1
|
Bogdańska-Chomczyk E, Wojtacha P, Tsai ML, Huang ACW, Kozłowska A. Age-related changes in the architecture and biochemical markers levels in motor-related cortical areas of SHR rats-an ADHD animal model. Front Mol Neurosci 2024; 17:1414457. [PMID: 39246601 PMCID: PMC11378348 DOI: 10.3389/fnmol.2024.1414457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/25/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder whose exact pathophysiology has not been fully understood yet. Numerous studies have suggested disruptions in the cellular architecture and neuronal activity within brain structures of individuals with ADHD, accompanied by imbalances in the immune system, oxidative stress, and metabolism. Methods This study aims to assess two functionally and histologically distinct brain areas involved in motor control and coordination: the motor cortex (MC) and prefrontal cortex (PFC). Namely, the morphometric analysis of the MC throughout the developmental stages of Spontaneously Hypertensive Rats (SHRs) and Wistar Kyoto Rats (WKYs). Additionally, the study aimed to investigate the levels and activities of specific immune, oxidative stress, and metabolic markers in the PFC of juvenile and maturing SHRs in comparison to WKYs. Results The most significant MC volume reductions occurred in juvenile SHRs, accompanied by alterations in neuronal density in these brain areas compared to WKYs. Furthermore, juvenile SHRs exhibit heightened levels and activity of various markers, including interleukin-1α (IL-1α), IL-6, serine/threonine-protein mammalian target of rapamycin, RAC-alpha serine/threonine-protein kinase, glucocorticoid receptor β, malondialdehyde, sulfhydryl groups, superoxide dismutase, peroxidase, glutathione reductase, glutathione S-transferase, glucose, fructosamine, iron, lactic acid, alanine, aspartate transaminase, and lactate dehydrogenase. Discussion Significant changes in the MC morphometry and elevated levels of inflammatory, oxidative, and metabolic markers in PFC might be associated with disrupted brain development and maturation in ADHD.
Collapse
Affiliation(s)
- E Bogdańska-Chomczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - P Wojtacha
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - M L Tsai
- Department of Biomechatronic Engineering, National Ilan University, Yilan, Taiwan
| | - A C W Huang
- Department of Psychology, Fo Guang University, Yilan, Taiwan
| | - A Kozłowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
2
|
Zeidan HM, Nashaat NH, Hemimi M, Hashish AF, Elsaeid A, Abd El-Ghaffar N, Helal SI, Meguid NA. Expression Patterns of miRNAs in Egyptian Children with ADHD: Clinical Study with Correlation Analysis. J Mol Neurosci 2024; 74:46. [PMID: 38652370 PMCID: PMC11039553 DOI: 10.1007/s12031-024-02220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
ADHD has huge knowledge gaps concerning its etiology. MicroRNAs (miRNAs) provide promising diagnostic biomarkers of human pathophysiology and may be a novel therapeutic option. The aim was to investigate the levels of miR-34c-3p, miR-155, miR-138-1, miR-296-5p, and plasma brain-derived neurotrophic factor (BDNF) in a group of children with ADHD compared to neurotypicals and to explore correlations between these measures and some clinical data. The participants were children with ADHD in Group I (N = 41; age: 8.2 ± 2) and neurotypical ones in Group II (N = 40; age: 8.6 ± 2.5). Group I was subjected to clinical examination, the Stanford Binet intelligence scale-5, the preschool language scale, and Conner's parent rating scale-R. Measuring the expression levels of the miRNAs was performed by qRT-PCR for all participants. The BDNF level was measured by ELISA. The lowest scores on the IQ subtest were knowledge and working memory. No discrepancies were noticed between the receptive and expressive language ages. The highest scores on the Conner's scale were those for cognitive problems. Participants with ADHD exhibited higher plasma BDNF levels compared to controls (p = 0.0003). Expression patterns of only miR-34c-3p and miR-138-1 were downregulated with significant statistical differences (p˂0.01). However, expression levels of miR-296-5p showed negative correlation with the total scores of IQ (p = 0.03). MiR-34c-3p, miR-138-1, while BDNF showed good diagnostic potential. The downregulated levels of miR-34c-3p and miR-138-1, together with high BDNF levels, are suggested to be involved in the etiology of ADHD in Egyptian children. Gender differences influenced the expression patterns of miRNAs only in children with ADHD.
