1
|
Liu Z, Julius P, Mudenda V, Kang G, Del Valle L, West JT, Wood C. Limited HIV-associated neuropathologies and lack of immune activation in sub-saharan African individuals with late-stage subtype C HIV-1 infection. J Neurovirol 2024; 30:303-315. [PMID: 38943022 DOI: 10.1007/s13365-024-01219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
Although previous studies have suggested that subtype B HIV-1 proviruses in the brain are associated with physiological changes and immune activation accompanied with microgliosis and astrogliosis, and indicated that both HIV-1 subtype variation and geographical location might influence the neuropathogenicity of HIV-1 in the brain. The natural course of neuropathogenesis of the most widespread subtype C HIV-1 has not been adequately investigated, especially for people living with HIV (PLWH) in sub-Saharan Africa. To characterize the natural neuropathology of subtype C HIV-1, postmortem frontal lobe and basal ganglia tissues were collected from nine ART-naïve individuals who died of late-stage AIDS with subtype C HIV-1 infection, and eight uninfected deceased individuals as controls. Histological staining was performed on all brain tissues to assess brain pathologies. Immunohistochemistry (IHC) against CD4, p24, Iba-1, GFAP, and CD8 in all brain tissues was conducted to evaluate potential viral production and immune activation. Histological results showed mild perivascular cuffs of lymphocytes only in a minority of the infected individuals. Viral capsid p24 protein was only detected in circulating immune cells of one infected individual, suggesting a lack of productive HIV-1 infection of the brain even at the late-stage of AIDS. Notably, similar levels of Iba-1 or GFAP between HIV + and HIV- brain tissues indicated a lack of microgliosis and astrogliosis, respectively. Similar levels of CD8 + cytotoxic T lymphocyte (CTL) infiltration between HIV + and HIV- brain tissues indicated CTL were not likely to be involved within subtype C HIV-1 infected participants of this cohort. Results from this subtype C HIV-1 study suggest that there is a lack of productive infection and limited neuropathogenesis by subtype C HIV-1 even at late-stage disease, which is in contrast to what was reported for subtype B HIV-1 by other investigators.
Collapse
Affiliation(s)
- Zhou Liu
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Peter Julius
- Department of Pathology and Microbiology, University of Zambia School of Medicine, Lusaka, Zambia
| | - Victor Mudenda
- Department of Pathology, University Teaching Hospital, Lusaka, Zambia
| | - Guobin Kang
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Luis Del Valle
- Department of Pathology and Medicine, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - John T West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Charles Wood
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- , 1700 Tulane Avenue, LCRC Rm 614, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Buck LA, Xie Q, Willis M, Side CM, Giacometti LL, Gaskill PJ, Park K, Shaheen F, Guo L, Gorantla S, Barker JM. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. Commun Biol 2024; 7:387. [PMID: 38553542 PMCID: PMC10980811 DOI: 10.1038/s42003-024-06079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/20/2024] [Indexed: 04/01/2024] Open
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilizes a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impairs cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict. Behavioral alterations are accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes are observed in human cytokines, including HIV-induced reductions in human TNFα, and cocaine and HIV interactions on GM-CSF levels. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.
Collapse
Affiliation(s)
- Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Qiaowei Xie
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Graduate Program in Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michelle Willis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kyewon Park
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Farida Shaheen
- Center for AIDS Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Lili Guo
- Medical Center, University of Nebraska, Omaha, NE, USA
| | | | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Barker J, Buck L, Xie Q, Willis M, Side C, Giacometti L, Gaskill P, Park K, Shaheen F, Guo L, Gorantla S. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. RESEARCH SQUARE 2023:rs.3.rs-3276379. [PMID: 37841842 PMCID: PMC10571607 DOI: 10.21203/rs.3.rs-3276379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between HIV infection and cocaine use disorder is likely bidirectional, with cocaine use directly impacting immune function while HIV infection alters addiction-related behavior. To better characterize the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of HIV-1 infection on cocaine-related behaviors in a conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection selectively impaired cocaine CPP extinction without effecting reinstatement or cocaine seeking under conflict were observed. Behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human cytokines, including HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα, and cocaine induced alterations in mouse GM-CSF. Together these data provide new insights into the unique neurobehavioral outcomes of HIV infection and cocaine exposure and how they interact to effect immune responses.
