1
|
Khalili-Moghadam F, Hosseini Nejad J, Badri T, Sadeghi M, Gharechahi J. Association of MME gene polymorphisms with susceptibility to Alzheimer's disease in an Iranian population. Heliyon 2024; 10:e37556. [PMID: 39309779 PMCID: PMC11416268 DOI: 10.1016/j.heliyon.2024.e37556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Background the MME gene encodes a membrane metalloendopeptidase, known as neprilysin (NEP). There are no reports on the potential implications of MME gene polymorphisms on the risk of Alzheimer's disease (AD) in the Iranian population. In this study, we studied the potential association of two single nucleotide polymorphisms (SNPs), rs6797911 and rs3736187, in the MME gene and the risk of developing AD in an Iranian population. Methods This case-control study comprised 120 AD-diagnosed patients and 120 healthy individuals without any prior family history of AD. The patient and control groups were matched for major demographic and health characteristics. Genotyping was performed by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Results All patients included in this study were assessed by an experienced neurologist to exclude cases with other forms of dementia based on a brain computed tomography scan and other clinical findings. There were no significant differences in demographic and health characteristics including sex, diabetes, blood pressure, and cigarette smoking status between case and control groups (p > 0.05). However, the age difference appeared significant. Both SNPs were significantly associated with the risk of AD in our study population. The rs3736187 (T > C, 3:155168489) was strongly associated with AD risk under the log-additive model (OR = 1.67, CI = 1.18-2.37, p-value = 0.003). The rs6797911 (T > A, 3:155144601) also showed a significant association with AD risk under the dominant model (TT vs. TA and AA, OR = 3.37, CI = 1.86-6.1, p-value <0.001). Conclusion There is a strong association between MME gene polymorphisms and susceptibility to AD in the Iranian population. Amyloid-β (Aβ) can serve as a substrate for the NEP metalloendopeptidase, the product of the MME gene. However, the mechanistic understanding of how these genetic variations affect NEP expression, function, and consequently susceptibility to AD, is poorly understood. Further research is required to fully understand the exact implication of MME gene variations on AD, particularly in a larger, ethnicity-diverse population.
Collapse
Affiliation(s)
| | - Javad Hosseini Nejad
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taleb Badri
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Sadeghi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Hill E, Cunningham T. Modelling Alzheimer's disease in a dish: dissecting amyloid-β metabolism in human neurons. Neuronal Signal 2024; 8:NS20230020. [PMID: 38222463 PMCID: PMC10781659 DOI: 10.1042/ns20230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024] Open
Abstract
This scientific commentary refers to 'Inhibition of insulin-degrading enzyme in human neurons promotes amyloid-β deposition' by Rowland et al. (https://doi.org/10.1042/NS20230016). Insulin-degrading enzyme (IDE) and neprilysin (NEP) have been proposed as two Aβ-degrading enzymes supported by human genetics and in vivo data. Rowland et al. provide complementary evidence of a key role for IDE in Aβ metabolism in human-induced pluripotent stem cell (iPSC)-derived cortical neurons.
