vivo studies indicated it was CXCR5- NK cells not CXCR5+ NK cells that suppressed CD4+ T cells and Tfh cells. Further analysis revealed that, compared with CXCR5- NK cells, CXCR5+ NK cells enhanced the ICOS expression of Tfh cells. Conclusions These findings highlight the different roles of CXCR5- NK cells and CXCR5+ NK cells. It was CXCR5- NK cells but not CXCR5+ NK cells that suppressed Tfh cells and inhibited the autoimmune response in EAMG models.
Collapse
Affiliation(s)
- Chun-Lin Yang
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Ru-Tao Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Min Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Tong Du
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China
| | - Ying-Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, No. 16766, Jingshi Road, Jinan, 250014, People's Republic of China. .,Department of Neurology, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
28
|
Yan X, Gu Y, Wang C, Sun S, Wang X, Tian J, Wang M, Ji X, Duan X, Gao H, Fang Q, Dong W, Zhang X, Xue Q. Unbalanced expression of membrane-bound and soluble inducible costimulator and programmed cell death 1 in patients with myasthenia gravis. Clin Immunol 2019; 207:68-78. [PMID: 31374257 DOI: 10.1016/j.clim.2019.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 02/01/2023]
Abstract
This study aimed to investigate the possible functions and mechanisms of positive and negative costimulatory molecules in the pathological process of myasthenia gravis (MG). The expression levels of membrane-bound inducible costimulator (ICOS) and programmed cell death 1 (PD-1) in peripheral blood T cells, their corresponding ligands ICOSL and PDL-1 on B cells, and their soluble forms (sICOS, sPD-1, sICOSL, and sPDL-1) in plasma were detected in patients with untreated-stage MG (USMG) and remission-stage MG (RSMG). The results showed that the expression levels of membrane-bound ICOS and PD-1 in the peripheral blood T cells of the USMG group and their corresponding ligands ICOSL and PD-L1 on B cells were significantly increased compared to those in the RSMG group and healthy controls (HCs). The levels of sICOSL and sPD-1 were significantly upregulated in USMG patients compared to those in the RSMG and HC groups, while the levels of sICOS and sPD-L1 were not different. The expression of PD-L1 on CD19+ B cells was positively correlated with the concentrations of AchR Ab in the USMG group. The expression of ICOS and PD-1 in CD4+ T cells and the expression of ICOSL and PD-L1 on CD19+ B cells were positively correlated with the quantitative myasthenia gravis (QMG) scores in the USMG group. Also, in the USMG group, the plasma levels of sICOSL and sPD-1 were positively correlated with the QMG scores. In addition, the percentage of peripheral blood follicular helper T (Tfh) cells in the USMG group was positively correlated with ICOS and PD-1 expression on CD4+ T cells and ICOSL and PD-L1 expression on CD19+ B cells. There were positive correlations between sICOSL and sPD-1 levels and the percentage of peripheral blood Tfh cells and plasma interleukin-21 (IL-21) levels in the USMG group. The results suggest that the positive ICOS/ICOSL and negative PD-1/PD-L1 costimulatory molecule pairs participate in the pathological process of MG. Abnormal sICOSL and sPD-1 expression might interfere with the normal signal transduction of ICOS and PD-1 on Tfh cells, causing excessive activation of Tfh cells and promotion of disease progression. sICOSL and sPD-1 have potential value in monitoring MG disease states.
Collapse
Affiliation(s)
- Xiaoming Yan
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yanzheng Gu
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, China
| | - Caiqin Wang
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Simao Sun
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaozhu Wang
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jingluan Tian
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Mingyuan Wang
- Suzhou Red Cross Central Blood Station, Suzhou, Jiangsu 215006, China
| | - Xiaopei Ji
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaoyu Duan
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Hanqing Gao
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qi Fang
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, China
| | - Wanli Dong
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xueguang Zhang
- Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Qun Xue
- Neurology Department, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Clinical Immunology, Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Suzhou Clinical Medical Center of Neurology, Suzhou, Jiangsu 215004, China.
| |
Collapse
|
29
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
30
|
Kim SJ, Lee K, Diamond B. Follicular Helper T Cells in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1793. [PMID: 30123218 PMCID: PMC6085416 DOI: 10.3389/fimmu.2018.01793] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells constitute a subset of effector T cells that participate in the generation of high-affinity humoral responses. They express the chemokine receptor CXCR5 and produce the cytokine IL-21, both of which are required for their contribution to germinal center formation. Uncontrolled expansion of Tfh cells is observed in various mouse models of systemic autoimmune diseases and in patients with these diseases. In particular, the frequency of circulating Tfh is correlated with disease activity and anti-DNA antibody titer in patients with systemic lupus erythematosus. Recent studies reveal functional diversity within the Tfh population in both humans and mice. We will summarize here the molecular mechanisms for Tfh cell generation, survival and function in both humans and mice, and the relationship between Tfh cells and autoimmune disease in animal models and in patients.