Collapse
|
4
|
Buck LA, Xie Q, Willis M, Side CM, Giacometti LL, Gaskill PJ, Park K, Shaheen F, Guo L, Gorantla S, Barker JM. Impaired extinction of cocaine seeking in HIV-infected mice is accompanied by peripheral and central immune dysregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552858. [PMID: 37645889 PMCID: PMC10462035 DOI: 10.1101/2023.08.11.552858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Substance use disorders (SUDs) are highly comorbid with HIV infection, necessitating an understanding of the interactive effects of drug exposure and HIV. The relationship between progressive HIV infection and cocaine use disorder is likely bidirectional, with cocaine use having direct effects on immune function while HIV infection can alter addiction-related behavior. To better characterized the neurobehavioral and immune consequences of HIV infection and cocaine exposure, this study utilized a humanized mouse model to investigate the outcomes of progressive HIV infection on cocaine-related behaviors in a cocaine conditioned place preference (CPP) model, and the interactive effects of cocaine and HIV infection on peripheral and central nervous system inflammation. HIV infection did not impact the formation of a cocaine CPP, but did result in resistance to extinction of the CPP. No effects of HIV on yohimbine-primed reinstatement or cocaine seeking under conflict were observed. These behavioral alterations were accompanied by immune changes in HIV infected mice, including increased prefrontal cortex astrocyte immunoreactivity and brain-region specific effects on microglia number and reactivity. Peripheral immune system changes were observed in both mouse and human markers. Among other targets, this included HIV-induced reductions in mouse IL-1α and G-CSF and human TNFα and cocaine-induced alterations in human TNFα and mouse GM-CSF such that cocaine exposure increases both cytokines only in the absence of HIV infection. Together these data provide new insights into the unique neurobehavioral processes underlying HIV infection and cocaine use disorders, and further how they interact to effect immune responses.
Collapse
|
5
|
Boardman E, Babu C, McKee D. A rare case of HIV encephalopathy presenting with an isolated cerebellar syndrome. Int J STD AIDS 2022; 33:806-808. [PMID: 35651322 DOI: 10.1177/09564624221106516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cerebellar dysfunction is a well-recognised but an infrequent complication of human immunodeficiency virus (HIV) infection. We present the case of a 44-year-old man living with HIV who presented with subacute cerebellar dysfunction and in whom a thorough diagnostic work-up did not identify any opportunistic infections. Cerebrospinal fluid (CSF) analysis showed a high HIV viral load of 1160 copies/ml and magnetic resonance imaging (MRI) showed multiple high signal abnormalities, disproportionately affecting the posterior fossa especially the cerebellum. This is a rare case of HIV encephalopathy presenting with an isolated cerebellar syndrome and highlights the importance of considering HIV as the aetiology in this clinical scenario.