Collapse
Affiliation(s)
- Hala M Zeidan
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt.
| | - Neveen Hassan Nashaat
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Maha Hemimi
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Adel F Hashish
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Amal Elsaeid
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Nagwa Abd El-Ghaffar
- Clinical and Chemical Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Suzette I Helal
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| | - Nagwa A Meguid
- Research on Children with Special Needs Department, Medical Research and Clinical Studies Institute, National Research Centre, El-Buhouth St., Dokki 12622, Cairo, Egypt
| |
Collapse
|
3
|
Martinez B, Peplow PV. MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder. Neural Regen Res 2024; 19:557-562. [PMID: 37721284 PMCID: PMC10581556 DOI: 10.4103/1673-5374.380880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 09/19/2023] Open
Abstract
Inappropriate levels of hyperactivity, impulsivity, and inattention characterize attention deficit hyperactivity disorder, a common childhood-onset neuropsychiatric disorder. The cognitive function and learning ability of children with attention deficit hyperactivity disorder are affected, and these symptoms may persist to adulthood if they are not treated. The diagnosis of attention deficit hyperactivity disorder is only based on symptoms and objective tests for attention deficit hyperactivity disorder are missing. Treatments for attention deficit hyperactivity disorder in children include medications, behavior therapy, counseling, and education services which can relieve many of the symptoms of attention deficit hyperactivity disorder but cannot cure it. There is a need for a molecular biomarker to distinguish attention deficit hyperactivity disorder from healthy subjects and other neurological conditions, which would allow for an earlier and more accurate diagnosis and appropriate treatment to be initiated. Abnormal expression of microRNAs is connected to brain development and disease and could provide novel biomarkers for the diagnosis and prognosis of attention deficit hyperactivity disorder. The recent studies reviewed had performed microRNA profiling in whole blood, white blood cells, blood plasma, and blood serum of children with attention deficit hyperactivity disorder. A large number of microRNAs were dysregulated when compared to healthy controls and with some overlap between individual studies. From the studies that had included a validation set of patients and controls, potential candidate biomarkers for attention deficit hyperactivity disorder in children could be miR-140-3p, let-7g-5p, -30e-5p, -223-3p, -142-5p, -486-5p, -151a-3p, -151a-5p, and -126-5p in total white blood cells, and miR-4516, -6090, -4763-3p, -4281, -4466, -101-3p, -130a-3p, -138-5p, -195-5p, and -106b-5p in blood serum. Further studies are warranted with children and adults with attention deficit hyperactivity disorder, and consideration should be given to utilizing rat models of attention deficit hyperactivity disorder. Animal studies could be used to confirm microRNA findings in human patients and to test the effects of targeting specific microRNAs on disease progression and behavior.
Collapse
Affiliation(s)
- Bridget Martinez
- Department of Pharmacology, University of Nevada-Reno, Reno, USA
- Department of Medicine, University of Nevada-Reno, Reno, USA
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Wang T, Guan RL, Zou YF, Zheng G, Shen XF, Cao ZP, Yang RH, Liu MC, Du KJ, Li XH, Aschner M, Zhao MG, Chen JY, Luo WJ. MiR-130/SNAP-25 axis regulate presynaptic alteration in anterior cingulate cortex involved in lead induced attention deficits. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130249. [PMID: 36332276 DOI: 10.1016/j.jhazmat.2022.130249] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Brain volume decrease in the anterior cingulate cortex (ACC) after lead (Pb) exposure has been linked to persistent impairment of attention behavior. However, the precise structural change and molecular mechanism for the Pb-induced ACC alteration and its contribution to inattention have yet to be fully characterized. The present study determined the role of miRNA regulated synaptic structural and functional impairment in the ACC and its relationship to attention deficit disorder in Pb exposed mice. Results showed that Pb exposure induced presynaptic impairment and structural alterations in the ACC. Furthermore, we screened for critical miRNA targets responsible for the synaptic alteration. We found that miR-130, which regulates presynaptic vesicle releasing protein SNAP-25, was responsible for the presynaptic impairment in the ACC and attention deficits in mice. Blocking miR-130 function reversed the Pb-induced decrease in the expression of its presynaptic target SNAP-25, leading to the redistribution of presynaptic vesicles, as well as improved presynaptic function and attention in Pb exposed mice. We report, for the first time, that miR-130 regulating SNAP-25 mediates Pb-induced presynaptic structural and functional impairment in the ACC along with attention deficit disorder in mice.
