1
|
Wang C, Lin J, Xie H, Chen L, Chen P, Wu L, Gong Q, Xia D, Wang X. Study on analgesic effect of Shentong Zhuyu Decoction in neuropathic pain rats by network pharmacology and RNA-Seq. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118189. [PMID: 38615700 DOI: 10.1016/j.jep.2024.118189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shentong Zhuyu Decoction (STZYD) is a traditional prescription for promoting the flow of Qi and Blood which is often used in the treatment of low back and leg pain clinicall with unclear mechanism. Neuropathic pain (NP) is caused by disease or injury affecting the somatosensory system. LncRNAs may play a key role in NP by regulating the expression of pain-related genes through binding mRNAs or miRNAs sponge mechanisms. AIM OF THE STUDY To investigate the effect and potential mechanism of STZYD on neuropathic pain. METHODS Chronic constriction injury (CCI) rats, a commonly used animal model, were used in this study. The target of STZYD in NP was analyzed by network pharmacology, and the analgesic effect of STZYD in different doses (H-STZYD, M-STZYD, L-STZYD) on CCI rats was evaluated by Mechanical withdrawal thresholds (MWT) and thermal withdrawal latency (TWL). Meanwhile, RNA-seq assay was used to detect the changed mRNAs and lncRNAs in CCI rats after STZYD intervention. GO analysis, KEGG pathway analysis, and IPA analysis were used to find key target genes and pathways, verified by qPCR and Western Blot. The regulatory effect of lncRNAs on target genes was predicted by co-expression analysis and ceRNA network construction. RESULTS We found that STZYD can improve hyperalgesia in CCI rats, and H-STZYD has the best analgesic effect. The results of network pharmacological analysis showed that STZYD could play an analgesic role in CCI rats through the MAPK/ERK/c-FOS pathway. By mRNA-seq and lncRNA-seq, we found that STZYD could regulate the expression of Cnr1, Cacng5, Gucy1a3, Kitlg, Npy2r, and Grm8, and inhibited the phosphorylation level of ERK in the spinal cord of CCI rats. A total of 27 lncRNAs were associated with the target genes and 30 lncRNAs, 83 miRNAs and 5 mRNAs participated in the ceRNA network. CONCLUSION STZYD has the effect of improving hyperalgesia in CCI rats through the MAPK/ERK/c-FOS pathway, which is related to the regulation of lncRNAs to Cnr1 and other key targets.
Collapse
Affiliation(s)
- Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China; Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jian Lin
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiling Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lulu Wu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Gong
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongbin Xia
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Xilong Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
2
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
3
|
Waghode P, Quadir SS, Choudhary D, Sharma S, Joshi G. Small interfering RNA (siRNA) as a potential gene silencing strategy for diabetes and associated complications: challenges and future perspectives. J Diabetes Metab Disord 2024; 23:365-383. [PMID: 38932822 PMCID: PMC11196550 DOI: 10.1007/s40200-024-01405-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/17/2024] [Indexed: 06/28/2024]
Abstract
Objective This article critically reviews the recent search on the use of Small Interfering RNA (siRNA) in the process of gene regulation that has been harnessed to silence specific genes in various cell types, including those involved in diabetes complications. Significance Diabetes, a prevalent and severe condition, poses life-threatening risks due to elevated blood glucose levels. It results from inadequate insulin production by the pancreas or ineffective insulin utilization by the body. Recent research suggests siRNA could hold promise in addressing diabetes complications. Methods In this review, we discussed several subjects, including diabetes; its function, and common treatment options. An in-depth analysis of gene silencing method for siRNA and role of siRNA in diabetes, focusing on its impact on glucose homeostasis, diabetic retinopathy, wound healing, diabetic nephropathy and peripheral neuropathy, diabetic foot ulcers, diabetic atherosclerosis, and diabetic cardiomyopathy. Result siRNA-based treatment has the potential to target specific genes without disrupting several other endogenous pathways, which decreases the risk of off-target effects. In addition, siRNA has the capability to provide long-term efficacy with a single dose which will reduce treatment options and enhance patient compliance. Conclusion In the context of diabetic complications, siRNA has been explored as a potential therapeutic tool to modulate the expression of genes involved in various processes associated with diabetes-related issues such as Diabetic Retinopathy, Neuropathy, Nephropathy, wound healing. The use of siRNA in these contexts is still largely experimental, and challenges such as delivery to specific tissues, potential off-target effects, and long-term safety need to be addressed. Additionally, the development of siRNA-based therapies for clinical use in diabetic complications is an active area of research. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-024-01405-7.
Collapse
Affiliation(s)
- Pranali Waghode
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Sheikh Shahnawaz Quadir
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| | - Sanjay Sharma
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, deemed to be University, Vile Parle West, 400056 Mumbai, Maharashtra India
| | - Garima Joshi
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, 313001 Udaipur, Rajasthan India
| |
Collapse
|
4
|
He Y, Qu L. Non-coding RNAs in diabetic peripheral neuropathy: their role and mechanisms underlying their effects. Metabolism 2024; 154:155833. [PMID: 38462040 DOI: 10.1016/j.metabol.2024.155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes with a high rate of disability. However, current clinical treatments for DPN are suboptimal. Non-coding RNAs (ncRNAs) are a type of RNAs that are not translated into proteins. NcRNAs perform functions that regulate epigenetic modifications, transcriptional or post-transcriptional regulators of proteins, and thus participate in the physiological and pathological processes of the body. NcRNAs play a role in the progress of DPN by affecting the processes of inflammation, oxidative stress, cellular autophagy or apoptosis. Therefore, ncRNAs treatment is regarded as a promising therapeutic approach for DPN. In addition, since some ncRNAs present stably in the blood of DPN patients, they are considered as potential biomarkers that contribute to early clinical diagnosis. In this paper, we review the studies on the role of ncRNAs in DPN in the last decade, and discuss the mechanisms of ncRNAs, aiming to provide a reference for the future research on the treatment and early diagnosis of DPN.
Collapse
Affiliation(s)
- Yiqian He
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730 Beijing, China
| | - Ling Qu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730 Beijing, China.
| |
Collapse
|
5
|
Bouhassira D, Tesfaye S, Sarkar A, Soisalon-Soininen S, Stemper B, Baron R. Efficacy and safety of eliapixant in diabetic neuropathic pain and prediction of placebo responders with an exploratory novel algorithm: results from the randomized controlled phase 2a PUCCINI study. Pain 2024; 165:785-795. [PMID: 37851336 DOI: 10.1097/j.pain.0000000000003085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
ABSTRACT Phase 2a of the PUCCINI study was a placebo-controlled, double-blind, parallel-group, multicenter, proof-of-concept study evaluating the efficacy and safety of the selective P2X3 antagonist eliapixant in patients with diabetic neuropathic pain (DNP) ( ClinicalTrials.gov NCT04641273). Adults with type 1 or type 2 diabetes mellitus with painful distal symmetric sensorimotor neuropathy of >6 months' duration and neuropathic pain were enrolled and randomized 1:1 to 150 mg oral eliapixant twice daily or placebo for 8 weeks. The primary endpoint was change from baseline in weekly mean 24-hour average pain intensity score at week 8. In total, 135 participants completed treatment, 67 in the eliapixant group and 68 in the placebo group. At week 8, the change from baseline in posterior mean 24-hour average pain intensity score (90% credible interval) in the eliapixant group was -1.56 (-1.95, -1.18) compared with -2.17 (-2.54, -1.80) for the placebo group. The mean treatment difference was 0.60 (0.06, 1.14) in favor of placebo. The use of a model-based framework suggests that various factors may contribute to the placebo-responder profile. Adverse events were mostly mild or moderate in severity and occurred in 51% of the eliapixant group and 48% of the placebo group. As the primary endpoint was not met, the PUCCINI study was terminated after completion of phase 2a and did not proceed to phase 2b. In conclusion, selective P2X3 antagonism in patients with DNP did not translate to any relevant improvement in different pain intensity outcomes compared with placebo. Funding: Bayer AG.
Collapse
Affiliation(s)
- Didier Bouhassira
- INSERM U987, APHP, CHU Ambroise Paré, UVSQ, Paris-Saclay, Boulogne-Billancourt, France
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Arnab Sarkar
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
| | | | - Brigitte Stemper
- Research & Development, Pharmaceuticals, Bayer AG, Berlin, Germany
- Department of Neurology, University Erlangen Nürnberg, Erlangen, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
6
|
Yang Z, Zhou J, Su N, Zhang Z, Chen J, Liu P, Ling P. Insights into the defensive roles of lncRNAs during Mycoplasma pneumoniae infection. Front Microbiol 2024; 15:1330660. [PMID: 38585701 PMCID: PMC10995346 DOI: 10.3389/fmicb.2024.1330660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 04/09/2024] Open
Abstract
Mycoplasma pneumoniae causes respiratory tract infections, affecting both children and adults, with varying degrees of severity ranging from mild to life-threatening. In recent years, a new class of regulatory RNAs called long non-coding RNAs (lncRNAs) has been discovered to play crucial roles in regulating gene expression in the host. Research on lncRNAs has greatly expanded our understanding of cellular functions involving RNAs, and it has significantly increased the range of functions of lncRNAs. In lung cancer, transcripts associated with lncRNAs have been identified as regulators of airway and lung inflammation in a process involving protein complexes. An excessive immune response and antibacterial immunity are closely linked to the pathogenesis of M. pneumoniae. The relationship between lncRNAs and M. pneumoniae infection largely involves lncRNAs that participate in antibacterial immunity. This comprehensive review aimed to examine the dysregulation of lncRNAs during M. pneumoniae infection, highlighting the latest advancements in our understanding of the biological functions and molecular mechanisms of lncRNAs in the context of M. pneumoniae infection and indicating avenues for investigating lncRNAs-related therapeutic targets.