Collapse
Affiliation(s)
- Elizabeth Hill
- MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, London W1W 7FF, U.K
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, London W1W 7FF, U.K
| |
Collapse
|
3
|
Li YY, Geng RJ, Yu SY, Li GJ, Wang ZY, Li HF. Association Study of Polymorphisms in Neuronal Nicotinic Acetylcholine Receptor Subunit Genes With Schizophrenia in the Han Chinese Population. Psychiatry Investig 2021; 18:943-948. [PMID: 34555889 PMCID: PMC8542753 DOI: 10.30773/pi.2021.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/06/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To investigate the relation between nicotinic acetylcholine receptor subunit (nAChR) genes and schizophrenia, and the relation between tag single nucleotide polymorphism (rs1317286, rs1044396, rs6494212, rs16969968, and rs684513) and schizophrenia in Han Chinese people. METHODS The protein-protein interaction (PPI) network among nAChR protein and 350 proteins encoded by schizophrenia-related susceptibility genes was constructed through the String database to explore whether nAChR genes were associated with schizophrenia in these known databases. Then, five single nucleotide polymorphisms (SNPs) of CHRNA3 (rs1317286), CHRNA4 (rs1044396), CHRNA7 (rs6494212), and CHRNA5 (rs16969968, rs684513) were analyzed in a sample of 1,035 schizophrenic patients and 816 healthy controls. The interaction between the markers was analyzed using multifactor dimensionality reduction (MDR) software. Power analysis was performed using the Quanto program. RESULTS There are no significant differences in genotype or allele distribution were identified between the patients and controls (p>0.05). The haplotypes constructed by four markers rs1317286, rs6494212, rs16969968, and rs684513 were not associated with schizophrenia either. However, a significant association between models made of rs1317286, rs1044396, rs6494212, and rs684513 and schizophrenia was revealed in interaction analysis (p<0.05). CONCLUSION The nAChR protein may have effects on the development of schizophrenia through the interaction with proteins encoded by schizophrenia-related susceptibility genes, but no relation was found between selected polymorphisms and schizophrenia in the collected Han Chinese people. However, interaction analysis suggested four-SNP model has an important effect on schizophrenia.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rui-Jie Geng
- Department of Psychological Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shun-Ying Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guan-Jun Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou-Ye Wang
- Department of Medical Psychology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Fang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Chen S, Mima D, Jin H, Dan Q, Wang F, Cai J, Shi L, Wang H, Du A, Tang Y, Sun Y. The Association between Neprilysin gene polymorphisms and Alzheimer's disease in Tibetan population. Brain Behav 2021; 11:e02002. [PMID: 33314757 PMCID: PMC7994707 DOI: 10.1002/brb3.2002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/29/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Alzheimer's disease (AD) is a well-known neurodegenerative disease, of which the hallmark is the disposition of β-amyloid (Aβ) in the form of plaque in the brain. Neprilysin (NEP) is the major enzyme to degrade Aβ and prevent accumulation of Aβ. The present study was undertaken to elucidate the correlation between the NEP gene polymorphisms and AD in Chinese Tibetan population. METHODS Ninety-nine sporadic AD Tibetan patients and 113 healthy Tibetan controls were enrolled in this study. The genotype frequencies and allele frequencies of multiple NEP gene loci were analyzed using the case-control association analysis. RESULTS No significant correlation was found between polymorphisms of NEP gene loci (rs9829757, rs1816558, rs6776185, rs3736187, rs701109, rs989692) and the occurrence of AD in Tibetan population. However, allele C of NEP gene locus (rs701109) and allele T of gene locus (rs3736187) were possible risk factors of male AD patients in Tibetan population. CONCLUSIONS NEP gene loci (rs701109, rs989692, rs9829757, rs3736187, rs1816558, rs6776185) were polymorphic in Tibetan population. No difference was found between these loci but for that male gender combined with allele C of NEP gene locus (rs701109) and T of gene locus (rs3736187) might be risk factors for AD in Tibet.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Dunzhu Mima
- Department of Neurology, People's Hospital of Tibet Autonomous Region, Tibet Autonomous Region, China
| | - Haiqiang Jin
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Qu Dan
- Clinical Laboratory, People's Hospital of Tibet Autonomous Region, Tibet Autonomous Region, China