Collapse
Affiliation(s)
- Tao Wang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Rui-Li Guan
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yun-Feng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Gang Zheng
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xue-Feng Shen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zi-Peng Cao
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Rui-Hua Yang
- Department of Nutrition & Food Hygiene and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Ming-Chao Liu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Ke-Jun Du
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xue-Hang Li
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Jing Yuan Chen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Wen-Jing Luo
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Lin X, Huang L, Huang H, Ke Z, Chen Y. Disturbed relationship between glucocorticoid receptor and 5-HT1AR/5-HT2AR in ADHD rats: A correlation study. Front Neurosci 2023; 16:1064369. [PMID: 36699537 PMCID: PMC9869156 DOI: 10.3389/fnins.2022.1064369] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Objective This work is to investigate the alterations of the central 5-hydroxytryptamine (5-HT) system in spontaneously hypertensive rats (SHR) and the correlation with the behaviors of SHR, and to explore the effects of glucocorticoid intervention on the central 5-HT system and SHR behaviors. Materials and methods Three weeks old SHR were chosen as the attention-deficit hyperactivity disorder (ADHD) model and treated with glucocorticoid receptor (GR) agonist or inhibitor, whereas Wista Kyoto rats (WKY) were chosen as the normal control group. Open-field test and Làt maze test were used to evaluate the spontaneous activities and non-selective attention. The levels of 5-HT in the extracellular fluid specimens of the prefrontal cortex of rats were analyzed by high-performance liquid chromatography. The expressions of GR, 5-HT1A receptor (5-HT1AR), and 5-HT2A receptor (5-HT2AR) in the prefrontal cortex were analyzed through immunohistochemistry. Results Our study demonstrated that the 5-HT level was lower in the prefrontal cortex of SHR compared to that of WKY. The Open-field test and Làt maze test showed that GR agonist (dexamethasone, DEX) intervention ameliorated attention deficit and hyperactive behavior, whereas GR inhibitor (RU486) aggravated the disorders. With DEX, the expression levels of 5-HT and 5-HT2AR in the prefrontal cortex of SHR were significantly higher than those in the control group, whereas the expression level of 5-HT1AR was lower. However, the expression levels of 5-HT and 5-HT2AR were significantly decreased after the intervention with RU486, while the expression level of 5-HT1AR increased. Results showed that glucocorticoid was negatively correlated with 5-HT1AR and positively correlated with 5-HT2AR. Conclusion In the prefrontal cortex of ADHD rats, the down-regulation of 5-HT and 5-HT2AR expressions and the up-regulation of 5-HT1AR, compared with WYK rats, suggested a dysfunctional central 5-HT system in ADHD rats. The GR agonist can upregulate the expression of 5-HT and 5-HT2AR and downregulate the expression of 5-HT1AR in the prefrontal cortex of SHR as well as reduce the hyperactivity and attention deficit behavior in SHR, while the opposite was true for the GR inhibitor. It is suggested that the dysfunction of the 5-HT system in ADHD rats is closely related to glucocorticoid receptor activity.
Collapse
|
6
|
Wang CY, Qiu ZJ, Zhang P, Tang XQ. Differentiated Embryo-Chondrocyte Expressed Gene1 and Parkinson's Disease: New Insights and Therapeutic Perspectives. Curr Neuropharmacol 2023; 21:2251-2265. [PMID: 37132111 PMCID: PMC10556388 DOI: 10.2174/1570159x21666230502123729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 05/04/2023] Open
Abstract
Differentiated embryo-chondrocyte expressed gene1 (DEC1), an important transcription factor with a basic helix-loop-helix domain, is ubiquitously expressed in both human embryonic and adult tissues. DEC1 is involved in neural differentiation and neural maturation in the central nervous system (CNS). Recent studies suggest that DEC1 protects against Parkinson's disease (PD) by regulating apoptosis, oxidative stress, lipid metabolism, immune system, and glucose metabolism disorders. In this review, we summarize the recent progress on the role of DEC1 in the pathogenesis of PD and provide new insights into the prevention and treatment of PD and neurodegenerative diseases.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Zheng-Jie Qiu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
7
|
Kessi M, Duan H, Xiong J, Chen B, He F, Yang L, Ma Y, Bamgbade OA, Peng J, Yin F. Attention-deficit/hyperactive disorder updates. Front Mol Neurosci 2022; 15:925049. [PMID: 36211978 PMCID: PMC9532551 DOI: 10.3389/fnmol.2022.925049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/26/2022] [Indexed: 11/15/2022] Open
Abstract