Collapse
Affiliation(s)
- Zhujun Yang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Junjun Zhou
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Nana Su
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Zifan Zhang
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Jiaxin Chen
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Liu
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, China
| | - Peng Ling
- Department of Critical Care Medicine, The Central Hospital of Shaoyang City and Affiliated Shaoyang Hospital, Hengyang Medical College, University of South China, Shaoyang, China
| |
Collapse
|
7
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
8
|
Wen W, Wei Y, Gao S. Functional nucleic acids for the treatment of diabetic complications. NANOSCALE ADVANCES 2023; 5:5426-5434. [PMID: 37822913 PMCID: PMC10563837 DOI: 10.1039/d3na00327b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/26/2023] [Indexed: 10/13/2023]
Abstract
In recent decades, diabetes mellitus (DM) has become a major global health problem owing to its high prevalence and increased incidence of diabetes-associated complications, including diabetic wounds (DWs), diabetic nephropathy, metabolic syndrome, diabetic retinopathy, and diabetic neuropathy. In both type 1 and type 2 diabetes, tissue damage is organ-specific, but closely related to the overproduction of reactive oxygen species (ROS) and hyperglycaemia-induced macrovascular system damage. However, existing therapies have limited effects on complete healing of diabetic complications. Fortunately, recent advances in functional nucleic acid materials have provided new opportunities for the treatment and diagnosis of diabetic complications. Functional nucleic acids possess independent structural functions that can replace traditional proteases and antibodies and perform specific biological non-genetic functions. This review summarises the current functional nucleic acid materials reported for the treatment of diabetic complications, including tetrahedral framework nucleic acids (tFNAs), short interfering RNA (siRNA), micorRNA (miRNA), locked nucleic acids, antisense oligonucleotides (ASOs), and DNA origami, which may assist in the development of novel nucleic acids with new functions and capabilities for better healing of diabetic complications.
Collapse
Affiliation(s)
- Wen Wen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Yuzi Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 Sichuan China
| |
Collapse
|
9
|
Pacifico P, Coy-Dibley JS, Miller RJ, Menichella DM. Peripheral mechanisms of peripheral neuropathic pain. Front Mol Neurosci 2023; 16:1252442. [PMID: 37781093 PMCID: PMC10537945 DOI: 10.3389/fnmol.2023.1252442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Peripheral neuropathic pain (PNP), neuropathic pain that arises from a damage or disease affecting the peripheral nervous system, is associated with an extremely large disease burden, and there is an increasing and urgent need for new therapies for treating this disorder. In this review we have highlighted therapeutic targets that may be translated into disease modifying therapies for PNP associated with peripheral neuropathy. We have also discussed how genetic studies and novel technologies, such as optogenetics, chemogenetics and single-cell RNA-sequencing, have been increasingly successful in revealing novel mechanisms underlying PNP. Additionally, consideration of the role of non-neuronal cells and communication between the skin and sensory afferents is presented to highlight the potential use of drug treatment that could be applied topically, bypassing drug side effects. We conclude by discussing the current difficulties to the development of effective new therapies and, most importantly, how we might improve the translation of targets for peripheral neuropathic pain identified from studies in animal models to the clinic.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - James S. Coy-Dibley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Richard J. Miller
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniela M. Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Chen C, Ding P, Yan W, Wang Z, Lan Y, Yan X, Li T, Han J. Pharmacological roles of lncRNAs in diabetic retinopathy with a focus on oxidative stress and inflammation. Biochem Pharmacol 2023; 214:115643. [PMID: 37315816 DOI: 10.1016/j.bcp.2023.115643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
Diabetic retinopathy (DR) is a complication caused by abnormal glucose metabolism, which affects the vision and quality of life of patients and severely impacts the society at large.DR has a complex pathogenic process. Evidence from multiple studies have shown that oxidative stress and inflammation play pivotal roles in DR.Additionally, with the rapid development of various genetic detection methods, the abnormal expression of long non-coding RNAs (lncRNAs) have been confirmed to promote the development of DR.Research has demonstrated the potential of lncRNAs as ideal biomarkers and theranostic targets in DR. In this narrative review, we will focus on the research results on mechanisms underlying DR, list lncRNAs confirmed to be closely related to these mechanisms, and discuss their potential clinical application value and limitations.
Collapse
Affiliation(s)
- Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China; Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Weiming Yan
- Department of Ophthalmology, The 900th Hospital of Joint Logistic Support Force, PLA (Clinical Medical College of Fujian Medical University, Dongfang Hospital Affiliated to Xiamen University), Fuzhou 350025, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China
| | - Yanyan Lan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Air Force Military Medical University, Xi'an 710038, China.
| |
Collapse
|
11
|
Zhang Y, Zhang J, Xu Z, Zhang D, Xia P, Ling J, Tang X, Liu X, Xuan R, Zhang M, Liu J, Yu P. Regulation of NcRNA-protein binding in diabetic foot. Biomed Pharmacother 2023; 160:114361. [PMID: 36753956 DOI: 10.1016/j.biopha.2023.114361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Non-coding RNA (ncRNA) is a special type of RNA transcript that makes up more than 90 % of the human genome. Although ncRNA typically does not encode proteins, it indirectly controls a wide range of biological processes, including cellular metabolism, development, proliferation, transcription, and post-transcriptional modification. NcRNAs include small interfering RNA (siRNA), PIWI-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), etc. The most researched of these are miRNA, lncRNA, and circRNA, which are crucial regulators in the onset of diabetes and the development of associated consequences. The ncRNAs indicated above are linked to numerous diabetes problems by binding proteins, including diabetic foot (DF), diabetic nephropathy, diabetic cardiomyopathy, and diabetic peripheral neuropathy. According to recent studies, Mir-146a can control the AKAP12 axis to promote the proliferation and migration of diabetic foot ulcer (DFU) cells, while lncRNA GAS5 can activate HIF1A/VEGF pathway by binding to TAF15 to promote DFU wound healing. However, there are still many unanswered questions about the mechanism of action of ncRNAs. In this study, we explored the mechanism and new progress of ncRNA-protein binding in DF, which can provide help and guidance for the application of ncRNA in the early diagnosis and potential targeted intervention of DFU.
Collapse
Affiliation(s)
- Yujia Zhang
- Huankui College, Nanchang University, Nanchang, Jiangxi, China; Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhou Xu
- The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Panpan Xia
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyi Tang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Xuan
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meiying Zhang
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Liu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Peng Yu
- Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24065977. [PMID: 36983051 PMCID: PMC10051459 DOI: 10.3390/ijms24065977] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common type of diabetic neuropathy, rendering a slowly progressive, symmetrical, and length-dependent dying-back axonopathy with preferential sensory involvement. Although the pathogenesis of DPN is complex, this review emphasizes the concept that hyperglycemia and metabolic stressors directly target sensory neurons in the dorsal root ganglia (DRG), leading to distal axonal degeneration. In this context, we discuss the role for DRG-targeting gene delivery, specifically oligonucleotide therapeutics for DPN. Molecules including insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1 that impact neurotrophic signal transduction (for example, phosphatidylinositol-3 kinase/phosphorylated protein kinase B [PI3/pAkt] signaling) and other cellular networks may promote regeneration. Regenerative strategies may be essential in maintaining axon integrity during ongoing degeneration in diabetes mellitus (DM). We discuss specific new findings that relate to sensory neuron function in DM associated with abnormal dynamics of nuclear bodies such as Cajal bodies and nuclear speckles in which mRNA transcription and post-transcriptional processing occur. Manipulating noncoding RNAs such as microRNA and long-noncoding RNA (specifically MALAT1) that regulate gene expression through post-transcriptional modification are interesting avenues to consider in supporting neurons during DM. Finally, we present therapeutic possibilities around the use of a novel DNA/RNA heteroduplex oligonucleotide that provides more efficient gene knockdown in DRG than the single-stranded antisense oligonucleotide.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo 158-0095, Japan
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Douglas W. Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute and The Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-780-248-1928; Fax: +1-780-248-1807
| |
Collapse
|
13
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
14
|
Jiang M, Wang Y, Wang J, Feng S, Wang X. The etiological roles of miRNAs, lncRNAs, and circRNAs in neuropathic pain: A narrative review. J Clin Lab Anal 2022; 36:e24592. [PMID: 35808924 PMCID: PMC9396192 DOI: 10.1002/jcla.24592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Non‐coding RNAs (ncRNAs) are involved in neuropathic pain development. Herein, we systematically searched for neuropathic pain‐related ncRNAs expression changes, including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs), and circular non‐coding RNAs (circRNAs). Methods We searched two databases, PubMed and GeenMedical, for relevant studies. Results Peripheral nerve injury or noxious stimuli can induce extensive changes in the expression of ncRNAs. For example, higher serum miR‐132‐3p, ‐146b‐5p, and ‐384 was observed in neuropathic pain patients. Either sciatic nerve ligation, dorsal root ganglion (DRG) transaction, or ventral root transection (VRT) could upregulate miR‐21 and miR‐31 while downregulating miR‐668 and miR‐672 in the injured DRG. lncRNAs, such as early growth response 2‐antisense‐RNA (Egr2‐AS‐RNA) and Kcna2‐AS‐RNA, were upregulated in Schwann cells and inflicted DRG after nerve injury, respectively. Dysregulated circRNA homeodomain‐interacting protein kinase 3 (circHIPK3) in serum and the DRG, abnormally expressed lncRNAs X‐inactive specific transcript (XIST), nuclear enriched abundant transcript 1 (NEAT1), small nucleolar RNA host gene 1 (SNHG1), as well as ciRS‐7, zinc finger protein 609 (cirZNF609), circ_0005075, and circAnks1a in the spinal cord were suggested to participate in neuropathic pain development. Dysregulated miRNAs contribute to neuropathic pain via neuroinflammation, autophagy, abnormal ion channel expression, regulating pain‐related mediators, protein kinases, structural proteins, neurotransmission excitatory–inhibitory imbalances, or exosome miRNA‐mediated neuron–glia communication. In addition, lncRNAs and circRNAs are essential in neuropathic pain by acting as antisense RNA and miRNA sponges, epigenetically regulating pain‐related molecules expression, or modulating miRNA processing. Conclusions Numerous dysregulated ncRNAs have been suggested to participate in neuropathic pain development. However, there is much work to be done before ncRNA‐based analgesics can be clinically used for various reasons such as conservation among species, proper delivery, stability, and off‐target effects.