Collapse
Affiliation(s)
- Sun Jung Kim
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| | - Kyungwoo Lee
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| | - Betty Diamond
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| |
Collapse
|
31
|
Guo J, Zhao C, Wu F, Tao L, Zhang C, Zhao D, Yang S, Jiang D, Wang J, Sun Y, Li Z, Li H, Yang K. T Follicular Helper-Like Cells Are Involved in the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:944. [PMID: 29867938 PMCID: PMC5949363 DOI: 10.3389/fimmu.2018.00944] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023] Open
Abstract
Multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) have been proved to be T cell-mediated autoimmune diseases. Recent researches indicate that humoral immunity is also involved in the pathogenesis of these disorders. T follicular helper (Tfh) cells are critical for B cell differentiation and antibody production. However, the role of Tfh cells in MS and EAE remains unclear. Here, we found elevated frequencies of CD4+CXCR5+PD-1+ Tfh-like cells in both MS patients and EAE. In EAE mice, Tfh-like cells, together with B cells, were found in the ectopic lymphoid structures in spinal cords. Moreover, Tfh-like cells promoted the antibody production via IL-21/IL-21R and CD40 ligand/CD40 interaction and the synergy effect of STAT3 and non-canonical NF-κB signaling pathway inside B cells. Moreover, adoptive transfer of Tfh-like cells could increase the severity and delay the remission of EAE. In conclusion, our data indicate that Tfh-like cells contribute to the pathogenesis of EAE.
Collapse
Affiliation(s)
- Jun Guo
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Cong Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Immunology, Fourth Military Medical University, Xi'an, China.,Department of Neurology, Air Force General Hospital PLA, Beijing, China
| | - Fang Wu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Immunology, Fourth Military Medical University, Xi'an, China.,Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Liang Tao
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Chunmei Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Daidi Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuya Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Dongbo Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yuanjie Sun
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongzeng Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
32
|
Tertiary Lymphoid Structures Among the World of Noncanonical Ectopic Lymphoid Organizations. Methods Mol Biol 2018; 1845:1-15. [PMID: 30141004 DOI: 10.1007/978-1-4939-8709-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Tertiary lymphoid structures (TLOs), also known as ectopic lymphoid structures, are associated with chronic infections and inflammatory diseases. Despite their association with pathology, these structures are actually a normal, albeit transient, component of the immune system and facilitate local immune responses that are meant to mitigate inflammation and resolve infection. Many of the mechanisms controlling the formation and function of tertiary lymphoid structures have been identified, in part by experimentally triggering their formation using defined stimuli under controlled conditions. Here, we introduce the experimental and pathological conditions in which tertiary lymphoid tissues are formed, describe the mechanisms linked to their formation, and discuss their functions in the context of both infection and inflammation.
Collapse
|
33
|
Cron MA, Maillard S, Villegas J, Truffault F, Sudres M, Dragin N, Berrih-Aknin S, Le Panse R. Thymus involvement in early-onset myasthenia gravis. Ann N Y Acad Sci 2017; 1412:137-145. [DOI: 10.1111/nyas.13519] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Mélanie A. Cron
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Solène Maillard
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - José Villegas
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Frédérique Truffault
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Muriel Sudres
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Nadine Dragin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Sonia Berrih-Aknin
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| | - Rozen Le Panse
- INSERM U974; Paris France
- UPMC Sorbonne Universités; Paris France
- AIM; Institut de myologie; Paris France
| |
Collapse
|
34
|
Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O'Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve 2017; 57:172-184. [PMID: 28940642 DOI: 10.1002/mus.25973] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
Abstract
Myasthenia gravis (MG) is an archetypal autoimmune disease. The pathology is characterized by autoantibodies to the acetylcholine receptor (AChR) in most patients or to muscle-specific tyrosine kinase (MuSK) in others and to a growing number of other postsynaptic proteins in smaller subsets. A decrease in the number of functional AChRs or functional interruption of the AChR within the muscle end plate of the neuromuscular junction is caused by pathogenic autoantibodies. Although the molecular immunology underpinning the pathology is well understood, much remains to be learned about the cellular immunology contributing to the production of autoantibodies. This Review documents research concerning the immunopathology of MG, bringing together evidence principally from human studies with an emphasis on the role of adaptive immunity and B cells in particular. Proposed mechanisms for autoimmunity, which take into account that different types of MG may incorporate divergent immunopathology, are offered. Muscle Nerve 57: 172-184, 2018.