Background Attention-deficit/hyperactive disorder (ADHD) is a neurodevelopmental disorder that commonly occurs in children with a prevalence ranging from 3.4 to 7.2%. It profoundly affects academic achievement, well-being, and social interactions. As a result, this disorder is of high cost to both individuals and society. Despite the availability of knowledge regarding the mechanisms of ADHD, the pathogenesis is not clear, hence, the existence of many challenges especially in making correct early diagnosis and provision of accurate management. Objectives We aimed to review the pathogenic pathways of ADHD in children. The major focus was to provide an update on the reported etiologies in humans, animal models, modulators, therapies, mechanisms, epigenetic changes, and the interaction between genetic and environmental factors. Methods References for this review were identified through a systematic search in PubMed by using special keywords for all years until January 2022. Results Several genes have been reported to associate with ADHD: DRD1, DRD2, DRD4, DAT1, TPH2, HTR1A, HTR1B, SLC6A4, HTR2A, DBH, NET1, ADRA2A, ADRA2C, CHRNA4, CHRNA7, GAD1, GRM1, GRM5, GRM7, GRM8, TARBP1, ADGRL3, FGF1, MAOA, BDNF, SNAP25, STX1A, ATXN7, and SORCS2. Some of these genes have evidence both from human beings and animal models, while others have evidence in either humans or animal models only. Notably, most of these animal models are knockout and do not generate the genetic alteration of the patients. Besides, some of the gene polymorphisms reported differ according to the ethnic groups. The majority of the available animal models are related to the dopaminergic pathway. Epigenetic changes including SUMOylation, methylation, and acetylation have been reported in genes related to the dopaminergic pathway. Conclusion The dopaminergic pathway remains to be crucial in the pathogenesis of ADHD. It can be affected by environmental factors and other pathways. Nevertheless, it is still unclear how environmental factors relate to all neurotransmitter pathways; thus, more studies are needed. Although several genes have been related to ADHD, there are few animal model studies on the majority of the genes, and they do not generate the genetic alteration of the patients. More animal models and epigenetic studies are required.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yanli Ma
- Department of Neurology, Children’s Hospital Affiliated to Zhengzhou University, Henan Children’s Hospital, Zhengzhou Children’s Hospital, Zhengzhou, China
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin,
| |
Collapse
|
8
|
Peedicayil J. The Role of Epigenetics in the Pathogenesis and Potential Treatment of Attention Deficit Hyperactivity Disorder. Curr Neuropharmacol 2022; 20:1642-1650. [PMID: 34544344 PMCID: PMC9881064 DOI: 10.2174/1570159x19666210920091036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/22/2022] Open
Abstract
There is increasing evidence that dysregulated epigenetic mechanisms of gene expression are involved in the pathogenesis of attention deficit hyperactivity disorder (ADHD). This review presents a comprehensive summary of the current state of research on the role of epigenetics in the pathogenesis of ADHD. The potential role of epigenetic drugs in the treatment of ADHD is also reviewed. Several studies suggest that there are epigenetic abnormalities in preclinical models of ADHD and in ADHD patients. Regarding DNA methylation, many studies have reported DNA hypermethylation. There is evidence that there is increased histone deacetylation in ADHD patients. Abnormalities in the expression of microRNAs (miRNAs) in ADHD patients have also been found. Some currently used drugs for treating ADHD, in addition to their more well-established mechanisms of action, have been shown to alter epigenetic mechanisms of gene expression. Clinical trials of epigenetic drugs in patients with ADHD report favorable results. These data suggest that abnormal epigenetic mechanisms of gene expression may be involved in the pathogenesis of ADHD. Drugs acting on epigenetic mechanisms may be a potential new class of drugs for treating ADHD.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India,Address correspondence to this author at the Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India;Tel: 91-0416-2284237; E-mail:
| |
Collapse
|
9
|
Wang LJ, Kuo HC, Lee SY, Huang LH, Lin Y, Lin PH, Li SC. MicroRNAs serve as prediction and treatment-response biomarkers of attention-deficit/hyperactivity disorder and promote the differentiation of neuronal cells by repressing the apoptosis pathway. Transl Psychiatry 2022; 12:67. [PMID: 35184133 PMCID: PMC8858317 DOI: 10.1038/s41398-022-01832-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/02/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. This study aimed to examine whether miRNA expression abundance in total white blood cells (WBCs) facilitated the identification of ADHD and reflected its response to treatment. Furthermore, whether miRNA markers facilitated the growth of the human cortical neuronal (HCN-2) cells was also investigated. Total WBC samples were collected from 145 patients and 83 controls, followed by RNA extraction and qPCR assays. Subsequently, WBC samples were also collected at the endpoint from ADHD patients who had undergone 12 months of methylphenidate treatment. The determined ΔCt values of 12 miRNAs were applied to develop an ADHD prediction model and to estimate the correlation with treatment response. The prediction model applying the ΔCt values of 12 examined miRNAs (using machine learning algorithm) demonstrated good validity in discriminating ADHD patients from controls (sensitivity: 96%; specificity: 94.2%). Among the 92 ADHD patients completing the 12-month follow-up, miR-140-3p, miR-27a-3p, miR-486-5p, and miR-151-5p showed differential trends of ΔCt values between treatment responders and non-responders. In addition, the in vitro cell model revealed that miR-140-3p and miR-126-5p promoted the differentiation of HCN-2 cells by enhancing the length of neurons and the number of junctions. Microarray and flow cytometry assays confirmed that this promotion was achieved by repressing apoptosis and/or necrosis. The findings of this study suggest that the expression levels of miRNAs have the potential to serve as both diagnostic and therapeutic biomarkers for ADHD. The possible biological mechanisms of these biomarker miRNAs in ADHD pathophysiology were also clarified.