Collapse
Affiliation(s)
- Ming Jiang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yelong Wang
- Department of Anesthesiology, Gaochun People's Hospital, Nanjing, China
| | - Jing Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Shanwu Feng
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xian Wang
- Department of Anesthesiology and Pain Medicine, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Wu B, Zhou C, Xiao Z, Tang G, Guo H, Hu Z, Hu Q, Peng H, Pi L, Zhang Z, Wang M, Peng T, Huang J, Liang S, Li G. LncRNA-UC.25 + shRNA Alleviates P2Y 14 Receptor-Mediated Diabetic Neuropathic Pain via STAT1. Mol Neurobiol 2022; 59:5504-5515. [PMID: 35731374 DOI: 10.1007/s12035-022-02925-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/11/2022] [Indexed: 12/30/2022]
Abstract
Diabetic neuropathic pain (DNP) is a common complication of diabetes, and its complicated pathogenesis, as well as clinical manifestations, has brought great trouble to clinical treatment. The spinal cord is an important part of regulating the occurrence and development of DNP. Spinal microglia can regulate the activity of spinal cord neurons and have a regulatory effect on chronic pain. P2Y12 receptor is involved in DNP. P2Y14 and P2Y12 receptors belong to the Gi subtype of P2Y receptors, but there is no report that the P2Y14 receptor is involved in DNP. Closely related to many human diseases, the dysregulation of long noncoding RNA (lncRNA) has the effect of promoting or inhibiting the occurrence and development of diseases. The aim of this research is to investigate the function of the spinal cord P2Y14 receptor in type 2 DNP and to understand the function as well as the possible mechanism of lncRNA-UC.25 + (UC.25 +) in rat spinal cord P2Y14 receptor-mediated DNP. Our results showed that P2Y14 shRNA can reduce the expression of P2Y14 in DNP rats, thereby restraining the activation of microglia, decreasing the expression of inflammatory factors and the level of p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation. At the same time, UC.25 + shRNA can downregulate the expression of the P2Y14 receptor, reduce the release of inflammatory factors, and diminish the p38 MAPK phosphorylation, indicating that UC.25 + can alleviate spinal cord P2Y14 receptor-mediated DNP. The RNA immunoprecipitation result showed that UC.25 + enriched signal transducers and activators of transcription1 (STAT1) and positively regulated its expression. The chromatin immunoprecipitation result indicated that STAT1 combined with the promoter region of the P2Y14 receptor and positively regulated the expression of the P2Y14 receptor. Therefore, we infer that UC.25 + may alleviate DNP in rats by regulating the expression of the P2Y14 receptor in spinal microglia via STAT1.
Collapse
Affiliation(s)
- Baoguo Wu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Congfa Zhou
- Department of Anatomy, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zehao Xiao
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Gan Tang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hongmin Guo
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zihui Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Qixing Hu
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lingzhi Pi
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zhihua Zhang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Miaomiao Wang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Taotao Peng
- School of Basic Medicine, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jiaqi Huang
- Queen Mary School, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Medical School of Nanchang University, 461 Bayi Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
16
|
Emerging roles of lncRNAs in the pathogenesis, diagnosis, and treatment of trigeminal neuralgia. Biochem Soc Trans 2022; 50:1013-1023. [PMID: 35437600 DOI: 10.1042/bst20220070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Trigeminal neuralgia (TN) is one of the most common neuropathic pain disorders and is often combined with other comorbidities if managed inadequately. However, the present understanding of its pathogenesis at the molecular level remains lacking. Long noncoding RNAs (lncRNAs) play crucial roles in neuropathic pain, and many studies have reported that specific lncRNAs are related to TN. This review summarizes the current understanding of lncRNAs in the pathogenesis, diagnosis, and treatment of TN. Recent studies have shown that the lncRNAs uc.48+, Gm14461, MRAK009713 and NONRATT021972 are potential candidate loci for the diagnosis and treatment of TN. The current diagnostic system could be enhanced and improved by a workflow for selecting transcriptomic biomarkers and the development of lncRNA-based molecular diagnostic systems for TN. The discovery of lncRNAs potentially impacts drug selection for TN; however, the current supporting evidence is limited to preclinical studies. Additional studies are needed to further test the diagnostic and therapeutic value of lncRNAs in TN.
Collapse
|
17
|
Felix R, Muñoz-Herrera D, Corzo-López A, Fernández-Gallardo M, Leyva-Leyva M, González-Ramírez R, Sandoval A. Ion channel long non-coding RNAs in neuropathic pain. Pflugers Arch 2022; 474:457-468. [PMID: 35235008 DOI: 10.1007/s00424-022-02675-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023]
Abstract
Neuropathic pain is one of the primary forms of chronic pain and is the consequence of the somatosensory system's direct injury or disease. It is a relevant public health problem that affects about 10% of the world's general population. In neuropathic pain, alteration in neurotransmission occurs at various levels, including the dorsal root ganglia, the spinal cord, and the brain, resulting from the malfunction of diverse molecules such as receptors, ion channels, and elements of specific intracellular signaling pathways. In this context, there have been exciting advances in elucidating neuropathic pain's cellular and molecular mechanisms in the last decade, including the possible role that long non-coding RNAs (lncRNAs) may play, which open up new alternatives for the development of diagnostic and therapeutic strategies for this condition. This review focuses on recent studies associated with the possible relevance of lncRNAs in the development and maintenance of neuropathic pain through their actions on the functional expression of ion channels. Recognizing the changes in the function and spatio-temporal patterns of expression of these membrane proteins is crucial to understanding the control of neuronal excitability in chronic pain syndromes.
Collapse
Affiliation(s)
- Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico.
| | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), 07360, Mexico City, Mexico
| | | | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| |
Collapse
|
18
|
Hossain MJ, Kendig MD, Letton ME, Morris MJ, Arnold R. Peripheral Neuropathy Phenotyping in Rat Models of Type 2 Diabetes Mellitus: Evaluating Uptake of the Neurodiab Guidelines and Identifying Future Directions. Diabetes Metab J 2022; 46:198-221. [PMID: 35385634 PMCID: PMC8987683 DOI: 10.4093/dmj.2021.0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) affects over half of type 2 diabetes mellitus (T2DM) patients, with an urgent need for effective pharmacotherapies. While many rat and mouse models of T2DM exist, the phenotyping of DPN has been challenging with inconsistencies across laboratories. To better characterize DPN in rodents, a consensus guideline was published in 2014 to accelerate the translation of preclinical findings. Here we review DPN phenotyping in rat models of T2DM against the 'Neurodiab' criteria to identify uptake of the guidelines and discuss how DPN phenotypes differ between models and according to diabetes duration and sex. A search of PubMed, Scopus and Web of Science databases identified 125 studies, categorised as either diet and/or chemically induced models or transgenic/spontaneous models of T2DM. The use of diet and chemically induced T2DM models has exceeded that of transgenic models in recent years, and the introduction of the Neurodiab guidelines has not appreciably increased the number of studies assessing all key DPN endpoints. Combined high-fat diet and low dose streptozotocin rat models are the most frequently used and well characterised. Overall, we recommend adherence to Neurodiab guidelines for creating better animal models of DPN to accelerate translation and drug development.
Collapse
Affiliation(s)
- Md Jakir Hossain
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Michael D. Kendig
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Meg E. Letton
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Margaret J. Morris
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
| | - Ria Arnold
- Department of Pharmacology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise Physiology, School of Medical Sciences, University of New South Wales (UNSW) Sydney, Sydney, Australia
- Department of Exercise and Rehabilitation, School of Medical, Indigenous and Health Science, University of Wollongong, Wollongong, Australia
- Corresponding author: Ria Arnold https://orcid.org/0000-0002-7469-6587 Department of Exercise Physiology, School of Health Sciences, UNSW Sydney, Sydney, NSW 2052, Australia E-mail:
| |
Collapse
|
19
|
Xu S, Dong H, Zhao Y, Feng W. Differential Expression of Long Non-Coding RNAs and Their Role in Rodent Neuropathic Pain Models. J Pain Res 2021; 14:3935-3950. [PMID: 35002313 PMCID: PMC8722684 DOI: 10.2147/jpr.s344339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain, which is accompanied by an unpleasant sensation, affects the patient's quality of life severely. Considering the complexity of the neuropathic pain, there are huge unmet medical needs for it while current effective therapeutics remain far from satisfactory. Accordingly, exploration of mechanisms of neuropathic pain could provide new therapeutic insights. While numerous researches have pointed out the contribution of sensory neuron-immune cell interactions, other mechanisms of action, such as long non-coding RNAs (lncRNAs), also could contribute to the neuropathic pain observed in vivo. LncRNAs have more than 200 nucleotides and were originally considered as transcriptional byproducts. However, recent studies have suggested that lncRNAs played a significant role in gene regulation and disease pathogenesis. A substantial number of long non-coding RNAs were expressed differentially in neuropathic pain models. Besides, therapies targeting specific lncRNAs can significantly ameliorate the development of neuropathic pain, which reveals the contribution of lncRNAs in the generation and maintenance of neuropathic pain and provides a new therapeutic strategy. The primary purpose of this review is to introduce recent studies of lncRNAs on different neuropathic pain models.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - He Dong
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| | - Wei Feng
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
20
|
Li Z, Li X, Jian W, Xue Q, Liu Z. Roles of Long Non-coding RNAs in the Development of Chronic Pain. Front Mol Neurosci 2021; 14:760964. [PMID: 34887726 PMCID: PMC8649923 DOI: 10.3389/fnmol.2021.760964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 01/15/2023] Open
Abstract
Chronic pain, a severe public health issue, affects the quality of life of patients and results in a major socioeconomic burden. Only limited drug treatments for chronic pain are available, and they have insufficient efficacy. Recent studies have found that the expression of long non-coding RNAs (lncRNAs) is dysregulated in various chronic pain models, including chronic neuropathic pain, chronic inflammatory pain, and chronic cancer-related pain. Studies have also explored the effect of these dysregulated lncRNAs on the activation of microRNAs, inflammatory cytokines, and so on. These mechanisms have been widely demonstrated to play a critical role in the development of chronic pain. The findings of these studies indicate the significant roles of dysregulated lncRNAs in chronic pain in the dorsal root ganglion and spinal cord, following peripheral or central nerve lesions. This review summarizes the mechanism underlying the abnormal expression of lncRNAs in the development of chronic pain induced by peripheral nerve injury, diabetic neuropathy, inflammatory response, trigeminal neuralgia, spinal cord injury, cancer metastasis, and other conditions. Understanding the effect of lncRNAs may provide a novel insight that targeting lncRNAs could be a potential candidate for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Zheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Xiongjuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Wenling Jian
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Department of Geriatric & Spinal Pain Multi-Department Treatment, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
21
|
Chan WH, Huang NC, Lin YW, Lin FY, Tsai CS, Yeh CC. Intrathecal IGF2 siRNA injection provides long-lasting anti-allodynic effect in a spared nerve injury rat model of neuropathic pain. PLoS One 2021; 16:e0260887. [PMID: 34855889 PMCID: PMC8638935 DOI: 10.1371/journal.pone.0260887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Previous studies have shown an increase of insulin-like growth factor-2 (IGF2) in animal models of neuropathic pain. We aimed to examine the hypothesis that reducing the expression of IGF2 using intrathecal IGF2 small-interfering RNA (siRNA) would attenuate the development of neuropathic pain in rats after spared nerve injury (SNI). Male Wistar rats were divided into three groups: sham-operated group, in which surgery was performed to cut the muscles without injuring the nerves; SNI group, in which SNI surgery was performed to sever the nerves; and SNI + siRNA IGF2 group, in which SNI surgery was performed, and IGF2-siRNA was administered intrathecally 1 day after SNI. The rats were assessed for mechanical allodynia and cold allodynia 1 day before surgery (baseline), and at 2, 4, 6, 8, and 10 days after siRNA treatment. The rat spinal cord was collected for quantitative polymerase chain reaction and western blot analysis. Compared with the SNI group, rats that received IGF2 siRNA showed a significantly increased SNI-induced paw-withdrawal threshold to metal filament stimulation from Day 4 to Day 10 after SNI surgery. IGF2 siRNA significantly decreased the response duration from the acetone test from Day 2 to Day 10 following SNI surgery. SNI increased IGF2 mRNA expression on Day 2 and increased IGF2 protein expression on Day 8 and Day 10 in the spinal cord of the SNI rats. However, the above-mentioned effects of IGF2 mRNA and protein expression were significantly inhibited in the SNI + IGF2 siRNA group. We demonstrated that intrathecal administration of IGF2 siRNA provided significant inhibition of SNI-induced neuropathic pain via inhibition of IGF2 expression in the spinal cord. The analgesic effect lasted for 10 days. Further exploration of intrathecal IGF2 siRNA administration as a potential therapeutic strategy for neuropathic pain is warranted.