| | - Fei Wang
- Department of Neurology, Harbin Medical University First Hospital, Harbin, China
| | - Juan Cai
- Department of Neurology, Harbin Medical University First Hospital, Harbin, China
| | - Lin Shi
- Shenzhen BrainNow Research Institute, Shenzhen, China
| | - Huali Wang
- Beijing Dementia Key Lab, National Clinical Research Center for Mental Disorders, Peking University Institute of Mental Health (Sixth Hospital), Beijing, China
| | - Ailian Du
- Department of Neurology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Tang
- Department of Neurology, Harbin Medical University First Hospital, Harbin, China
| | - Yongan Sun
- Department of Neurology, Peking University First Hospital, Beijing, China
| |
Collapse
|
5
|
Nalivaeva NN, Zhuravin IA, Turner AJ. Neprilysin expression and functions in development, ageing and disease. Mech Ageing Dev 2020; 192:111363. [PMID: 32987038 PMCID: PMC7519013 DOI: 10.1016/j.mad.2020.111363] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 12/21/2022]
Abstract
Neprilysin (NEP) is an integral membrane-bound metallopeptidase with a wide spectrum of substrates and physiological functions. It plays an important role in proteolytic processes in the kidney, cardiovascular regulation, immune response, cell proliferation, foetal development etc. It is an important neuropeptidase and amyloid-degrading enzyme which makes NEP a therapeutic target in Alzheimer's disease (AD). Moreover, it plays a preventive role in development of cancer, obesity and type-2 diabetes. Recently a role of NEP in COVID-19 pathogenesis has also been suggested. Despite intensive research into NEP structure and functions in different organisms, changes in its expression and regulation during brain development and ageing, especially in age-related pathologies, is still not fully understood. This prevents development of pharmacological treatments from various diseases in which NEP is implicated although recently a dual-acting drug sacubitril-valsartan (LCZ696) combining a NEP inhibitor and angiotensin receptor blocker has been approved for treatment of heart failure. Also, various natural compounds capable of upregulating NEP expression, including green tea (EGCG), have been proposed as a preventive medicine in prostate cancer and AD. This review summarizes the existing literature and our own research on the expression and activity of NEP in normal brain development, ageing and under pathological conditions.
Collapse
Affiliation(s)
- N N Nalivaeva
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| | - I A Zhuravin
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - A J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Xiao X, Jiao B, Liao X, Zhang W, Yuan Z, Guo L, Wang X, Zhou L, Liu X, Yan X, Tang B, Shen L. Association of Genes Involved in the Metabolic Pathways of Amyloid-β and Tau Proteins With Sporadic Late-Onset Alzheimer's Disease in the Southern Han Chinese Population. Front Aging Neurosci 2020; 12:584801. [PMID: 33240075 PMCID: PMC7677357 DOI: 10.3389/fnagi.2020.584801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023] Open
Abstract
The genes involved in the metabolic pathways of amyloid-β (Aβ) and tau proteins significantly influence the etiology of Alzheimer's disease (AD). Various studies have explored the associations between some of these genes and AD in the Caucasian population; however, researches regarding these associations remain limited in the Chinese population. To systematically evaluate the associations of these genes with AD, we investigated 19 genes involved in the metabolism of Aβ and tau based on previous studies selected using the PubMed database. This study included 372 patients with sporadic late-onset AD (sLOAD) and 345 cognitively healthy individuals from southern China. The results were replicated in the International Genomics of Alzheimer's Project (IGAP). Protein-protein interactions were determined using the STRING v11 database. We found that a single-nucleotide polymorphism, rs11682128, of BIN1 conferred susceptibility to sLOAD after adjusting for age, sex, and APOE ε4 status and performing the Bonferroni correction {corrected P = 0.000153, odds ratio (OR) [95% confidence interval (CI)] = 1.403 (1.079-1.824)}, which was replicated in the IGAP. Protein-protein interactions indicated that BIN1 was correlated with MAPT. Moreover, rare variants of NEP and FERMT2 (0.0026 < corrected P < 0.05), and the Aβ degradation, tau pathology, and tau phosphatase pathways (0.01 < corrected P < 0.05), were nominally significantly associated with sLOAD. This study suggested that the genes involved in the metabolic pathways of Aβ and tau contributed to the etiology of sLOAD in the southern Han Chinese population.