Collapse
Affiliation(s)
- Liang-Jen Wang
- grid.145695.a0000 0004 1798 0922Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- grid.145695.a0000 0004 1798 0922Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan ,grid.413804.aKawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- grid.415011.00000 0004 0572 9992Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ,grid.412019.f0000 0000 9476 5696Department of Psychiatry, College of Medicine, Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yuyu Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pei-Hsien Lin
- grid.145695.a0000 0004 1798 0922Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Center for Mitochondrial Research and Medicine and Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Zhu P, Pan J, Cai QQ, Zhang F, Peng M, Fan XL, Ji H, Dong YW, Wu XZ, Wu LH. MicroRNA profile as potential molecular signature for attention deficit hyperactivity disorder in children. Biomarkers 2022; 27:230-239. [PMID: 34989306 DOI: 10.1080/1354750x.2021.2024600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
AIMS Attention deficit/hyperactivity disorder (ADHD) is a prevalent disorder of neurodevelopment in children. The diagnosis of ADHD mainly relies on the symptoms and some may be misdiagnosed due to age-based variation in behaviours. This study aimed to explore biomarkers that are greatly needed for the accurate diagnosis of ADHD. METHODS 742 samples were retrospectively investigated in 3 independent cohorts, screening, training, and validation, for circulation microRNA measurement using microarray, Taqman polymerase chain reaction and regression analysis. RESULTS A panel of five miRNAs (miR-4516, miR-6090, miR-4763-3p, miR-4281 and miR-4466) were identified as ADHD independent risk factors that provided a high diagnostic accuracy and specificity of ADHD (AUC =0.940 and 0.927 in the training and validation datasets, respectively). This panel of miRNAs differentiated ADHD well from control groups. After clinical improvement by treatment, the panel of miRNAs in patients and AUC changed significantly, and were close to those in healthy controls. Importantly, the targets of the miRNAs identified were commonly enriched in receptor signalling pathways, ion channels and synapse structures. CONCLUSION Our study identified a useful panel of miRNAs that have considerable clinical value in evaluating ADHD and provide important evidence for aberrant epigenetic regulation in ADHD.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Jing Pan
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Qian Qian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Fan Zhang
- BengBu Medical College, Benbu, 233000, Anhui, P.R. China
| | - Min Peng
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200126, P.R. China
| | - Xing Li Fan
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Hua Ji
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| | - Yi Wei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Xing Zhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, NHC Key Laboratory of Glycoconjugates Research (Fudan University), Shanghai, P.R. China
| | - Li Hui Wu
- Department of Clinical Medicine, Hangzhou Medical College, Zhejiang, P.R. China
| |
Collapse
|
11
|
Li X, Liu C, Qi W, Meng Q, Zhao H, Teng Z, Xu R, Wu X, Zhu F, Qin Y, Zhao M, Xu F, Xia M. Endothelial Dec1-PPARγ Axis Impairs Proliferation and Apoptosis Homeostasis Under Hypoxia in Pulmonary Arterial Hypertension. Front Cell Dev Biol 2021; 9:757168. [PMID: 34765605 PMCID: PMC8576361 DOI: 10.3389/fcell.2021.757168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/27/2021] [Indexed: 11/15/2022] Open
Abstract
Background: The hypoxia-induced pro-proliferative and anti-apoptotic characteristics of pulmonary arterial endothelial cells (PAECs) play critical roles in pulmonary vascular remodeling and contribute to hypoxic pulmonary arterial hypertension (PAH) pathogenesis. However, the mechanism underlying this hypoxic disease has not been fully elucidated. Methods: Bioinformatics was adopted to screen out the key hypoxia-related genes in PAH. Gain- and loss-function assays were then performed to test the identified hypoxic pathways in vitro. Human PAECs were cultured under hypoxic (3% O2) or normoxic (21% O2) conditions. Hypoxia-induced changes in apoptosis and proliferation were determined by flow cytometry and Ki-67 immunofluorescence staining, respectively. Survival of the hypoxic cells was estimated by cell counting kit-8 assay. Expression alterations of the target hypoxia-related genes, cell cycle regulators, and apoptosis factors were investigated by Western blot. Results: According to the Gene Expression Omnibus dataset (GSE84538), differentiated embryo chondrocyte expressed gene 1-peroxisome proliferative-activated receptor-γ (Dec1-PPARγ) axis was defined as a key hypoxia-related signaling in PAH. A negative correlation was observed between Dec1 and PPARγ expression in patients with hypoxic PAH. In vitro observations revealed an increased proliferation and a decreased apoptosis in PAECs under hypoxia. Furthermore, hypoxic PAECs exhibited remarkable upregulation of Dec1 and downregulation of PPARγ. Dec1 was confirmed to be crucial for the imbalance of proliferation and apoptosis in hypoxic PAECs. Furthermore, the pro-surviving effect of hypoxic Dec1 was mediated through PPARγ inhibition. Conclusion: For the first time, Dec1-PPARγ axis was identified as a key determinant hypoxia-modifying signaling that is necessary for the imbalance between proliferation and apoptosis of PAECs. These novel endothelial signal transduction events may offer new diagnostic and therapeutic options for patients with hypoxic PAH.