Collapse
Affiliation(s)
- Emily Boardman
- The Hathersage Centre, The Northern Contraception, Sexual Health and HIV Service, 105551Manchester Royal Infirmary, Manchester, UK
| | - Chitra Babu
- The Hathersage Centre, The Northern Contraception, Sexual Health and HIV Service, 105551Manchester Royal Infirmary, Manchester, UK
| | - David McKee
- The Hathersage Centre, The Northern Contraception, Sexual Health and HIV Service, 105551Manchester Royal Infirmary, Manchester, UK.,105621Salford Royal Hospital, Salford, UK
| |
Collapse
|
6
|
League AF, Gorman BL, Hermes DJ, Johnson CT, Jacobs IR, Yadav-Samudrala BJ, Poklis JL, Niphakis MJ, Cravatt BF, Lichtman AH, Ignatowska-Jankowska BM, Fitting S. Monoacylglycerol Lipase Inhibitor MJN110 Reduces Neuronal Hyperexcitability, Restores Dendritic Arborization Complexity, and Regulates Reward-Related Behavior in Presence of HIV-1 Tat. Front Neurol 2021; 12:651272. [PMID: 34484091 PMCID: PMC8415271 DOI: 10.3389/fneur.2021.651272] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/12/2021] [Indexed: 12/01/2022] Open
Abstract
While current therapeutic strategies for people living with human immunodeficiency virus type 1 (HIV-1) suppress virus replication peripherally, viral proteins such as transactivator of transcription (Tat) enter the central nervous system early upon infection and contribute to chronic inflammatory conditions even alongside antiretroviral treatment. As demand grows for supplemental strategies to combat virus-associated pathology presenting frequently as HIV-associated neurocognitive disorders (HAND), the present study aimed to characterize the potential utility of inhibiting monoacylglycerol lipase (MAGL) activity to increase inhibitory activity at cannabinoid receptor-type 1 receptors through upregulation of 2-arachidonoylglycerol (2-AG) and downregulation of its degradation into proinflammatory metabolite arachidonic acid (AA). The MAGL inhibitor MJN110 significantly reduced intracellular calcium and increased dendritic branching complexity in Tat-treated primary frontal cortex neuron cultures. Chronic MJN110 administration in vivo increased 2-AG levels in the prefrontal cortex (PFC) and striatum across Tat(+) and Tat(–) groups and restored PFC N-arachidonoylethanolamine (AEA) levels in Tat(+) subjects. While Tat expression significantly increased rate of reward-related behavioral task acquisition in a novel discriminative stimulus learning and cognitive flexibility assay, MJN110 altered reversal acquisition specifically in Tat(+) mice to rates indistinguishable from Tat(–) controls. Collectively, our results suggest a neuroprotective role of MAGL inhibition in reducing neuronal hyperexcitability, restoring dendritic arborization complexity, and mitigating neurocognitive alterations driven by viral proteins associated with latent HIV-1 infection.
Collapse
Affiliation(s)
- Alexis F League
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin L Gorman
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Douglas J Hermes
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Clare T Johnson
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Ian R Jacobs
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Barkha J Yadav-Samudrala
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Micah J Niphakis
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Benjamin F Cravatt
- Department of Chemistry, Scripps Research Institute, La Jolla, CA, United States
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | | | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|
8
|
Mathews S, Branch Woods A, Katano I, Makarov E, Thomas MB, Gendelman HE, Poluektova LY, Ito M, Gorantla S. Human Interleukin-34 facilitates microglia-like cell differentiation and persistent HIV-1 infection in humanized mice. Mol Neurodegener 2019; 14:12. [PMID: 30832693 PMCID: PMC6399898 DOI: 10.1186/s13024-019-0311-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/12/2019] [Indexed: 12/11/2022] Open
Abstract