Collapse
Affiliation(s)
- Wei-Hung Chan
- Department of Anesthesiology, National Defense Medical Center, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
| | - Nian-Cih Huang
- Department of Anesthesiology, National Defense Medical Center, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
| | - Yi-Wen Lin
- Institute of Oral Biology, National Yang-Ming Chiao-Tung University, Hsinchu, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine and Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Chang Yeh
- Department of Anesthesiology, National Defense Medical Center, Taipei, Taiwan
- Department of Anesthesiology, Tri-Service General Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi SN, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest 2021; 44:2015-2041. [PMID: 33792864 DOI: 10.1007/s40618-021-01559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of long non-coding RNAs (lncRNAs) could be associated with the incidence and development of metabolic disorders. AIM Accordingly, this narrative review described the molecular mechanisms of lncRNAs in the development of metabolic diseases including insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and coronary artery diseases (CAD). Furthermore, we investigated the up-to-date findings on the association of deregulated lncRNAs in the metabolic disorders, and potential use of lncRNAs as biomarkers and therapeutic targets. CONCLUSION LncRNAs/miRNA/regulatory proteins axis plays a crucial role in progression of metabolic disorders and may be used in development of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - S Nikouei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - F Rezaeinejad
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Z Sabati
- MSc student of Hematology, Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Ghasemi
- Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
23
|
Li H, Bai F, Cong C, Chen B, Xie W, Li S, Liu Q, Chen C, Wu Y. Effects of ligustrazine on the expression of neurotransmitters in the trigeminal ganglion of a rat migraine model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1318. [PMID: 34532455 PMCID: PMC8422085 DOI: 10.21037/atm-21-3423] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Background Migraine is one of the most common neurological diseases which has been treated by active substances from traditional Chinese medicine (TCM), such as ligustrazine, an extract of the Chinese herb Chuanxiong. However, the pathogenesis of migraine and the curative mechanisms of ligustrazine have remained unclear. The genes P2X3, TRPV1, ERK, and c-fos have been implicated to play a role. In this work, we attempted to elucidate the analgesic mechanism of ligustrazine using a classic migraine-representative rat model. Methods The migraine rat model was established by administration of nitroglycerin (NTG). Ligustrazine treatment was administered by intravenous injection. The animal's behavior was continuously recorded, and then trigeminal ganglions (TGs) were isolated. Total RNA was extracted from cells and total protein was extracted from TG. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the levels of P2X3, TRPV1, c-Fos, and ERK in TG. Results Ligustrazine could reduce the neurological activities of NTG-induced migraine rats. The rats TG nerve showed varying degrees of expression of P2X3, TRPV1, c-Fos and ERK expression element. Ligustrazine could inhibit over-expression of P2X3, TRPV1, c-fos, and ERK in the TG nerve of NTG-induced migraine rats. Conclusions Our results demonstrated that ligustrazine had potent activity against NTG-induced migraine rats through inhibition of the c-fos/ERK signaling pathway. This work may provide a comprehensive basis for a better understanding of the pathogenesis of migraine and the curative mechanisms of ligustrazine.
Collapse
Affiliation(s)
- Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Fanghui Bai
- Henan Provincial Key Laboratory of Stroke Prevention and Treatment, Nanyang Central Hospital, Nanyang, China
| | - Cong Cong
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baotian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chaojun Chen
- Department of Neurology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Zhang X, Xu F, Wang L, Li J, Zhang J, Huang L. The role of dorsal root ganglia alpha-7 nicotinic acetylcholine receptor in complete Freund's adjuvant-induced chronic inflammatory pain. Inflammopharmacology 2021; 29:1487-1501. [PMID: 34514543 DOI: 10.1007/s10787-021-00873-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alpha-7 nicotinic acetylcholine receptor (α7 nAChR) was reported to have a critical role in the regulation of pain sensitivity and neuroinflammation. However, the expression level of α7 nAChR in dorsal root ganglion (DRG) and the underlying neuroinflammatory mechanisms associated with hyperalgesia are still unknown. METHODS In the present study, the expression and mechanism of α7 nAChR in chronic inflammatory pain was investigated using a complete Freund's adjuvant (CFA)-induced chronic inflammatory pain model. Subsequently, a series of assays including immunohistochemistry, western blotting, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. RESULTS α7 nAChR was mostly colocalized with NeuN in DRG and upregulated after CFA injection. Microinjection of α7 nAChR siRNA into ipsilateral L4/5 DRGs aggravated the CFA-induced pain hypersensitivity. Intrathecal α7 nAChR agonist GTS-21 attenuated the development of CFA-induced mechanical and temperature-related pain hypersensitivities. In neuronal the SH-SY5Y cell line, the knockdown of α7 nAChRs triggered the upregulation of TRAF6 and NF-κB under CFA-induced inflammatory conditions, while agitation of α7 nAChR suppressed the TRAF6/NF-κB activation. α7 nAChR siRNA also exacerbated the secretion of pro-inflammatory mediators from LPS-induced SH-SY5Y cells. Conversely, α7 nAChR-specific agonist GTS-21 diminished the release of interleukin-1beta (IL-1β), IL-6, IL-8, and tumor necrosis factor-α (TNFα) in SH-SY5Y cells under inflammatory conditions. Mechanistically, the modulation of pain sensitivity and neuroinflammatory action of α7 nAChR may be mediated by the TRAF6/NF-κB signaling pathway. CONCLUSIONS The findings of this study suggest that α7 nAChR may be potentially utilized as a therapeutic target for therapeutics of chronic inflammatory pain.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200030, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Fangxia Xu
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Lijuan Wang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Jianhai Zhang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| | - Lina Huang
- Department of Anesthesiology, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China.
| |
Collapse
|
25
|
Tang W, Zhang L, Li Z. Long noncoding RNA LOC100911498 is a novel regulator of neuropathic pain in rats. Brain Behav 2021; 11:e01966. [PMID: 33949153 PMCID: PMC8413752 DOI: 10.1002/brb3.1966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Neuropathic pain (NP) is the most debilitating of all clinical pain syndromes and may be a consequence of dysfunction in the somatosensory nervous system. Unfortunately, the pathogenesis of NP is not fully understood yet and it cannot be cured totally. Long noncoding RNA (lncRNA) is a type of RNA molecule greater than 200 nucleotides, and dysregulated expression of lncRNAs play a critical role in the facilitation of NP. Previous study showed the expression level of LOC100911498 in the spinal cords of spared nerve injury (SNI) rats were increased. This research was aimed at exploring what role LOC100911498 plays in the pathophysiological process of NP. METHODS The mechanical withdrawal threshold (MWT) of rats was measured by the von Frey test. The expression levels of P2X4 receptor (P2X4R), ionized calcium-binding adaptor molecule 1 (Iba-1), p-p38 and brain-derived neurotrophic factor (BDNF) in spinal cords were detected, respectively. RESULTS Our results suggested that the level of LOC100911498 in SNI rats was markedly higher than that in the sham group; the MWT values in rats were treated with LOC100911498siRNA were increased, and the expression levels of P2X4R, Iba-1, p-p38 and BDNF in SNI+ LOC100911498siRNA group were reduced compared with those in the SNI group. CONCLUSION Our study indicated the effects lncRNA LOC100911498 siRNA exerted on NP were mediated by P2X4R on microglia in the spinal cords of rats. Further, LOC100911498 may be a novel positive regulator of NP by regulating the expression and function of the P2X4R.
Collapse
Affiliation(s)
- Wenxin Tang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lufeng Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Pan Z, Du S, Wang K, Guo X, Mao Q, Feng X, Huang L, Wu S, Hou B, Chang Y, Liu T, Chen T, Li H, Bachmann T, Bekker A, Hu H, Tao Y. Downregulation of a Dorsal Root Ganglion-Specifically Enriched Long Noncoding RNA is Required for Neuropathic Pain by Negatively Regulating RALY-Triggered Ehmt2 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004515. [PMID: 34383386 PMCID: PMC8356248 DOI: 10.1002/advs.202004515] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/19/2021] [Indexed: 05/07/2023]
Abstract
Nerve injury-induced maladaptive changes of gene expression in dorsal root ganglion (DRG) neurons contribute to neuropathic pain. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression. Here, a conserved lncRNA is reported, named DRG-specifically enriched lncRNA (DS-lncRNA) for its high expression in DRG neurons. Peripheral nerve injury downregulates DS-lncRNA in injured DRG due, in part, to silencing of POU domain, class 4, transcription factor 3, a transcription factor that interacts with the DS-lncRNA gene promoter. Rescuing DS-lncRNA downregulation blocks nerve injury-induced increases in the transcriptional cofactor RALY-triggered DRG Ehmt2 mRNA and its encoding G9a protein, reverses the G9a-controlled downregulation of opioid receptors and Kcna2 in injured DRG, and attenuates nerve injury-induced pain hypersensitivities in male mice. Conversely, DS-lncRNA downregulation increases RALY-triggered Ehmt2/G9a expression and correspondingly decreases opioid receptor and Kcna2 expression in DRG, leading to neuropathic pain symptoms in male mice in the absence of nerve injury. Mechanistically, downregulated DS-lncRNA promotes more binding of increased RALY to RNA polymerase II and the Ehmt2 gene promoter and enhances Ehmt2 transcription in injured DRG. Thus, downregulation of DS-lncRNA likely contributes to neuropathic pain by negatively regulating the expression of RALY-triggered Ehmt2/G9a, a key neuropathic pain player, in DRG neurons.