Collapse
Affiliation(s)
- Xiaoming Li
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengcheng Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.,Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenwen Qi
- Department of Otolaryngology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiu Meng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Zhao
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenxiao Teng
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Runtong Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xinhao Wu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fangyuan Zhu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yiming Qin
- College of Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Miaoqing Zhao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenglei Xu
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
12
|
Zhao L, Liu D, Ma W, Gu H, Wei X, Luo W, Yuan Z. Bhlhe40/Sirt1 Axis-Regulated Mitophagy Is Implicated in All- Trans Retinoic Acid-Induced Spina Bifida Aperta. Front Cell Dev Biol 2021; 9:644346. [PMID: 33987177 PMCID: PMC8111003 DOI: 10.3389/fcell.2021.644346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Neural tube defects (NTDs) are the most severe congenital malformations that result from failure of neural tube closure during early embryonic development, and the underlying molecular mechanisms remain elusive. Mitophagy is the best-known way of mitochondrial quality control. However, the role and regulation of mitophagy in NTDs have not yet been elucidated. In this study, we used an all-trans retinoic acid (ATRA)-induced rat model to investigate mitophagy and its underlying mechanism in spina bifida aperta (SBA). The results of western blot, immunofluorescence and RT-qPCR analyses indicated that mitophagy was impaired and Sirt1 was downregulated in SBA. Administration of resveratrol-a strong specific Sirt1 activator-activated Sirt1, thus attenuating autophagy suppression and ameliorating SBA. RNA-sequencing and bioinformatics analysis results indicated that transcriptional regulation played an important role in NTDs. A luciferase reporter assay was performed to demonstrate that the transcription factor Bhlhe40 directly bound to and negatively regulated Sirt1 expression. Further, we discovered that the Bhlhe40/Sirt1 axis regulated mitophagy in neural stem cells. Collectively, our results for the first time demonstrate that Bhlhe40/Sirt1 axis regulated mitophagy is implicated in ATRA-induced SBA. Our findings provide new insights into pathogenesis of NTDs and a basis for potential therapeutic targets for NTDs.
Collapse
Affiliation(s)
- Lu Zhao
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Juvale IIA, Che Has AT. The Potential Role of miRNAs as Predictive Biomarkers in Neurodevelopmental Disorders. J Mol Neurosci 2021; 71:1338-1355. [PMID: 33774758 DOI: 10.1007/s12031-021-01825-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Neurodevelopmental disorders are defined as a set of abnormal brain developmental conditions marked by the early childhood onset of cognitive, behavioral, and functional deficits leading to memory and learning problems, emotional instability, and impulsivity. Autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, fragile X syndrome, and Down's syndrome are a few known examples of neurodevelopmental disorders. Although they are relatively common in both developed and developing countries, very little is currently known about their underlying molecular mechanisms. Both genetic and environmental factors are known to increase the risk of neurodevelopmental disorders. Current diagnostic and screening tests for neurodevelopmental disorders are not reliable; hence, individuals with neurodevelopmental disorders are often diagnosed in the later stages. This negatively affects their prognosis and quality of life, prompting the need for a better diagnostic biomarker. Recent studies on microRNAs and their altered regulation in diseases have shed some light on the possible role they could play in the development of the central nervous system. This review attempts to elucidate our current understanding of the role that microRNAs play in neurodevelopmental disorders with the hope of utilizing them as potential biomarkers in the future.
Collapse
Affiliation(s)
- Iman Imtiyaz Ahmed Juvale
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
14
|
Mehta T, Mannem N, Yarasi NK, Bollu PC. Biomarkers for ADHD: the Present and Future Directions. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2020. [DOI: 10.1007/s40474-020-00196-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Combined neurodevelopmental exposure to deltamethrin and corticosterone is associated with Nr3c1 hypermethylation in the midbrain of male mice. Neurotoxicol Teratol 2020; 80:106887. [PMID: 32348866 DOI: 10.1016/j.ntt.2020.106887] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/10/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is one of the most common neurodevelopmental disorders and manifests inattention, hyperactivity, and impulsivity symptoms in childhood that can last throughout life. Genetic and environmental studies implicate the dopamine system in ADHD pathogenesis. Work from our group and that of others indicates that deltamethrin insecticide and stress exposure during neurodevelopment leads to alterations in dopamine function, and we hypothesized that exposure to both of these factors together would lead to synergistic effects on DNA methylation of key genes within the midbrain, a highly dopaminergic region, that could contribute to these findings. Through targeted next-generation sequencing of a panel of cortisol and dopamine pathway genes, we observed hypermethylation of the glucocorticoid receptor gene, Nr3c1, in the midbrain of C57/BL6N males in response to dual deltamethrin and corticosterone exposures during development. This is the first description of DNA methylation studies of Nr3c1 and key dopaminergic genes within the midbrain in response to a pyrethroid insecticide, corticosterone, and these two exposures together. Our results provide possible connections between environmental exposures that impact the dopamine system and the hypothalamic-pituitary-adrenal axis via changes in DNA methylation and provides new information about the presence of epigenetic effects in adulthood after exposure during neurodevelopment.