Collapse
Affiliation(s)
- Xuewen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xinxin Liao
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weiwei Zhang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhenhua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lina Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xixi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
7
|
Li Y, Wang Y, Wang J, Chong KY, Xu J, Liu Z, Shan C. Expression of Neprilysin in Skeletal Muscle by Ultrasound-Mediated Gene Transfer (Sonoporation) Reduces Amyloid Burden for AD. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:300-308. [PMID: 32021878 PMCID: PMC6994414 DOI: 10.1016/j.omtm.2019.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022]
Abstract
Amyloid β (Aβ) accumulation in the brain is considered to be one of the major pathological changes in the progression of Alzheimer’s disease (AD). Neprilysin (NEP) is a zinc metallopeptidase that efficiently degrades Aβ. However, conventional approaches for increasing NEP levels or inducing its activation via viral-vector gene delivery have been shown to be problematic due to complications involving secondary toxicity, immune responses, and/or low gene transfer efficiency. Thus, in the present study, a physical and tractable NEP gene-delivery system via ultrasound (US) combined with microbubbles was developed for AD therapy. We introduced the plasmid, human NEP (hNEP), into skeletal muscle of 6-month-old amyloid precursor protein/presenilin-1 (APP/PS1) AD mice. Interestingly, we found a significantly reduced Aβ burden in the brain at 1 month after the delivery of overexpressed hNEP into skeletal muscle. Moreover, hNEP-treated AD mice exhibited improved performance in the Morris water maze compared to that of untreated AD mice. In addition, there were no apparent injuries in the injected muscle or in the lungs or kidneys at 1 month after the delivery of hNEP into skeletal muscle. These findings suggest that the introduction of hNEP into skeletal muscle via US represents an effective and safe therapeutic strategy for ameliorating AD-like symptoms in APP/PS1 mice, which may have the potential for clinical applications in the future.
Collapse
Affiliation(s)
- Yuanli Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yadi Wang
- Department of Surgery, Xi'an Health School, Xi'an, Shannxi 710054, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering, Ministry of Education, Institute of Rehabilitation Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ka Yee Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingjing Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhaohui Liu
- Department of Rehabilitation and Physiotherapy, Tangdu Hospital, Air Force Medical University, Xi'an 710038, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
8
|
Fang X, Tang W, Yang F, Lu W, Cai J, Ni J, Zhang J, Tang W, Li T, Zhang DF, Zhang C. A Comprehensive Analysis of the CaMK2A Gene and Susceptibility to Alzheimer's Disease in the Han Chinese Population. Front Aging Neurosci 2019; 11:84. [PMID: 31031618 PMCID: PMC6470288 DOI: 10.3389/fnagi.2019.00084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/26/2019] [Indexed: 02/05/2023] Open
Abstract
There is ample evidence suggesting that calcium/calmodulin-dependent protein kinase II alpha (CaMK2A) may play an important role in the pathophysiology of Alzheimer’s disease (AD). This genetic study aimed to investigate whether CaMK2A confers susceptibility to the development of AD in the Han Chinese population. A total of seven single nucleotide polymorphisms (SNPs) within CaMK2A were screened in two independent cohorts from southwestern China (333 AD patients and 334 controls) and eastern China (382 AD patients and 426 controls) to discern the potential association between this gene and AD. In addition, a cross-platform normalized expression resource was used to investigate whether CaMK2A is differentially expressed in the brain between individuals with AD and the controls. In addition, expression quantitative trait loci (eQTL) analysis was used to explore the differences in CaMK2A expression in the brain among different genotypes. The cross-platform normalized data showed significant differences in CaMK2A expression in the hippocampus, entorhinal cortex and temporal cortex between the AD patients and the control subjects (|log FC| > 0.1, P < 0.05); however, only the differences in the hippocampus and temporal cortex remained after the multiple comparisons correction [false discovery rate (FDR)-corrected, P < 0.05]. The frequency of the rs4958445 genotype was significantly different between the AD subjects and the controls from southwestern China (P = 0.013, P = 0.034 after FDR correction). When the two samples were combined, rs4958445 still showed a significant association with AD (P = 0.044). Haplotype analysis indicated that the T-A-C-A-T-C-C and T-G-C-A-T-C-C haplotypes in the southwestern cohort and the T-G-C-G-C-T-C haplotype in the eastern cohort, consisting of rs10051644, rs6869634, rs3797617, rs3756577, rs4958445, rs10515639 and rs6881743, showed a significant association with AD (P = 0.037, P = 0.026 and P = 0.045, respectively). Furthermore, the brain eQTL analysis revealed a significant association between the rs4958445 polymorphism and CaMK2A expression in the inferior olivary nucleus (P = 0.029). Our results suggest an important role for CaMK2A in the pathophysiology of AD in the Han Chinese population, especially the southwestern population.