Background Microglia are the principal innate immune defense cells of the centeral nervous system (CNS) and the target of the human immunodeficiency virus type one (HIV-1). A complete understanding of human microglial biology and function requires the cell’s presence in a brain microenvironment. Lack of relevant animal models thus far has also precluded studies of HIV-1 infection. Productive viral infection in brain occurs only in human myeloid linage microglia and perivascular macrophages and requires cells present throughout the brain. Once infected, however, microglia become immune competent serving as sources of cellular neurotoxic factors leading to disrupted brain homeostasis and neurodegeneration. Methods Herein, we created a humanized bone-marrow chimera producing human “microglia like” cells in NOD.Cg-PrkdcscidIl2rgtm1SugTg(CMV-IL34)1/Jic mice. Newborn mice were engrafted intrahepatically with umbilical cord blood derived CD34+ hematopoietic stem progenitor cells (HSPC). After 3 months of stable engraftment, animals were infected with HIV-1ADA, a myeloid-specific tropic viral isolate. Virologic, immune and brain immunohistology were performed on blood, peripheral lymphoid tissues, and brain. Results Human interleukin-34 under the control of the cytomegalovirus promoter inserted in NSG mouse strain drove brain reconstitution of HSPC derived peripheral macrophages into microglial-like cells. These human cells expressed canonical human microglial cell markers that included CD14, CD68, CD163, CD11b, ITGB2, CX3CR1, CSFR1, TREM2 and P2RY12. Prior restriction to HIV-1 infection in the rodent brain rested on an inability to reconstitute human microglia. Thus, the natural emergence of these cells from ingressed peripheral macrophages to the brain could allow, for the first time, the study of a CNS viral reservoir. To this end we monitored HIV-1 infection in a rodent brain. Viral RNA and HIV-1p24 antigens were readily observed in infected brain tissues. Deep RNA sequencing of these infected mice and differential expression analysis revealed human-specific molecular signatures representative of antiviral and neuroinflammatory responses. Conclusions This humanized microglia mouse reflected human HIV-1 infection in its known principal reservoir and showed the development of disease-specific innate immune inflammatory and neurotoxic responses mirroring what can occur in an infected human brain. Electronic supplementary material The online version of this article (10.1186/s13024-019-0311-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saumi Mathews
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Amanda Branch Woods
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ikumi Katano
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Japan
| | - Edward Makarov
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Midhun B Thomas
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Mamoru Ito
- Central Institute for Experimental Animals, Kawasaki-ku, Kawasaki, Japan
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
9
|
Dual T 1 and T 2 weighted magnetic resonance imaging based on Gd 3+ loaded bioinspired melanin dots. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1743-1752. [DOI: 10.1016/j.nano.2018.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
|
10
|
Nucleoside reverse transcriptase inhibitors (NRTIs) induce proinflammatory cytokines in the CNS via Wnt5a signaling. Sci Rep 2017. [PMID: 28646196 PMCID: PMC5482870 DOI: 10.1038/s41598-017-03446-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HAART is very effective in suppressing HIV-1 replication in patients. However, patients staying on long-term HAART still develop various HIV-associated neurological disorders, even when the viral load is low. The underlying pathogenic mechanisms are largely unknown. Emerging evidence implicated that persistent neuroinflammation plays an important role in NeuroAIDS. Although residual virus or viral proteins are commonly thought as the causal factors, we are interested in the alternative possibility that HAART critically contributes to the neuroinflammation in the central nervous system (CNS). To test this hypothesis, we have determined the effect of NRTIs on the expression of proinflammatory cytokines in the various CNS regions. Mice (C57Bl/6) were administered with AZT (Zidovudine 100 mg/kg/day), 3TC (Lamivudine 50 mg/kg/day) or D4T (Stavudine 10 mg/kg/day) for 5 days, and cortices, hippocampi and spinal cords were collected for immunoblotting. Our results showed that NRTI administration up-regulated cytokines, including IL-1β, TNF-α and IL-6 in various CNS regions. In addition, we found that NRTIs also up-regulated Wnt5a protein. Importantly, BOX5 attenuated NRTI-induced cytokine up-regulation. These results together suggest that NRTIs up-regulate proinflammatory cytokines via a Wnt5a signaling-dependent mechanism. Our findings may help understand the potential pathogenic mechanisms of HAART-associated NeuroAIDS and design effective adjuvants.