Collapse
|
16
|
Xu Q, Ou J, Zhang Q, Tang R, Wang J, Hong Q, Guo X, Tong M, Yang L, Chi X. Effects of Aberrant miR-384-5p Expression on Learning and Memory in a Rat Model of Attention Deficit Hyperactivity Disorder. Front Neurol 2020; 10:1414. [PMID: 32116987 PMCID: PMC7026368 DOI: 10.3389/fneur.2019.01414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neuropsychiatric disorder characterized by inattention, hyperactivity, and impulsivity. It may be accompanied by learning difficulties and working memory deficits. Few studies have examined the role of miRNAs in cognitive dysfunction in ADHD. This study investigated the effects of aberrant miR-384-5p expression on learning and memory in a widely used ADHD rat model. Lentiviral vectors were injected into the lateral ventricles of the rats to increase or decrease miR-384-5p level. To determine whether aberrant miR-384-5p expression affects learning and memory, spontaneous activity and cognitive function were assessed with the open field and Morris water maze tests. In the place navigation experiment of the Morris water maze test, time, and total swimming distance to reach the platform decreased compared to the control group when miR-384-5p was overexpressed, whereas down-regulation of miR-384-5p had the opposite effect. There were no obvious changes in brain tissue morphology following miR-384-5p overexpression or inhibition; however, dopamine (DA) receptor D1 (DRD1) level has decreased and increased, respectively, in the prefrontal cortex (PFC). The luciferase activity of the wild-type DRD1 group has decreased in luciferase reporter assay. Cyclic AMP response element-binding protein (CREB) phosphorylation has increased, and DA transporter (DAT) level has decreased in the PFC of spontaneously hypertensive rats (SHR) by miR-384-5p overexpression. On the other hand, miR-384-5p suppression increased DRD1 and decreased DAT and CREB protein levels relative to control rats. These findings suggest that miR-384-5p may play a critical role in learning and memory impairment in ADHD.
Collapse
Affiliation(s)
- Qu Xu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jiaxin Ou
- Department of Pediatrics, First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-sen University, Foshan, China
| | - Qingyu Zhang
- Jiangsu Key Laboratory of Pediatrics, Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ranran Tang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jing Wang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Qin Hong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xirong Guo
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiling Tong
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lei Yang
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xia Chi
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
- Jiangsu Key Laboratory of Pediatrics, Institute of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Zhang F, Zhu P, Wu LH. [Association of microRNA expression before and after drug therapy with clinical symptoms in children with attention deficit hyperactivity disorder]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:152-157. [PMID: 32051083 PMCID: PMC7390017 DOI: 10.7499/j.issn.1008-8830.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the association of microRNA expression before and after drug therapy with clinical symptoms in children with attention deficit hyperactivity disorder (ADHD). METHODS A total of 80 previously untreated children with ADHD who were diagnosed from May 2017 to October 2018 were enrolled. The children who were willing to receive drug therapy were randomly divided into concerta-treated group with 31 children and strattera-treated group with 33 children. The children who were unwilling to receive treatment were enrolled as the untreated group with 16 children. A total of 60 children who underwent physical examination during the same period of time were enrolled as the healthy control group. SNAP-V score was determined at initial diagnosis and 3 and 6 months of follow-up. Serum samples were collected from the children with ADHD and the healthy control group. Quantitative real-time PCR was used to measure the relative expression of miR-4566-3p and miR-7641. RESULTS The repeated measures analysis of variance showed that the SNAP-V score of attention deficit symptoms were different among the two treatment groups and the untreated group at the first visit and 3 months and 6 months after treatment (P<0.05). There were significant differences in the relative expression of the two miRNAs among the two treatment groups and the healthy control group at the first visit and 3 months and 6 months after treatment (P<0.05). The SNAP-V score of attention deficit symptoms and the relative expression of the two miRNAs were different in different time points in the subjects (P<0.05). There were interactions between grouping and time factors in the SNAP-V score of attention deficit symptoms and the relative expression of the two miRNAs (P<0.05). The SNAP-V score of hyperactive impulsive symptoms was different in different time points in the two treatment groups and the untreated group (P<0.05), but the significant difference in the score was not observed between two treatment groups and the untreated group (P>0.05), and there was no interaction between the time factor and the grouping factor (P>0.05). The SNAP-V score of attention deficit symptoms was negatively correlated with the relative expression of miRNA-4655-3p and miRNA-7641 (r=-0.314, -0.495 respectively; P<0.05) in ADHD children after drug treatment. CONCLUSIONS Drug therapy can significantly improve the clinical symptoms of children with ADHD. The expression of miR-4655-3p and miR-7641 in serum can be used as biomarkers for the diagnosis and outcome evaluation of ADHD.
Collapse
Affiliation(s)
- Fan Zhang
- Graduate School of Bengbu Medical College, Bengbu, Anhui 233000, China.