Collapse
Affiliation(s)
- Zhiqiang Pan
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Shibin Du
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Kun Wang
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Xinying Guo
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Qingxiang Mao
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Xiaozhou Feng
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Lina Huang
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Shaogen Wu
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Bailing Hou
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Yun‐Juan Chang
- The Office of Advanced Research ComputingRutgersThe State University of New JerseyNewarkNJ07103USA
| | - Tong Liu
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Tong Chen
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Hong Li
- Center for Advanced Proteomics ResearchDepartments of Biochemistry, Microbiology & Molecular GeneticsNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Thomas Bachmann
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Alex Bekker
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
| | - Huijuan Hu
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Physiology, Pharmacology & NeuroscienceNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
| | - Yuan‐Xiang Tao
- Department of AnesthesiologyNew Jersey Medical School, RutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Physiology, Pharmacology & NeuroscienceNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
- Department of Cell Biology & Molecular MedicineNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNJ07103USA
| |
Collapse
|
27
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|
28
|
Fan Y, Li N, Yao X. Identification of potential biomarkers of long non-coding RNAs in neuropathic pain using bioinformatic analysis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25147. [PMID: 33761683 PMCID: PMC9282065 DOI: 10.1097/md.0000000000025147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) play important roles in the regulation of neuropathic pain (NP) development. LncRNAs dysregulations are related to the development of NP. However, a comprehensive meta-analysis has never been conducted to assess the relationship between LncRNAs and NP. To combine the results of dysregulated LncRNAs in individual NP studies and to identify potential LncRNAs biomarkers. METHODS LncRNAs profiling studies of NP were extracted from Pubmed, Web of science, Embase, Google Scholar, and Chinese National Knowledge Infrastructure, and the Chinese Biomedical Literature Database if they met the inclusion criteria. The meta-analysis was conducted using a random effects model to identify the effect of each multiple-reported LncRNAs. We also performed subgroup analysis according to LncRNAs detecting methods and sample type. Sensitivity analysis was performed on the sample size. Bioinformatic analysis was performed to identify the potential biomatic functions. All results were represented as log10 odds ratios. RESULTS This review will be disseminated in print by peer-review. CONCLUSION The identified LncRNAs may be closely linked with NP and may act as potentially useful biomarkers. ETHICS AND DISSEMINATION The private information from individuals will not publish. This systematic review also will not involve endangering participant rights. Ethical approval is not available. The results may be published in a peer- reviewed journal or disseminated in relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/ZRX7C.
Collapse
Affiliation(s)
- Yongzhi Fan
- Department of Pain Management, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Provine, China
| | - Na Li
- Department of Pain Management, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Provine, China
| | - Xianbao Yao
- Department of Pain Management, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Provine, China
| |
Collapse
|
29
|
Asadi G, Rezaei Varmaziar F, Karimi M, Rajabinejad M, Ranjbar S, Gorgin Karaji A, Salari F, Afshar Hezarkhani L, Rezaiemanesh A. Determination of the transcriptional level of long non-coding RNA NEAT-1, downstream target microRNAs, and genes targeted by microRNAs in diabetic neuropathy patients. Immunol Lett 2021; 232:20-26. [PMID: 33508370 DOI: 10.1016/j.imlet.2021.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetic neuropathy (DN) is one of the microvascular complications of diabetes that leads to peripheral sensorimotor and autonomic nervous system damages. In this study, we first examined the expression of lncRNA NEAT-1 and its downstream microRNAs, miR-183-5p, miR-433-3p, and then examined mRNA expression of ITGA4, ITGB1, SESN1, and SESN3 as the downstream targets of miR-183-5p, miR-433-3p. METHODS The blood sample was obtained from a total of 40 patients with type 2 diabetes (20 DN patients and 20 non-DN diabetic cases) and ten healthy individuals. After RNA extraction from peripheral blood samples and cDNA synthesis, expression measurements were performed by the RT-qPCR technique. RESULTS Our results showed that the expression level of lncRNA NEAT-1 was significantly higher, and the expression level of miR-183-5p was significantly lower in DN patients compared to the healthy control group. Besides, the expression level of miR-433-3p was significantly lower, and the mRNA expression of ITGA4, SESN1, and SESN3 was significantly higher in DN patients compared to the diabetes group. The ROC curve analysis showed that the miR-183-5p with high levels of accuracy could discriminate DN patients from healthy control (AUC = 0.836) and NEAT-1, SESN1, SESN3, ITGA4 have a high ability to distinguish DN from non-DN patients (AUC = 0.701, 0.772, 0.815 and 0.780, respectively). CONCLUSION It seems that the NEAT-1 probably targets miR-183-5p and miR-433-3p, as a result of which the expression of ITGA4, SESN1, and SESN3 is affected. Dysregulated expression of NEAT-1 and related miRNAs and genes might be involved in the pathogenesis of DN.
Collapse
Affiliation(s)
- Gelayol Asadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Rezaei Varmaziar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojgan Karimi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sedigheh Ranjbar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, School of Medicine, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
30
|
Wang M, Cai X, Wang Y, Li S, Wang N, Sun R, Xing J, Liang S, Liu S. Astragalin Alleviates Neuropathic Pain by Suppressing P2X4-Mediated Signaling in the Dorsal Root Ganglia of Rats. Front Neurosci 2021; 14:570831. [PMID: 33505232 PMCID: PMC7829479 DOI: 10.3389/fnins.2020.570831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023] Open
Abstract
Neurologic damage often leads to neuropathic pain, for which there are no effective treatments owing to its complex pathogenesis. The purinergic receptor P2X4 is closely associated with neuropathic pain. Astragalin (AST), a compound that is used in traditional Chinese medicine, has protective effects against allergic dermatitis and neuronal injury, but its mechanism of action is not well understood. The present study investigated whether AST can alleviate neuropathic pain in a rat model established by chronic constriction injury (CCI) to the sciatic nerve. The model rats exhibited pain behavior and showed increased expression of P2X4 and the activated satellite glial cell (SGC) marker glial fibrillary acidic protein in dorsal root ganglia (DRG). AST treatment partly abrogated the upregulation of P2X4, inhibited SGC activation, and alleviated pain behavior in CCI rats; it also suppressed ATP-activated currents in HEK293 cells overexpressing P2X4. These data demonstrate that AST relieves neuropathic pain by inhibiting P2X4 and SGC activation in DRG, highlighting its therapeutic potential for clinical pain management.
Collapse
Affiliation(s)
- Mengke Wang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Xia Cai
- Department of Endocrinology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueying Wang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Shizhen Li
- Undergraduate Student of the Second Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Na Wang
- Undergraduate Student of the Second Clinical Department, Medical School of Nanchang University, Nanchang, China
| | - Rui Sun
- Undergraduate Student of the Anesthesiology Department, Medical School of Nanchang University, Nanchang, China
| | - Jingming Xing
- Undergraduate Student of the Basic Medical Science Department, Medical School of Nanchang University, Nanchang, China
| | - Shangdong Liang
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| | - Shuangmei Liu
- Department of Physiology, Medical School of Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Yan C, Chen J, Yang X, Li W, Mao R, Chen Z. Emerging Roles of Long Non-Coding RNAs in Diabetic Foot Ulcers. Diabetes Metab Syndr Obes 2021; 14:2549-2560. [PMID: 34135607 PMCID: PMC8200159 DOI: 10.2147/dmso.s310566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is one of the most widespread metabolic diseases in the world, and diabetic foot ulcer (DFU), as one of its chronic complications, not only causes a large amount of physiological and psychological pain to patients but also places a tremendous burden on the entire economy and society. Despite significant advances in knowledge on the mechanism and in the treatment of DFU, clinical practice is still not satisfactory, and our understanding of its cellular and molecular pathogenesis is far from complete. Fortunately, progress in studying the roles of long non-coding RNAs (lncRNAs), which play important regulatory roles in the expression of genes at multiple levels, suggests that we can apply them in the early diagnosis and potential targeted intervention of DFU. In this review, we briefly summarize the current knowledge regarding the functional roles and potential mechanisms of reported lncRNAs in regulating DFU.
Collapse
Affiliation(s)
- Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Renqun Mao
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Correspondence: Zhenbing Chen Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of ChinaTel +86 13871103730Fax +86 2785351628 Email
| |
Collapse
|
32
|
Fei X, He X, Tai Z, Wang H, Qu S, Chen L, Hu Q, Fang J, Jiang Y. Electroacupuncture alleviates diabetic neuropathic pain in rats by suppressing P2X3 receptor expression in dorsal root ganglia. Purinergic Signal 2020; 16:491-502. [PMID: 33011961 PMCID: PMC7855163 DOI: 10.1007/s11302-020-09728-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
Diabetic neuropathic pain (DNP) is a troublesome diabetes complication all over the world. P2X3 receptor (P2X3R), a purinergic receptor from dorsal root ganglion (DRG), has important roles in neuropathic pain pathology and nociceptive sensations. Here, we investigated the involvement of DRG P2X3R and the effect of 2 Hz electroacupuncture (EA) on DNP. We monitored the rats' body weight, fasting blood glucose level, paw withdrawal thresholds, and paw withdrawal latency, and evaluated P2X3R expression in DRG. We found that P2X3R expression is upregulated on DNP, while 2 Hz EA is analgesic against DNP and suppresses P2X3R expression in DRG. To evaluate P2X3R involvement in pain modulation, we then treated the animals with A317491, a P2X3R specific antagonist, or α β-me ATP, a P2X3R agonist. We found that A317491 alleviates hyperalgesia, while α β-me ATP blocks EA's analgesic effects. Our findings indicated that 2 Hz EA alleviates DNP, possibly by suppressing P2X3R upregulation in DRG.