Collapse
Affiliation(s)
- John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeffrey T Guptill
- Department of Neurology, Neuromuscular Section, Duke University Medical Center, Durham, North Carolina, USA
| | - Panos Stathopoulos
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| |
Collapse
|
35
|
Robinet M, Villeret B, Maillard S, Cron MA, Berrih-Aknin S, Le Panse R. Use of Toll-Like Receptor Agonists to Induce Ectopic Lymphoid Structures in Myasthenia Gravis Mouse Models. Front Immunol 2017; 8:1029. [PMID: 28970832 PMCID: PMC5609563 DOI: 10.3389/fimmu.2017.01029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the acetylcholine receptor (AChR) at the neuromuscular junction. MG symptoms are characterized by muscle weaknesses. The thymus of MG patients is very often abnormal and possesses all the characteristics of tertiary lymphoid organs such as neoangiogenesis processes, overexpression of inflammatory cytokines and chemokines, and infiltration of B lymphocytes leading to ectopic germinal center (GC) development. We previously demonstrated that injections of mice with polyinosinic–polycytidylic acid [Poly(I:C)], a synthetic double-stranded RNA mimicking viral infection, induce thymic changes and trigger MG symptoms. Upon Poly(I:C) injections, we observed increased thymic expressions of α-AChR, interferon-β and chemokines such as CXCL13 and CCL21 leading to B-cell recruitment. However, these changes were only transient. In order to develop an experimental MG model associated with thymic GCs, we used Poly(I:C) in the classical experimental autoimmune MG model induced by immunizations with purified AChR emulsified in complete Freund’s adjuvant. We observed that Poly(I:C) strongly favored the development of MG as almost all mice displayed MG symptoms. Nevertheless, we did not observe any ectopic GC development. We next challenged mice with Poly(I:C) together with other toll-like receptor (TLR) agonists known to be involved in GC development and that are overexpressed in MG thymuses. Imiquimod and CpG oligodeoxynucleotides that activate TLR7 and TLR9, respectively, did not induce thymic changes. In contrast, lipopolysaccharide that activates TLR4 potentiated Poly(I:C) effects and induced a significant expression of CXCL13 mRNA in the thymus associated with a higher recruitment of B cells that induced over time thymic B-lymphoid structures. Altogether, these data suggest that tertiary lymphoid genesis in MG thymus could result from a combined activation of TLR signaling pathways.
Collapse
Affiliation(s)
- Marieke Robinet
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Bérengère Villeret
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Solène Maillard
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Mélanie A Cron
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,UPMC Sorbonne Universités, Paris, France.,AIM, Institut de myologie, Paris, France
| |
Collapse
|
36
|
Yang Y, Zhang M, Ye Y, Ma S, Fan L, Li Z. High frequencies of circulating Tfh-Th17 cells in myasthenia gravis patients. Neurol Sci 2017; 38:1599-1608. [PMID: 28578482 DOI: 10.1007/s10072-017-3009-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/25/2017] [Indexed: 11/24/2022]
Abstract
Recent studies show that the frequencies of circulating follicullar helper T (cTfh) cells are significantly higher in myasthenia gravis (MG) patients compared with healthy controls (HC). And, they are positively correlated with levels of serum anti-acetylcholine receptor antibody (anti-AchR Ab). It is unclear whether cTfh cell subset frequencies are altered and what role they play in MG patients. In order to clarify this, we examined the frequencies of cTfh cell counterparts, their subsets, and circulating plasmablasts in MG patients by flow cytometry. We determined the concentrations of serum anti-AChR Ab by enzyme-linked immunosorbent assay (ELISA). We assayed the function of cTfh cell subsets by flow cytometry and real-time polymerase chain reaction (RT-PCR). We found higher frequencies of cTfh cell counterparts, cTfh-Th17 cells, and plasmablasts in MG patients compared with HC. The frequencies of cTfh cell counterparts and cTfh-Th17 cells were positively correlated with the frequencies of plasmablasts and the concentrations of anti-AChR Ab in MG patients. Functional assays showed that activated cTfh-Th17 cells highly expressed key molecular features of Tfh cells including ICOS, PD-1, and IL-21. Results indicate that, just like cTfh cell counterparts, cTfh-Th17 cells may play a role in the immunopathogenesis and the production of anti-AChR Ab of MG.