| | | | | |
Collapse
|
18
|
Huang X, Zhang Q, Chen X, Gu X, Wang M, Wu J. A functional variant in SLC1A3 influences ADHD risk by disrupting a hsa-miR-3171 binding site: A two-stage association study. GENES BRAIN AND BEHAVIOR 2019; 18:e12574. [PMID: 30953407 DOI: 10.1111/gbb.12574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/06/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
Attention-deficit hyperactivity disorder (ADHD) is one of the most common neuropsychiatric disorders in children and adolescents with high heritability. Evidence is accumulating that SLC1A3 may play a role in ADHD etiology. Therefore, a two-stage case-control study was conducted on 752 cases and 774 controls to explore the role of SLC1A3 in ADHD. Bioinformatic annotations and functional experiments were applied to reveal the potential biological mechanisms. Finally, SLC1A3 rs1049522 showed significant association with ADHD risk in two stages with CA genotype vs AA genotype, odds ratio (OR) = 0.694 (95% confidence interval, CI = 0.570-0.844) and dominant model, OR = 0.749 (95% CI = 0.621-0.904) in the combined stage. Besides, rs1049522 was found to be related to ADHD hyperactive/impulsive symptom, and rs1049522-C showed increased SLC1A3 mRNA expression in the cerebellar cortex. Dual-luciferase reporter assay further indicated that rs1049522-C allele enhanced SLC1A3 expression by disrupting the hsa-miR-3171 binding site. In conclusion, SLC1A3 variant rs1049522 was implicated in ADHD susceptibility in a Chinese Han population probably by enhancing the SLC1A3 expression in a miRNA-mediated manner.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xue Gu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
19
|
Chen X, Wang M, Zhang Q, Hou Y, Huang X, Li S, Wu J. Stress response genes associated with attention deficit hyperactivity disorder: A case-control study in Chinese children. Behav Brain Res 2019; 363:126-134. [PMID: 30707907 DOI: 10.1016/j.bbr.2019.01.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/26/2019] [Accepted: 01/26/2019] [Indexed: 01/12/2023]
Abstract
To explore the associations between stress response genes and attention deficit hyperactivity disorder (ADHD) in children, we conducted a case-control study consisting of 406 newly diagnosed ADHD cases and 432 controls in Wuhan, China. We genotyped the candidate genes, nuclear receptor subfamily 3 group C member 1(NR3C1) and solute carrier family 6 member 4(SLC6A4), using the Sequenom MassARRAY technology. After correction by Bonferroni (α' = 0.05/6 = 0.008), the rs6191 SNP was found to be associated with a reduced risk of ADHD in the dominant model (OR = 0.564, 95% CI = 0.389-0.819, P = 0.003) while the rs25531 SNP was associated with an increased risk of ADHD in the multiplicative model (OR = 1.380, 95% CI = 1.111-1.714, P = 0.004). Additionally, both the rs6191 and rs25531 SNPs were significantly associated with the attention deficit factor (P = 0.006, P = 0.003, respectively) but not with the hyperactivity/impulsivity factor in the Swanson, Nolan and Pelham-IV Questionnaire (SNAP-IV) scale. Furthermore, we found that these two SNPs were significantly associated with pure ADHD, and not affected by the comorbidities (P = 0.001, P = 0.007, respectively). Besides, there was an interaction between these two SNPs. This study demonstrated the role of NR3C1 and SLC6A4 polymorphisms in ADHD, yet independent replication of the findings of this study in multi-center and multi-stage studies with large samples is warranted in the future.
Collapse
Affiliation(s)
- Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Hou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanyawen Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Wang LJ, Li SC, Lee MJ, Chou MC, Chou WJ, Lee SY, Hsu CW, Huang LH, Kuo HC. Blood-Bourne MicroRNA Biomarker Evaluation in Attention-Deficit/Hyperactivity Disorder of Han Chinese Individuals: An Exploratory Study. Front Psychiatry 2018; 9:227. [PMID: 29896131 PMCID: PMC5987559 DOI: 10.3389/fpsyt.2018.00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/08/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) is a highly genetic neurodevelopmental disorder, and its dysregulation of gene expression involves microRNAs (miRNAs). The purpose of this study was to identify potential miRNAs biomarkers and then use these biomarkers to establish a diagnostic panel for ADHD. Design and methods: RNA samples from white blood cells (WBCs) of five ADHD patients and five healthy controls were combined to create one pooled patient library and one control library. We identified 20 candidate miRNAs with the next-generation sequencing (NGS) technique (Illumina). Blood samples were then collected from a Training Set (68 patients and 54 controls) and a Testing Set (20 patients and 20 controls) to identify the expression profiles of these miRNAs with real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). We used receiver operating characteristic (ROC) curves and the area under the curve (AUC) to evaluate both the specificity and sensitivity of the probability score yielded by the support vector machine (SVM) model. Results: We identified 13 miRNAs as potential ADHD biomarkers. The ΔCt values of these miRNAs in the Training Set were integrated to create a biomarker model using the SVM algorithm, which demonstrated good validity in differentiating ADHD patients from control subjects (sensitivity: 86.8%, specificity: 88.9%, AUC: 0.94, p < 0.001). The results of the blind testing showed that 85% of the subjects in the Testing Set were correctly classified using the SVM model alignment (AUC: 0.91, p < 0.001). The discriminative validity is not influenced by patients' age or gender, indicating both the robustness and the reliability of the SVM classification model. Conclusion: As measured in peripheral blood, miRNA-based biomarkers can aid in the differentiation of ADHD in clinical settings. Additional studies are needed in the future to clarify the ADHD-associated gene functions and biological mechanisms modulated by miRNAs.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Min-Jing Lee
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Miao-Chun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Jiun Chou
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Lien-Hung Huang
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Srivastav S, Walitza S, Grünblatt E. Emerging role of miRNA in attention deficit hyperactivity disorder: a systematic review. ACTA ACUST UNITED AC 2017; 10:49-63. [DOI: 10.1007/s12402-017-0232-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/29/2017] [Indexed: 12/11/2022]
|