Collapse
Affiliation(s)
- Xueyu Fei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaofen He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhaoxia Tai
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hanzhi Wang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siying Qu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Luhang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qunqi Hu
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yongliang Jiang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
33
|
Jia Y, Zhang M, Li P, Tang W, Liu Y, Hu Y, Cui Q, Liu M, Jiang J. Bioinformatics analysis of long non-coding RNAs involved in nerve regeneration following sciatic nerve injury. Mol Pain 2020; 16:1744806920971918. [PMID: 33241745 PMCID: PMC7705388 DOI: 10.1177/1744806920971918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Little is known about the role of epigenetic modification in axon regeneration following peripheral nerve injury. The purpose of the present study was to investigate the role of long non-coding RNAs (lncRNAs) in the regulation of axon regeneration. We used bioinformatics to perform microarray analysis and screened total 476 lncRNAs and 129 microRNAs (miRNAs) of differentially expressed genes after sciatic nerve injury in mice. lncRNA-GM4208 and lncRNA-GM30085 were examined, and the changes in lncRNA expression in the L4–L6 dorsal root ganglia (DRG) following sciatic nerve crush injury were analyzed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression of lncRNAs in the DRG changed, indicating that they might be related to nerve regeneration in the DRG following peripheral nerve injury.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Department of Anesthesiology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Pei Li
- Department of Anesthesiology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Wenbo Tang
- Department of Anesthesiology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yiwen Hu
- Department of Orthopaedics, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qingjun Cui
- Department of Anesthesiology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Ming Liu
- Department of Anesthesiology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingjing Jiang
- Department of Anesthesiology, 85024Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Hu M, Wu Y, Yang C, Wang X, Wang W, Zhou L, Zeng T, Zhou J, Wang C, Lao G, Yan L, Ren M. Novel Long Noncoding RNA lnc-URIDS Delays Diabetic Wound Healing by Targeting Plod1. Diabetes 2020; 69:2144-2156. [PMID: 32801140 DOI: 10.2337/db20-0147] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Impaired wound healing is one of the main causes of diabetic foot ulcerations. However, the exact mechanism of delayed wound healing in diabetes is not fully understood. Long noncoding RNAs (lncRNAs) are widely involved in a variety of biological processes and diseases, including diabetes and its associated complications. In this study, we identified a novel lncRNA, MRAK052872, named lncRNA UpRegulated in Diabetic Skin (lnc-URIDS), which regulates wound healing in diabetes. lnc-URIDS was highly expressed in diabetic skin and dermal fibroblasts treated with advanced glycation end products (AGEs). lnc-URIDS knockdown promoted migration of dermal fibroblasts under AGEs treatment in vitro and accelerated diabetic wound healing in vivo. Mechanistically, lnc-URIDS interacts with procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 (Plod1), a critical enzyme responsible for collagen cross-linking. The binding of lnc-URIDS to Plod1 results in a decreased protein stability of Plod1, which ultimately leads to the dysregulation of collagen production and deposition and delays wound healing. Collectively, this study identifies a novel lncRNA that regulates diabetic wound healing by targeting Plod1. The findings of the current study offer some insight into the potential mechanism for the delayed wound healing in diabetes and provide a potential therapeutic target for diabetic foot.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuxi Wu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liyan Zhou
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingting Zeng
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhou
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Wang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guojuan Lao
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Yan
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
35
|
Ren X, Yang R, Li L, Xu X, Liang S. Long non coding RNAs involved in MAPK pathway mechanism mediates diabetic neuropathic pain. Cell Biol Int 2020; 44:2372-2379. [PMID: 32844535 DOI: 10.1002/cbin.11457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is the largest global epidemic of the 21st century, and the cost of diabetes and its complications comprise about 12% of global health expenditure. Diabetic neuropathy is the most common complication of diabetes, affecting up to 50% of patients over the course of their disease. Among them, 30%-50% develop neuropathic pain, which has typical symptoms that originate from the toes and progress to foot ulcers and seriously influence quality of life. The pathogenesis of diabetic neuropathic pain (DNP) is complicated and incompletely understood and there is no effective treatment except supportive treatment. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs exceeding 200 nucleotides in length, have been shown to play key roles in fundamental cellular processes, and are considered to be potential targets for treatment. Recent research indicates that lncRNA is involved in the pathogenesis of DNP. Certain overexpressed lncRNAs can enhance the purinergic receptor-mediated neuropathic pain in peripheral ganglia and inflammatory cytokines are released due to receptors activated by adenosine triphosphate. In recent years, our laboratory also has been exploring the relationship and pathogenesis between lncRNAs and DNP. In this review, we focus on the recent progress in functional lncRNAs associated with DNP and investigate their roles related to respective receptors.
Collapse
Affiliation(s)
- Xinlu Ren
- Queen Mary University of London Joint Programme, Nanchang University, Nanchang, Jiangxi, China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
36
|
Zhang C, Peng Y, Wang Y, Xu H, Zhou X. Transcribed ultraconserved noncoding RNA uc.153 is a new player in neuropathic pain. Pain 2020; 161:1744-1754. [PMID: 32701835 DOI: 10.1097/j.pain.0000000000001868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcribed ultraconserved regions are a novel class of long noncoding RNAs and are completely conserved in humans, rats, and mice. Transcribed ultraconserved regions have been implicated in diverse biological processes; however, very little is currently known about their role in pain modulation. Here, we found that the level of the spinal transcribed ultraconserved region uc.153 was significantly increased in a mouse model of sciatic nerve chronic constriction injury (CCI)-induced chronic neuropathic pain. The knockdown of spinal uc.153 prevented and reversed chronic constriction injury-induced pain behaviours and spinal neuronal sensitization. By contrast, the overexpression of spinal uc.153 produced pain behaviours and neuronal sensitization in naive mice. Moreover, we found that uc.153 participates in the regulation of neuropathic pain by negatively modulating the processing of pre-miR-182-5p. Collectively, our findings reveal an important role for uc.153 in pain modulation and provide a novel drug target for neuropathic pain therapy.
Collapse
Affiliation(s)
- Chenjing Zhang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, Zhejiang Provincial People's hospital, Hangzhou, China
| | - Yunan Peng
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine,Shanghai, China
| | - Hongjiao Xu
- Department of Anesthesiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Xuelong Zhou
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Song G, Yang Z, Guo J, Zheng Y, Su X, Wang X. Interactions Among lncRNAs/circRNAs, miRNAs, and mRNAs in Neuropathic Pain. Neurotherapeutics 2020; 17:917-931. [PMID: 32632773 PMCID: PMC7609633 DOI: 10.1007/s13311-020-00881-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NP) is directly caused by an injury or disease of the somatosensory nervous system. It is a serious type of chronic pain that is a burden to the economy and public health. Although recent studies have improved our understanding of NP, its pathogenesis has not been fully elucidated. Noncoding RNAs, including lncRNAs, circRNAs, and miRNAs, are involved in the pathological development of NP through many mechanisms. In addition, extensive evidence suggests that novel regulatory mechanisms among lncRNAs/circRNAs, miRNAs, and mRNAs play a crucial role in the pathophysiological process of NP. In this review, we comprehensively summarize the regulatory relationship among lncRNAs/circRNAs, miRNAs, and mRNAs and emphasize the important role of the lncRNA/circRNA-miRNA-mRNA axis in NP.
Collapse
Affiliation(s)
- Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Jiabao Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Yili Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, 188 Hengren Road, Shanghai, 200438, China.
| |
Collapse
|
38
|
Dai Y, Ma W, Zhang T, Yang J, Zang C, Liu K, Wang X, Wang J, Wu Z, Zhang X, Li C, Li J, Wang X, Guo J, Li L. Long Noncoding RNA Expression Profiling During the Neuronal Differentiation of Glial Precursor Cells from Rat Dorsal Root Ganglia. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0317-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Wang C, Xu X, Chen J, Kang Y, Guo J, Duscher D, Yang X, Guo G, Ren S, Xiong H, Yuan M, Jiang T, Machens HG, Chen Z, Chen Y. The Construction and Analysis of lncRNA-miRNA-mRNA Competing Endogenous RNA Network of Schwann Cells in Diabetic Peripheral Neuropathy. Front Bioeng Biotechnol 2020; 8:490. [PMID: 32523943 PMCID: PMC7261901 DOI: 10.3389/fbioe.2020.00490] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes mellitus is a worldwide disease with high incidence. Diabetic peripheral neuropathy (DPN) is one of the most common but often ignored complications of diabetes mellitus that cause numbness and pain, even paralysis. Recent studies demonstrate that Schwann cells (SCs) in the peripheral nervous system play an essential role in the pathogenesis of DPN. Furthermore, various transcriptome analyses constructed by RNA-seq or microarray have provided a comprehensive understanding of molecular mechanisms and regulatory interaction networks involved in many diseases. However, the detailed mechanisms and competing endogenous RNA (ceRNA) network of SCs in DPN remain largely unknown. Methods Whole-transcriptome sequencing technology was applied to systematically analyze the differentially expressed mRNAs, lncRNAs and miRNAs in SCs from DPN rats and control rats. Gene ontology (GO) and KEGG pathway enrichment analyses were used to investigate the potential functions of the differentially expressed genes. Following this, lncRNA-mRNA co-expression network and ceRNA regulatory network were constructed by bioinformatics analysis methods. Results The results showed that 2925 mRNAs, 164 lncRNAs and 49 miRNAs were significantly differently expressed in SCs from DPN rats compared with control rats. 13 mRNAs, 7 lncRNAs and 7 miRNAs were validated by qRT-PCR and consistent with the RNA-seq data. Functional and pathway analyses revealed that many enriched biological processes of GO terms and pathways were highly correlated with the function of SCs and the pathogenesis of DPN. Furthermore, a global lncRNA–miRNA–mRNA ceRNA regulatory network in DPN model was constructed and miR-212-5p and the significantly correlated lncRNAs with high degree were identified as key mediators in the pathophysiological processes of SCs in DPN. These RNAs would contribute to the diagnosis and treatment of DPN. Conclusion Our study has shown that differentially expressed RNAs have complex interactions among them. They also play critical roles in regulating functions of SCs involved in the pathogenesis of DPN. The novel competitive endogenous RNA network provides new insight for exploring the underlying molecular mechanism of DPN and further investigation may have clinical application value.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dominik Duscher
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guojun Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Ren
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hewei Xiong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Yuan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, Munich, Germany
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Loss of SNHG4 Attenuated Spinal Nerve Ligation-Triggered Neuropathic Pain through Sponging miR-423-5p. Mediators Inflamm 2020; 2020:2094948. [PMID: 32454787 PMCID: PMC7225849 DOI: 10.1155/2020/2094948] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/25/2020] [Indexed: 02/08/2023] Open
Abstract
Neuropathic pain is an intractable comorbidity of spinal cord injury. Increasing noncoding RNAs have been implicated in neuropathic pain development. lncRNAs have been recognized as significant regulators of neuropathic pain. lncRNA Small Nucleolar RNA Host Gene 4 (SNHG4) is associated with several tumors. However, the molecular mechanisms of SNHG4 in neuropathic pain remain barely documented. Here, we evaluated the function of SNHG4 in spinal nerve ligation (SNL) rat models. We observed that SNHG4 was significantly upregulated in SNL rat. Knockdown of SNHG4 was able to attenuate neuropathic pain progression via regulating behaviors of neuropathic pain including mechanical and thermal hyperalgesia. Moreover, knockdown of SNHG4 could repress the neuroinflammation via inhibiting IL-6, IL-12, and TNF-α while inducing IL-10 levels. Additionally, miR-423-5p was predicted as the target of SNHG4 by employing bioinformatics analysis. miR-423-5p has been reported to exert significantly poorer in several diseases. However, the role of miR-423-5p in the development of neuropathic pain is needed to be clarified. Here, in our investigation, RIP assay confirmed the correlation between miR-423-5p and SNHG4. Meanwhile, we found that miR-423-5p was significantly decreased in SNL rat models. SNHG4 regulated miR-423-5p expression negatively. As exhibited, the loss of miR-423-5p contributed to neuropathic pain progression, which was rescued by the silence of SNHG4. Therefore, our study indicated SNHG4 as a novel therapeutic target for neuropathic pain via sponging miR-423-5p.