Collapse
|
11
|
Bade AN, Gendelman HE, Boska MD, Liu Y. MEMRI is a biomarker defining nicotine-specific neuronal responses in subregions of the rodent brain. Am J Transl Res 2017; 9:601-610. [PMID: 28337287 PMCID: PMC5340694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Nicotine dependence is defined by dopaminergic neuronal activation within the nucleus accumbens (ACB) and by affected neural projections from nicotine-stimulated neurons. Control of any subsequent neural activities would underpin any smoking cessation strategy. While extensive efforts have been made to study the pathophysiology of nicotine addiction, more limited works were developed to find imaging biomarkers. If such biomarkers are made available, addictive behaviors could be monitored noninvasively. To such ends, we employed manganese (Mn2+)-enhanced magnetic resonance imaging (MEMRI) to determine whether it could be used to monitor neuronal activities after acute and chronic nicotine exposure in rats. The following were observed. Mn2+ infusion identified ACB and hippocampal (HIP) neuronal activities following acute nicotine administration. Chronic exposure was achieved by week long subcutaneously implanted nicotine mini-pump. Here nicotine was shown to activate neurons in the ACB, HIP, and the prefrontal and insular cortex. These are all central nervous system reward regions linked to drug addiction. In conclusion, MEMRI is demonstrated to be a powerful imaging tool to study brain subregion specific neuronal activities affected by nicotine. Thus, we posit that MEMRI could be used to assess smoking-associated tolerance, withdrawal and as such serve as a pre-clinical screening tool for addiction cessation strategies in humans.
Collapse
Affiliation(s)
- Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha 68198-5880, NE, United States
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha 68198-5880, NE, United States
| | - Michael D Boska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha 68198-5880, NE, United States
- Department of Radiology, University of Nebraska Medical CenterOmaha 68198-5880, NE, United States
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical CenterOmaha 68198-5880, NE, United States
- Department of Radiology, University of Nebraska Medical CenterOmaha 68198-5880, NE, United States
| |
Collapse
|
12
|
Olson KE, Bade AN, Schutt CR, Dong J, Shandler SJ, Boska MD, Mosley RL, Gendelman HE, Liu Y. Manganese-Enhanced Magnetic Resonance Imaging for Detection of Vasoactive Intestinal Peptide Receptor 2 Agonist Therapy in a Model of Parkinson's Disease. Neurotherapeutics 2016; 13:635-46. [PMID: 27329163 PMCID: PMC4965412 DOI: 10.1007/s13311-016-0449-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neuroprotective immunity is defined by transformation of T-cell polarity for therapeutic gain. For neurodegenerative disorders and specifically for Parkinson's disease (PD), granulocyte-macrophage colony stimulating factor or vasoactive intestinal peptide receptor 2 (VIPR2) agonists elicit robust anti-inflammatory microglial responses leading to neuronal sparing in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. While neurotherapeutic potential was demonstrated for PD, there remain inherent limitations in translating these inventions from the laboratory to patients. One obstacle in translating such novel neurotherapeutics centers on the availability of suitable noninvasive methods to track disease progression and therapeutic efficacy. To this end, we developed manganese-enhanced magnetic resonance imaging (MEMRI) assays as a way to track a linkage between glial activation and VIPR2 agonist (LBT-3627)-induced neuroprotective immunity for MPTP-induced nigrostriatal degeneration. Notably, LBT-3627-treated, MPTP-intoxicated mice show reduced MEMRI brain signal intensities. These changes paralleled reduced astrogliosis and resulted in sparing of nigral tyrosine hydroxylase neurons. Most importantly, the data suggest that MEMRI can be developed as a biomarker tool to monitor neurotherapeutic responses that are relevant to common neurodegenerative disorders used to improve disease outcomes.
Collapse
Affiliation(s)
- Katherine E Olson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Charles R Schutt
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jingdong Dong
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Michael D Boska
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Yutong Liu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
13
|
Akkina R, Allam A, Balazs AB, Blankson JN, Burnett JC, Casares S, Garcia JV, Hasenkrug KJ, Kashanchi F, Kitchen SG, Klein F, Kumar P, Luster AD, Poluektova LY, Rao M, Sanders-Beer BE, Shultz LD, Zack JA. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts" 2015 Workshop Summary. AIDS Res Hum Retroviruses 2016; 32:109-19. [PMID: 26670361 DOI: 10.1089/aid.2015.0258] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The number of humanized mouse models for the human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) and other infectious diseases has expanded rapidly over the past 8 years. Highly immunodeficient mouse strains, such as NOD/SCID/gamma chain(null) (NSG, NOG), support better human hematopoietic cell engraftment. Another improvement is the derivation of highly immunodeficient mice, transgenic with human leukocyte antigens (HLAs) and cytokines that supported development of HLA-restricted human T cells and heightened human myeloid cell engraftment. Humanized mice are also used to study the HIV reservoir using new imaging techniques. Despite these advances, there are still limitations in HIV immune responses and deficits in lymphoid structures in these models in addition to xenogeneic graft-versus-host responses. To understand and disseminate the improvements and limitations of humanized mouse models to the scientific community, the NIH sponsored and convened a meeting on April 15, 2015 to discuss the state of knowledge concerning these questions and best practices for selecting a humanized mouse model for a particular scientific investigation. This report summarizes the findings of the NIH meeting.