Collapse
Affiliation(s)
- Xinyu Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tang
- Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fuyin Yang
- Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Weihong Lu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Cai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianliang Ni
- Tongde Hospital of Zhejiang Province, Hangzhou, China
| | | | - Wenxin Tang
- Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Tao Li
- Huaxi Brain Research Centre, West China Hospital, Sichuan University, Sichuan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Yunnan, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhang DF, Xu M, Bi R, Yao YG. Genetic Analyses of Alzheimer's Disease in China: Achievements and Perspectives. ACS Chem Neurosci 2019; 10:890-901. [PMID: 30698408 DOI: 10.1021/acschemneuro.8b00435] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since 2010, the Chinese have become one of the most aged populations in the world, leading to a severe burden of neurodegenerative disorders. Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and has a high genetic heritability. In the past two decades, numerous genetic analyses, from linkage analyses and candidate gene studies to genome-wide association studies (GWASs) and next-generation sequencing studies, have identified dozens of AD susceptibility or causal genes. These studies have provided a comprehensive genetic view and contributed to the understanding of the pathological and molecular mechanisms of the disease. However, most of the recognized AD genetic risk factors have been reported in studies based on European populations or populations of European ancestry, and data about the genetics of AD from other populations has been very limited. As China has the largest AD population in the world and because of the remarkable genetic differences between the East and the West, deciphering the genetic basis and molecular mechanism in Chinese patients with AD may add key points to the full characterization of AD. In this review, we present an overview of the current state of AD genetic research in China, with an emphasis on genome-level studies. We also describe the challenges and opportunities for future advances, especially for in-depth collaborations, brain bank construction, and primate animal modeling. There is an urgent need to promote public awareness and increase our collaborations and data sharing.
Collapse
Affiliation(s)
- Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Kunming Institute of Zoology−Chinese University of Hong Kong Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
10
|
Rowland HA, Hooper NM, Kellett KAB. Modelling Sporadic Alzheimer's Disease Using Induced Pluripotent Stem Cells. Neurochem Res 2018; 43:2179-2198. [PMID: 30387070 PMCID: PMC6267251 DOI: 10.1007/s11064-018-2663-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022]
Abstract
Developing cellular models of sporadic Alzheimer's disease (sAD) is challenging due to the unknown initiator of disease onset and the slow disease progression that takes many years to develop in vivo. The use of human induced pluripotent stem cells (iPSCs) has revolutionised the opportunities to model AD pathology, investigate disease mechanisms and screen potential drugs. The majority of this work has, however, used cells derived from patients with familial AD (fAD) where specific genetic mutations drive disease onset. While these provide excellent models to investigate the downstream pathways involved in neuronal toxicity and ultimately neuronal death that leads to AD, they provide little insight into the causes and mechanisms driving the development of sAD. In this review we compare the data obtained from fAD and sAD iPSC-derived cell lines, identify the inconsistencies that exist in sAD models and highlight the potential role of Aβ clearance mechanisms, a relatively under-investigated area in iPSC-derived models, in the study of AD. We discuss the development of more physiologically relevant models using co-culture and three-dimensional culture of iPSC-derived neurons with glial cells. Finally, we evaluate whether we can develop better, more consistent models for sAD research using genetic stratification of iPSCs and identification of genetic and environmental risk factors that could be used to initiate disease onset for modelling sAD. These considerations provide exciting opportunities to develop more relevant iPSC models of sAD which can help drive our understanding of disease mechanisms and identify new therapeutic targets.