Collapse
|
41
|
Wu M, Feng Y, Shi X. Advances with Long Non-Coding RNAs in Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2020; 13:1429-1434. [PMID: 32431526 PMCID: PMC7201007 DOI: 10.2147/dmso.s249232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs longer than 200 nucleotides, which are defined as transcripts. The lncRNAs are involved in regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels. Recent studies have found that lncRNA is closely related to many diseases like neurological diseases, endocrine and metabolic disorders. Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications of diabetes mellitus. In this review, we highlight the latest research related to lncRNAs in DPN.
Collapse
Affiliation(s)
- Men Wu
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yonghao Feng
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xiaohong Shi
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
42
|
Chen M, Yang Y, Zhang W, Li X, Wu J, Zou X, Zeng X. Long Noncoding RNA SNHG5 Knockdown Alleviates Neuropathic Pain by Targeting the miR-154-5p/CXCL13 Axis. Neurochem Res 2020; 45:1566-1575. [PMID: 32248399 DOI: 10.1007/s11064-020-03021-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/22/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
Neuropathic pain is an unneglectable pain condition with limited treatment options owing to its enigmatic underlying mechanisms. Long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) is involved in the progression of a spectrum of human cancers. However, its role in neuropathic pain remains undiscovered. In the present study, we established a mouse spinal nerve ligation (SNL) model, and a significant upregulation of SNHG5 was observed. Then we knocked down SNHG5 level in mouse L5 dorsal root ganglion (DRG) by delivering specific short hairpin RNA against SNHG5 with adenovirus vehicle. Mouse paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in response to mechanical stimuli was increased after SNHG5 knockdown, accompanied with decreased protein levels of glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule 1 (IBA-1). Besides, SNHG5 directly modulated the expression of miR-154-5p, which was downregulated in SNL mice. MiR-154-5p inhibition abolished the effect of SNHG5 knockdown on mouse behavioral tests and GFAP and IBA-1 levels. In addition, we validated that C-X-C motif chemokine 13 (CXCL13) was a novel downstream target of miR-154-5p, and CXCL13 level was positively related to that of SNHG5 in SNL mice. In conclusion, our study demonstrated that SNHG5 knockdown alleviated neuropathic pain and inhibited the activation of astrocytes and microglia by targeting the miR-154-5p/CXCL13 axis, which might be a novel therapeutic target for neuropathic treatment clinically.
Collapse
Affiliation(s)
- Mi Chen
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Yang Yang
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Wenqi Zhang
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Xinning Li
- College of Anesthesia, Guizhou Medical University, Guizhou Province, Guiyang, 550004, China
| | - Jinli Wu
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China
| | - Xiaohua Zou
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China.
| | - Xianggang Zeng
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guizhou Province, No. 28 Guiyi Street, Guiyang, 550004, China.
| |
Collapse
|
43
|
Kalpachidou T, Kummer K, Kress M. Non-coding RNAs in neuropathic pain. Neuronal Signal 2020; 4:NS20190099. [PMID: 32587755 PMCID: PMC7306520 DOI: 10.1042/ns20190099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain in general, and members of the non-coding RNA (ncRNA) family, specifically the short, 22 nucleotide microRNAs (miRNAs) and the long non-coding RNAs (lncRNAs) act as master switches orchestrating both immune as well as neuronal processes. Several chronic disorders reveal unique ncRNA expression signatures, which recently generated big hopes for new perspectives for the development of diagnostic applications. lncRNAs may offer perspectives as candidates indicative of neuropathic pain in liquid biopsies. Numerous studies have provided novel mechanistic insight into the role of miRNAs in the molecular sequelae involved in the pathogenesis of neuropathic pain along the entire pain pathway. Specific processes within neurons, immune cells, and glia as the cellular components of the neuropathic pain triad and the communication paths between them are controlled by specific miRNAs. Therefore, nucleotide sequences mimicking or antagonizing miRNA actions can provide novel therapeutic strategies for pain treatment, provided their human homologues serve the same or similar functions. Increasing evidence also sheds light on the function of lncRNAs, which converge so far mainly on purinergic signalling pathways both in neurons and glia, and possibly even other ncRNA species that have not been explored so far.
Collapse
Affiliation(s)
| | - Kai K. Kummer
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
44
|
Ma X, Wang H, Song T, Wang W, Zhang Z. lncRNA MALAT1 contributes to neuropathic pain development through regulating miR-129-5p/HMGB1 axis in a rat model of chronic constriction injury. Int J Neurosci 2020; 130:1215-1224. [PMID: 32065547 DOI: 10.1080/00207454.2020.1731508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Backgrounds: Mounting studies pay attention to the functional roles of long non-coding RNAs (lncRNAs) in many human diseases including neuropathic pain. LncRNA MALAT1 has been indicated to serve as a critical mediator in neuropathic pain with unclear mechanisms. The present study aims to explore the functional roles of MALAT1 in neuropathic pain progression and the related mechanisms.Methods: Bilateral sciatic nerves were ligated to induce chronic constriction injury (CCI) in order to establish the neuropathic pain rat model followed by behavioral tests, RT-qPCR, Western blotting, and ELISA. Dual luciferase activity assay was performed to determine the binding effect between MALAT1 or HMGB1 and miR-129-5p.Results: The mRNA levels of MALAT1 were significantly enhanced in CCI rats. MALAT1 inhibition repressed the development of neuropathic pain and neuroinflammation. Additionally, miR-129-5p was decreased and HMGB1 was increased, both of which could be rectified by MALAT1 inhibition. Meanwhile, MALAT1 targeted miR-129-5p/HMGB1 axis. Finally, miR-129-5p suppression attenuated the inhibitory effect of MALAT1 inhibition on neuropathic pain and neuroinflammation development in CCI rats.Conclusion: The present study demonstrates that MALAT1 might modulate neuropathic pain via targeting miR-129-5p/HMGB1 axis. These findings may lead to a promising and efficacious clinical approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xiaojing Ma
- Department of Anesthesiology, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Hong Wang
- Department of Anesthesiology, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Tieying Song
- Department of Anesthesiology, The First Hospital of Shijiazhuang, Shijiazhuang, China
| | - Wenli Wang
- Department of Gynaecology, Maternal and Child Health Care Hospital of Shijiazhuang, Shijiazhuang, China
| | - Zaiwang Zhang
- Department of Anesthesiology, The Bethune International Peace Hospital of P.L.A, Shijiazhuang, China
| |
Collapse
|
45
|
Sun RM, Wei J, Wang SS, Xu GY, Jiang GQ. Upregulation of lncRNA-NONRATT021203.2 in the dorsal root ganglion contributes to cancer-induced pain via CXCL9 in rats. Biochem Biophys Res Commun 2020; 524:983-989. [PMID: 32061390 DOI: 10.1016/j.bbrc.2020.01.163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/30/2020] [Indexed: 12/16/2022]
Abstract
Cancer-induced pain (CIP) is a kind of chronic pain that occurs during cancer progression over time. However, the mechanisms are largely unknown, and clinical treatment remains challenging. LncRNAs have been reported to play critical roles in various biological processes, including chronic pain. The aim of our study was to investigate whether lncRNAs participate in the development of CIP by regulating the expression levels of some molecules related to pain modulation. The CIP model was established by injecting Walker 256 mammary gland tumor cells into the tibial canal of rats. In this study, we found that lncRNA-NONRATT021203.2 was increased in the CIP rats and that lncRNA-NONRATT021203.2-siRNA could relieve hyperalgesia in these rats. For elucidation of the underlying mechanism, we showed that lncRNA-NONRATT021203.2 could target C-X-C motif chemokine ligand 9 (CXCL9), which was increased in the CIP rats, and that CXCL9-siRNA could relieve hyperalgesia. At the same time, silencing lncRNA-NONRATT021203.2 expression decreased the mRNA and protein levels of CXCL9. Immunofluorescence analysis showed that CXCL9 was mainly expressed in the CGRP-positive and IB4-positive DRG neurons. Further research showed that lncRNA-NONRATT021203.2 and CXCL9 were colocalized in the DRG neurons. Our data suggested that lncRNA-NONRATT021203.2 participated in the CIP in rats and likely mediates the upregulation of CXCL9. The present study provided us with a new potential target for the clinical treatment of cancer-induced pain.