Collapse
Affiliation(s)
- Yongxiang Yang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.,Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Neurosurgery, PLA 422nd Hospital, Zhanjiang, 524005, China
| | - Min Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, 410000, China
| | - Shan Ma
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Lingling Fan
- Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an, 710077, China
| | - Zhuyi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
37
|
Zhao C, Li HZ, Zhao DD, Ma C, Wu F, Bai YN, Zhang M, Li ZY, Guo J. Increased Circulating T Follicular Helper Cells Are Inhibited by Rituximab in Neuromyelitis Optica Spectrum Disorder. Front Neurol 2017; 8:104. [PMID: 28360886 PMCID: PMC5350120 DOI: 10.3389/fneur.2017.00104] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 03/02/2017] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a severe autoimmune disease of the central nervous system. The existence of autoantibody targeting aquaporin-4 (AQP4-Ab) indicates the involvement of humoral immunity in the pathogenesis of this disease. Rituximab (RTX), a monoclonal antibody against CD20, has been used to treat NMOSD by depleting circulating B cells and overall satisfactory outcome has been achieved. Although T follicular helper cells have been proved to regulate B cell activation and antibody production, the role of these cells in NMOSD and the impact of RTX treatment on these cells remain less understood. In this study, we found that frequencies of circulating T follicular helper (cTfh) cells and B cells together with the related cytokines, IL-21 and IL-6, were closely correlated with disease activity of NMOSD. Furthermore, B cell depletion with RTX treatment inhibited the expansion of cTfh cells, and these effects were achieved through eliminating IL-6-producing B cells and blocking the direct contact between cTfh cells and B cells. These findings imply the complicated cross talk between cTfh cells and B cells and may provide a novel therapeutic target for NMOSD.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Hong-Zeng Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Dai-Di Zhao
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Chao Ma
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Fang Wu
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; Department of Neurology, Xi'an Children's Hospital, Xi'an, China
| | - Ya-Nan Bai
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Min Zhang
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Zhu-Yi Li
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| | - Jun Guo
- Department of Neurology, Tangdu Hospital, Fourth Military Medical University , Xi'an , China
| |
Collapse
|
38
|
Shipman WD, Dasoveanu DC, Lu TT. Tertiary lymphoid organs in systemic autoimmune diseases: pathogenic or protective? F1000Res 2017; 6:196. [PMID: 28344775 PMCID: PMC5333609 DOI: 10.12688/f1000research.10595.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 12/14/2022] Open
Abstract
Tertiary lymphoid organs are found at sites of chronic inflammation in autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis. These organized accumulations of T and B cells resemble secondary lymphoid organs and generate autoreactive effector cells. However, whether they contribute to disease pathogenesis or have protective functions is unclear. Here, we discuss how tertiary lymphoid organs can generate potentially pathogenic cells but may also limit the extent of the response and damage in autoimmune disease.