Collapse
Affiliation(s)
- Helen A Rowland
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Nigel M Hooper
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine A B Kellett
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
11
|
Leighton X, Bera A, Eidelman O, Bubendorf L, Zellweger T, Banerjee J, Gelmann EP, Pollard HB, Srivastava M. Tissue microarray analysis delineate potential prognostic role of Annexin A7 in prostate cancer progression. PLoS One 2018; 13:e0205837. [PMID: 30321230 PMCID: PMC6188866 DOI: 10.1371/journal.pone.0205837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/02/2018] [Indexed: 11/24/2022] Open
Abstract
Background Annexin A7 (ANXA7) is a member of the multifunctional calcium or phospholipid-binding annexin gene family. While low levels of ANXA7 are associated with aggressive types of cancer, the clinical impact of ANXA7 in prostate cancer remains unclear. Tissue microarrays (TMA) have revealed several new molecular markers in human tumors. Herein, we have identified the prognostic impact of ANXA7 in a prostate cancer using a tissue microarray containing 637 different specimens. Methods The patients were diagnosed with prostate cancer and long-term follow-up information on progression (median 5.3 years), tumor-specific and overall survival data (median 5.9 years) were available. Expression of Ki67, Bcl-2, p53, CD-10 (neutral endopeptidase), syndecan-1 (CD-138) and ANXA7 were analyzed by immunohistochemistry. Results A bimodal distribution of ANXA7 was observed. Tumors expressing either high or no ANXA7 were found to be associated with poor prognosis. However, ANXA7 at an optimal level, in between high and no ANXA7 expression, had a better prognosis. This correlated with low Ki67, Bcl-2, p53 and high syndecan-1 which are known predictors of early recurrence. At Gleason grade 3, ANXA7 is an independent predictor of poor overall survival with a p-value of 0.003. Neoadjuvant hormonal therapy, which is known to be associated with overexpression of Bcl-2 and inhibition of Ki67 LI and CD-10, was found to be associated with under-expression of ANXA7. Conclusions The results of this TMA study identified ANXA7 as a new prognostic factor and indicates a bimodal correlation to tumor progression.
Collapse
Affiliation(s)
- Ximena Leighton
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, United States of America
| | - Alakesh Bera
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, United States of America
| | - Ofer Eidelman
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, United States of America
| | - Lukas Bubendorf
- Institute for Pathology, University Hospital Basel, Basel, Switzerland
| | | | - Jaideep Banerjee
- George Washington University, Washington, D.C., United States of America
| | - Edward P. Gelmann
- Department of Medicine, Colombia University Medical Center, New York, NY, United States of America
| | - Harvey B. Pollard
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, United States of America
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University School of Medicine (USUHS), Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
12
|
Genetic association of the cytochrome c oxidase-related genes with Alzheimer's disease in Han Chinese. Neuropsychopharmacology 2018; 43:2264-2276. [PMID: 30054583 PMCID: PMC6135758 DOI: 10.1038/s41386-018-0144-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Mitochondrial dysfunction has been widely reported in AD due to its important role in cellular metabolism and energy production. Complex IV (cytochrome c oxidase, COX) of mitochondrial electron transport chain, is particularly vulnerable in AD. Defects of COX in AD have been well documented, but there is little evidence to support the genetic association of the COX-related genes with AD. In this study, we investigated the genetic association between 17 nuclear-encoded COX-related genes and AD in 1572 Han Chinese. The whole exons of these genes were also screened in 107 unrelated AD patients with a high probability of hereditarily transmitted AD. Variants in COX6B1, NDUFA4, SURF1, and COX10 were identified to be associated with AD. An integrative analysis with data of eQTL, expression and pathology revealed that most of the COX-related genes were significantly downregulated in AD patients and mouse models, and the AD-associated variants in COX6B1, SURF1, and COX10 were linked to altered mRNA levels in brain tissues. Furthermore, mRNA levels of Ndufa4, Cox5a, Cox10, Cox6b2, Cox7a2, and Lrpprc were significantly correlated with Aβ plaque burden in hippocampus of AD mice. Convergent functional genomics analysis revealed strong supportive evidence for the roles of COX6B1, COX10, NDUFA4, and SURF1 in AD. As the result of our comprehensive analysis of the COX-related genes at the genetic, expression, and pathology levels, we have been able to provide a systematic view for understanding the relationships of the COX-related genes in the pathology of AD.