Collapse
Affiliation(s)
- Rong-Mao Sun
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China
| | - Jinrong Wei
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China
| | - Shu-Sheng Wang
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, PR China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, The Second Affiliated Hospital, Soochow University, Suzhou, 215123, PR China; Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, 215600, PR China
| | - Guo-Qin Jiang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, PR China.
| |
Collapse
|
46
|
Effects of long non-coding RNA Gm14461 on pain transmission in trigeminal neuralgia. JOURNAL OF INFLAMMATION-LONDON 2020; 17:1. [PMID: 31911759 PMCID: PMC6942393 DOI: 10.1186/s12950-019-0231-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Background This study aims to investigate the role of long non-coding RNA Gm14461 in regulating pain transmission in trigeminal neuralgia (TN). The mouse TN model was produced by chronic constriction injury of the infraorbital nerve (CCI-ION). The values of mechanical withdrawal threshold (MWT) were measured to assess the nociception of mice at different times after CCI-ION surgery (0, 1, 3, 5, 7, 9, 11, 13, 15 d). The primary mouse trigeminal ganglion neurons (TGNs) were isolated from C57BL/6 J mice and treated with TNF-α to mimic a TN cellular model. The expression of Gm14461, TNF-α, IL-1β, and IL-6 was examined using qRT-PCR. The protein levels of CGRP and P2X3/7 receptor were measured using western blot. Results Gm14461 expression was increased in trigeminal ganglia (TGs) of TN mice on the operation side. Furthermore, Gm14461 knockdown in TGs increased, whereas Gm14461 overexpression decreased MWT in TN mice. Moreover, Gm14461 knockdown downregulated, whereas Gm14461 overexpression upregulated mRNA levels of TNF-α, IL-1β, and IL-6 and protein levels of CGRP and P2X3/7 receptor in TGs from TN mice. In vitro assay showed that Gm14461 was upregulated by TNF-α, IL-1β, and IL-6. Additionally, Gm14461 knockdown decreased protein levels of CGRP and P2X3/7 receptor in TNF-α-treated TGNs, whereas Gm14461 overexpression exerted the opposite effect. Conclusion Gm14461 promoted pain transmission (reduced MWT value) in a CCI-ION-induced mouse TN model. The underlying mechanisms might involve the regulation of pro-inflammatory cytokines, CGRP and P2X3/7 receptor.
Collapse
|
47
|
Wang X, Wang H, Zhang T, Cai L, Dai E, He J. Diabetes and its Potential Impact on Head and Neck Oncogenesis. J Cancer 2020; 11:583-591. [PMID: 31942181 PMCID: PMC6959048 DOI: 10.7150/jca.35607] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
In recent years, the incidence of diabetes mellitus and cancer has increased sharply; indeed, these have become the two most important diseases threatening health and survival. Head and neck (HN) tumors are the sixth most common malignancies in humans. Numerous studies have shown that there are many common risk factors for diabetes mellitus and HN squamous cell carcinoma, including advanced age, poor diet and lifestyle, and environmental factors. However, the mechanism linking the two diseases has not been identified. A number of studies have shown that diabetes affects the development, metastasis, and prognosis of HN cancer, potentially through the associated hyperglycemia, hyperinsulinemia and insulin resistance, or chronic inflammation. More recent studies show that metformin, the first-line drug for the treatment of type 2 diabetes, can significantly reduce the risk of HN tumor development and reduce mortality in diabetic patients. Here, we review recent progress in the study of the relationship between diabetes mellitus and HN carcinogenesis, and its potential mechanisms, in order to provide a scientific basis for the early diagnosis and effective treatment of these diseases.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China.,Pediatric Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Huiyu Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Tianfu Zhang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, KY 40292, USA.,Departments of Radiation Oncology, Pharmacology, and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Enyong Dai
- Department of Oncology and Hematology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
48
|
Wu W, Ji X, Zhao Y. Emerging Roles of Long Non-coding RNAs in Chronic Neuropathic Pain. Front Neurosci 2019; 13:1097. [PMID: 31680832 PMCID: PMC6813851 DOI: 10.3389/fnins.2019.01097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic neuropathic pain, a type of chronic and potentially disabling pain caused by a disease or injury of the somatosensory nervous system, spinal cord injury, or various chronic conditions, such as viral infections (e.g., post-herpetic neuralgia), autoimmune diseases, cancers, and metabolic disorders (e.g., diabetes mellitus), is one of the most intense types of chronic pain, which incurs a major socio-economic burden and is a serious public health issue, with an estimated prevalence of 7–10% in adults throughout the world. Presently, the available drug treatments (e.g., anticonvulsants acting at calcium channels, serotonin-noradrenaline reuptake inhibitors, tricyclic antidepressants, opioids, topical lidocaine, etc.) for chronic neuropathic pain patients are still rare and have disappointing efficacy, which makes it difficult to relieve the patients’ painful symptoms, and, at best, they only try to reduce the patients’ ability to tolerate pain. Long non-coding RNAs (lncRNAs), a type of transcript of more than 200 nucleotides with no protein-coding or limited capacity, were identified to be abnormally expressed in the spinal cord, dorsal root ganglion, hippocampus, and prefrontal cortex under chronic neuropathic pain conditions. Moreover, a rapidly growing body of data has clearly pointed out that nearly 40% of lncRNAs exist specifically in the nervous system. Hence, it was speculated that these dysregulated lncRNAs might participate in the occurrence, development, and progression of chronic neuropathic pain. In other words, if we deeply delve into the potential roles of lncRNAs in the pathogenesis of chronic neuropathic pain, this may open up new strategies and directions for the development of novel targeted drugs to cure this refractory disorder. In this article, we primarily review the status of chronic neuropathic pain and provide a general overview of lncRNAs, the detailed roles of lncRNAs in the nervous system and its related diseases, and the abnormal expression of lncRNAs and their potential clinical applications in chronic neuropathic pain. We hope that through the above description, readers can gain a better understanding of the emerging roles of lncRNAs in chronic neuropathic pain.
Collapse
Affiliation(s)
- Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiaojun Ji
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Zhao
- Department of Anesthesiology, Affiliated Hospital to Qingdao University, Qingdao, China
| |
Collapse
|
49
|
Chen ZL, Liu JY, Wang F, Jing X. Suppression of MALAT1 ameliorates chronic constriction injury-induced neuropathic pain in rats via modulating miR-206 and ZEB2. J Cell Physiol 2019; 234:15647-15653. [PMID: 30740678 DOI: 10.1002/jcp.28213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Long noncoding RNAs (lncRNAs) are involved in multiple nervous system diseases, including neuropathic pain. Previous studies have demonstrated that lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been identified as a diagnostic biomarker in many diseases. Nevertheless, the function of MALAT1 in neuropathic pain progression is still unclear. Here, we established a chronic constriction injury (CCI) rat model. We found that MALAT1 was remarkably upregulated in CCI rats. In addition, neuropathic pain behaviors such as mechanical and thermal hyperalgesia were reduced by the inhibition of MALAT1. Meanwhile, the loss of MALAT1 was able to depress the neuroinflammation process via the inhibition of COX-2, interleukin-1β, and interleukin-6. A previous study has indicated that miR-206 upregulation can restrain the CCI-induced neuropathic pain. Furthermore, we exhibited that miR-206 was significantly downregulated and silence of MALAT1 restrained its expression in CCI rats. For another, ZEB2 was a target of miR-206 and it was shown that ZEB2 was elevated in CCI rats in a time-dependent manner. Overexpression of miR-206 obviously suppressed ZEB2 levels in rat microglial cells. Subsequently, it was demonstrated that upregulation of miR-206 rescued the neuropathic pain triggered by ZEB2 overexpression in vivo through neuroinflammation inhibition. Overall, we indicated that suppression of MALAT1 ameliorated neuropathic pain progression via miR-206/ZEB2 axis.
Collapse
Affiliation(s)
- Zhao-Ling Chen
- Department of Hematology, Affiliated to Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jing-Yi Liu
- Department of Hematology, Affiliated to Dongfeng Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fang Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Jing
- Department of Anesthesiology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
50
|
Zhang D, Mou JY, Wang F, Liu J, Hu X. CRNDE enhances neuropathic pain via modulating miR-136/IL6R axis in CCI rat models. J Cell Physiol 2019; 234:22234-22241. [PMID: 31131445 DOI: 10.1002/jcp.28790] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
Neuropathic pain has been reported as a type of chronic pain due to the primary dysfunction of the somatosensory nervous system. It is the most serious types of chronic pain, which can lead to a significant public health burden. But, the understanding of the cellular and molecular pathogenesis of neuropathic pain is barely complete. Long noncoding RNAs (lncRNAs) have recently been regarded as modulators of neuronal functions. Growing studies have indicated lncRNAs can exert crucial roles in the development of neuropathic pain. Therefore, our present study focused on the potential role of the lncRNA Colorectal Neoplasia Differentially Expressed (CRNDE) in neuropathic pain progression. Firstly, a chronic constrictive injury (CCI) rat model was built. CRNDE was obviously increased in CCI rats. Interestingly, overexpression of CRNDE enhanced neuropathic pain behaviors. Neuroinflammation was induced by CRNDE and as demonstrated, interleukin-10 (IL-10), IL-1, IL-6, and tumor necrosis factor-α (TNF-α) protein levels in CCI rats were activated by LV-CRNDE. For another, miR-136 was obviously reduced in CCI rats. Previously, it is indicated that miR-136 participates in the spinal cord injury via an inflammation in a rat model. Here, firstly, we verified miR-136 could serve as CRNDE target. Loss of miR-136 triggered neuropathic pain remarkably via the neuroinflammation activation. Additionally, IL6R was indicated as a target of miR-136 and miR-136 regulated its expression. Subsequently, we confirmed that CRNDE could induce interleukin 6 receptor (IL6R) expression positively. Overall, it was implied that CRNDE promoted neuropathic pain progression via modulating miR-136/IL6R axis in CCI rat models.
Collapse
Affiliation(s)
- Dawei Zhang
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jun-Ying Mou
- Department of Anesthesiology, The Central Hospital Of Enshi Tujia And Miao Autonomous Prefecture, Enshi Clinical College Of Wuhan University, Enshi, Hubei, China
| | - Fang Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Liu
- Operating Room, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xue Hu
- Department of Neurology, Huai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|