Collapse
Affiliation(s)
- William D. Shipman
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Dragos C. Dasoveanu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Theresa T. Lu
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Pediatric Rheumatology, Hospital for Special Surgery, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
39
|
Truffault F, de Montpreville V, Eymard B, Sharshar T, Le Panse R, Berrih-Aknin S. Thymic Germinal Centers and Corticosteroids in Myasthenia Gravis: an Immunopathological Study in 1035 Cases and a Critical Review. Clin Rev Allergy Immunol 2017; 52:108-124. [PMID: 27273086 DOI: 10.1007/s12016-016-8558-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The most common form of Myasthenia gravis (MG) is due to anti-acetylcholine receptor (AChR) antibodies and is frequently associated with thymic pathology. In this review, we discuss the immunopathological characteristics and molecular mechanisms of thymic follicular hyperplasia, the effects of corticosteroids on this thymic pathology, and the role of thymic epithelial cells (TEC), a key player in the inflammatory thymic mechanisms. This review is based not only on the literature data but also on thymic transcriptome results and analyses of pathological and immunological correlations in a vast cohort of 1035 MG patients without thymoma. We show that among patients presenting a thymic hyperplasia with germinal centers (GC), 80 % are females, indicating that thymic follicular hyperplasia is mainly a disease of women. The presence of anti-AChR antibodies is correlated with the degree of follicular hyperplasia, suggesting that the thymus is a source of anti-AChR antibodies. The degree of hyperplasia is not dependent upon the time from the onset, implying that either the antigen is chronically expressed and/or that the mechanisms of the resolution of the GC are not efficiently controlled. Glucocorticoids, a conventional therapy in MG, induce a significant reduction in the GC number, together with changes in the expression of chemokines and angiogenesis. These changes are likely related to the acetylation molecular process, overrepresented in corticosteroid-treated patients, and essential for gene regulation. Altogether, based on the pathological and molecular thymic abnormalities found in MG patients, this review provides some explanations for the benefit of thymectomy in early-onset MG patients.
Collapse
Affiliation(s)
- Frédérique Truffault
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | | | - Bruno Eymard
- Department of Neuromuscular Disorders, CHU Salpêtrière, Paris, France
| | - Tarek Sharshar
- General Intensive Care Medicine, Assistance Publique Hôpitaux de Paris, Raymond Poincaré Hospital, University of Versailles Saint-Quentin en Yvelines, 92380, Garches, France
| | - Rozen Le Panse
- INSERM U974, Paris, France.,CNRS FRE3617, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,AIM, Institut de myologie, Paris, France
| | - Sonia Berrih-Aknin
- INSERM U974, Paris, France. .,CNRS FRE3617, Paris, France. .,Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,AIM, Institut de myologie, Paris, France. .,UMRS 974 UPMC, INSERM, FRE 3617 CNRS, AIM, Center of Research in Myology, 105 Boulevard de l'Hôpital, Paris, 75013, France.
| |
Collapse
|
40
|
Hosseini M, Robat-Jazi B, Shaygannejad V, Naffisi S, Mirmossayeb O, Rezaei A, Mansourian M, Esmaeil N. Increased Proportion of Tc17 and Th17 Cells and Their Significant Reduction after Thymectomy May Be Related to Disease Progression in Myasthenia Gravis. Neuroimmunomodulation 2017; 24:264-270. [PMID: 29414833 DOI: 10.1159/000486037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/02/2017] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Myasthenia gravis (MG) is an autoimmune disease mediated by autoantibodies against the neuromuscular junction. The thymus has an important role in the pathogenesis of MG because most patients have thymic pathology, and thymectomy (TE) can reduce the severity of the disease. METHODS In this study, the frequency of Th17 and Tc17 cells was studied in 12 MG patients (pre-TE and 6 months post-TE) and in 12 healthy controls (HC). RESULTS The frequency of Tc17 cells in the pre-TE patients was significantly higher than in the HC (p < 0.05), and after TE, these cells had significantly decreased compared to before TE (p < 0.05). The frequency of Th17 cells in pre-TE patients was significantly higher than in the HC (p < 0.05), and after TE, these cells had significantly decreased compared to before TE (p < 0.05). CONCLUSION Our findings indicated a possible role of Tc17 and Th17 in MG pathogenesis.
Collapse
Affiliation(s)
- Mina Hosseini
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Ueno H. T follicular helper cells in human autoimmunity. Curr Opin Immunol 2016; 43:24-31. [PMID: 27588918 DOI: 10.1016/j.coi.2016.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
42
|
Zhang CJ, Gong Y, Zhu W, Qi Y, Yang CS, Fu Y, Chang G, Li Y, Shi S, Wood K, Ladha S, Shi FD, Liu Q, Yan Y. Augmentation of Circulating Follicular Helper T Cells and Their Impact on Autoreactive B Cells in Myasthenia Gravis. THE JOURNAL OF IMMUNOLOGY 2016; 197:2610-7. [DOI: 10.4049/jimmunol.1500725] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/22/2016] [Indexed: 11/19/2022]
|