Collapse
|
13
|
Zhang H, Liu D, Wang Y, Huang H, Zhao Y, Zhou H. Meta-analysis of expression and function of neprilysin in Alzheimer's disease. Neurosci Lett 2017; 657:69-76. [PMID: 28778804 DOI: 10.1016/j.neulet.2017.07.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/29/2017] [Accepted: 07/31/2017] [Indexed: 01/25/2023]
Abstract
Neprilysin (NEP) is one of the most important Aβ-degrading enzymes, and its expression and activity in Alzheimer's brain have been widely reported, but the results remain debatable. Thus, the meta-analysis was performed to elucidate the role of NEP in Alzheimer's disease (AD). The relevant case-control or cohort studies were retrieved according to our inclusion/exclusion criteria. Six studies with 123 controls and 141 AD cases, seven studies with 102 controls and 90 AD cases, and four studies with 93 controls and 132 AD cases were included in meta-analysis of NEP's protein, mRNA, and enzyme activity respectively. We conducted Meta regression to detect the sources of heterogeneity and further performed cumulative meta-analysis or subgroup analysis. Our meta-analysis revealed a significantly lower level of NEP mRNA (SMD=-0.44, 95%CI: -0.87, -0.00, p=0.049) in AD cases than in non-AD cases, and such pattern was not altered over time in the cumulative meta-analysis. However, the decrease of NEP protein (SMD=-0.18, 95%CI: -0.62, 0.25) and enzyme activity (SMD=-0.35, 95%CI: -1.03, 0.32) in AD cases did not pass the significance check, while the cumulative meta-analysis by average age showed the pooled effect became insignificant as adding the studies with younger subjects, which indicates that the protein expression and enzyme activity of NEP in the cortex are affected by age. Therefore, the present meta-analysis suggests the need of further investigation of roles of NEP in AD pathogenesis and treatment.
Collapse
Affiliation(s)
- Huifeng Zhang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yixing Wang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Huanhuan Huang
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Yujia Zhao
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
14
|
Li GD, Bi R, Zhang DF, Xu M, Luo R, Wang D, Fang Y, Li T, Zhang C, Yao YG. Female-specific effect of the BDNF gene on Alzheimer's disease. Neurobiol Aging 2017; 53:192.e11-192.e19. [PMID: 28202203 DOI: 10.1016/j.neurobiolaging.2016.12.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease influenced by genetic and environmental factors. Brain-derived neurotrophic factor (BDNF) plays an important role in the progression of AD, but the genetic association between BDNF and AD remains controversial. In this study, we aimed to explore the potential association between genetic variants in BDNF and AD in Han Chinese and to investigate whether the association is affected by gender. A 3-stage study was conducted to evaluate the genetic association between BDNF and AD. Data mining of the reported expression data, brain-imaging data, and biomarker data in AD patients was also performed to further validate the results. We found a female-specific genetic association of rs6265 with AD and a gender-related messenger RNA expression of BDNF in brain tissues of AD patients. In addition, we observed a clear female-specific risk trend for the effect of rs6265 on AD endophenotypes. Our results clarified the available controversies regarding the role of rs6265 in AD and indicated that BDNF may be a female-specific risk gene for AD.