Collapse
Affiliation(s)
- Ramesh Akkina
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado
| | - Atef Allam
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Silver Spring, Maryland
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Joel N. Blankson
- Department of Medicine, Center for AIDS Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John C. Burnett
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California
| | - Sofia Casares
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, Maryland
| | - J. Victor Garcia
- Division of Infectious Diseases, Department of Medicine, UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana
| | - Fatah Kashanchi
- School of Systems Biology, National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, Virginia
| | - Scott G. Kitchen
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| | - Florian Klein
- First Department of Internal Medicine, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Priti Kumar
- School of Medicine, Infectious Diseases/Internal Medicine, Yale University, New Haven, Connecticut
| | - Andrew D. Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Brigitte E. Sanders-Beer
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Jerome A. Zack
- Departments of Medicine and Microbiology, Immunology and Molecular Genetics, UCLA AIDS Institute, Los Angeles, California
| |
Collapse
|
14
|
Sajja BR, Bade AN, Zhou B, Uberti MG, Gorantla S, Gendelman HE, Boska MD, Liu Y. Generation and Disease Model Relevance of a Manganese Enhanced Magnetic Resonance Imaging-Based NOD/scid-IL-2Rγc(null) Mouse Brain Atlas. J Neuroimmune Pharmacol 2015; 11:133-41. [PMID: 26556033 DOI: 10.1007/s11481-015-9635-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/04/2015] [Indexed: 10/22/2022]
Abstract
Strain specific mouse brain magnetic resonance imaging (MRI) atlases provide coordinate space linked anatomical registration. This allows longitudinal quantitative analyses of neuroanatomical volumes and imaging metrics for assessing the role played by aging and disease to the central nervous system. As NOD/scid-IL-2Rγ(c)(null) (NSG) mice allow human cell transplantation to study human disease, these animals are used to assess brain morphology. Manganese enhanced MRI (MEMRI) improves contrasts amongst brain components and as such can greatly help identifying a broad number of structures on MRI. To this end, NSG adult mouse brains were imaged in vivo on a 7.0 Tesla MR scanner at an isotropic resolution of 100 μm. A population averaged brain of 19 mice was generated using an iterative alignment algorithm. MEMRI provided sufficient contrast permitting 41 brain structures to be manually labeled. Volumes of 7 humanized mice brain structures were measured by atlas-based segmentation and compared against non-humanized controls. The humanized NSG mice brain volumes were smaller than controls (p < 0.001). Many brain structures of humanized mice were significantly smaller than controls. We posit that the irradiation and cell grafting involved in the creation of humanized mice were responsible for the morphological differences. Six NSG mice without MnCl2 administration were scanned with high resolution T2-weighted MRI and segmented to test broad utility of the atlas.
Collapse
Affiliation(s)
- Balasrinivasa R Sajja
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Aditya N Bade
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Biyun Zhou
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Anesthesiology, Tongji Medical College, Huanzhong University of Science and Technology, Wuhan, China
| | - Mariano G Uberti
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Michael D Boska
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA.,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA
| | - Yutong Liu
- Department of Radiology, University of Nebraska Medical Center, 981045 Nebraska Medical Center, Omaha, NE, USA. .,Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|