Collapse
Affiliation(s)
- Guo-Dong Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dong Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| | | | - Yiru Fang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Li
- The Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Bi R, Kong LL, Xu M, Li GD, Zhang DF, Li T, Fang Y, Zhang C, Zhang B, Yao YG. The Arc Gene Confers Genetic Susceptibility to Alzheimer’s Disease in Han Chinese. Mol Neurobiol 2017; 55:1217-1226. [DOI: 10.1007/s12035-017-0397-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/10/2017] [Indexed: 01/13/2023]
|
16
|
Abstract
Neprilysin has a major role in both the generation and degradation of bioactive peptides. LCZ696 (valsartan/sacubitril, Entresto), the first of the new ARNI (dual-acting angiotensin-receptor-neprilysin inhibitor) drug class, contains equimolar amounts of valsartan, an angiotensin-receptor blocker, and sacubitril, a prodrug for the neprilysin inhibitor LBQ657. LCZ696 reduced blood pressure more than valsartan alone in patients with hypertension. In the PARADIGM-HF study, LCZ696 was superior to the angiotensin-converting enzyme inhibitor enalapril for the treatment of heart failure with reduced ejection fraction, and LCZ696 was approved by the FDA for this purpose in 2015. This approval was the first for chronic neprilysin inhibition. The many peptides metabolized by neprilysin suggest many potential consequences of chronic neprilysin inhibitor therapy, both beneficial and adverse. Moreover, LBQ657 might inhibit enzymes other than neprilysin. Chronic neprilysin inhibition might have an effect on angio-oedema, bronchial reactivity, inflammation, and cancer, and might predispose to polyneuropathy. Additionally, inhibition of neprilysin metabolism of amyloid-β peptides might have an effect on Alzheimer disease, age-related macular degeneration, and cerebral amyloid angiopathy. Much of the evidence for possible adverse consequences of chronic neprilysin inhibition comes from studies in animal models, and the relevance of this evidence to humans is unknown. This Review summarizes current knowledge of neprilysin function and possible consequences of chronic neprilysin inhibition that indicate a need for vigilance in the use of neprilysin inhibitor therapy.
Collapse
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.,University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
17
|
Rare Genetic Variants of the Transthyretin Gene Are Associated with Alzheimer's Disease in Han Chinese. Mol Neurobiol 2016; 54:5192-5200. [PMID: 27562180 DOI: 10.1007/s12035-016-0065-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/17/2016] [Indexed: 02/02/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia in the world. The neuropathological characteristics of AD patients are the accumulation of extracellular plaques of β-amyloid (Aβ) and intracellular hyperphosphorylated tau protein. Transthyretin (TTR) may alleviate AD symptom by reducing Aβ concentration in the brain. There were reports for a decreased TTR level in both AD brain and blood. However, there is still no robust evidence to support the genetic association of the TTR gene with AD. In this study, we aimed to investigate the potential association of TTR variation with AD by directly sequencing the whole exons and the promoter region of the TTR gene in 529 AD patients and 334 healthy controls from Han Chinese population. We found no association between TTR common variants and AD but observed an enrichment of TTR rare variants in AD patients relative to controls. Further in silico prediction analysis and functional assessment at the cellular level identified four potentially pathogenic rare variants in AD patients. In particular, variant c.-239C>A could potentially downregulate the TTR promoter activity; c.200+4A>G might influence the constitutive splicing of TTR mRNA; c.148G>A (p.V50M) and c.332C>T (p.A111V) would change the structure of TTR and decrease its Aβ-binding ability. Our results provided direct genetic evidence to support the active involvement of TTR in AD.
Collapse
|