1
|
Vygonskaya M, Wu Y, Price TJ, Chen Z, Smith MT, Klyne DM, Han FY. The role and treatment potential of the complement pathway in chronic pain. THE JOURNAL OF PAIN 2025; 27:104689. [PMID: 39362355 DOI: 10.1016/j.jpain.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarizes the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.
Collapse
Affiliation(s)
- Marina Vygonskaya
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Zhuo Chen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Felicity Y Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
2
|
Liu H, Jiang M, Chen Z, Li C, Yin X, Zhang X, Wu M. The Role of the Complement System in Synaptic Pruning after Stroke. Aging Dis 2024:AD.2024.0373. [PMID: 39012667 DOI: 10.14336/ad.2024.0373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/25/2024] [Indexed: 07/17/2024] Open
Abstract
Stroke is a serious disease that can lead to local neurological dysfunction and cause great harm to the patient's health due to blood cerebral circulation disorder. Synaptic pruning is critical for the normal development of the human brain, which makes the synaptic circuit completer and more efficient by removing redundant synapses. The complement system is considered a key player in synaptic loss and cognitive impairment in neurodegenerative disease. After stroke, the complement system is over-activated, and complement proteins can be labeled on synapses. Microglia and astrocytes can recognize and engulf synapses through corresponding complement receptors. Complement-mediated excessive synaptic pruning can cause post-stroke cognitive impairment (PSCI) and secondary brain damage. This review summarizes the latest progress of complement-mediated synaptic pruning after stroke and the potential mechanisms. Targeting complement-mediated synaptic pruning may be essential for exploring therapeutic strategies for secondary brain injury (SBI) and neurological dysfunction after stroke.
Collapse
Affiliation(s)
- Hongying Liu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Zhiying Chen
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Chuan Li
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang 332000, China
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| |
Collapse
|
3
|
Wang P, Shen Y, Manaenko A, Liu F, Yang W, Xiao Z, Li P, Ran Y, Dang R, He Y, Wu Q, Xie P, Li Q. TMT-based quantitative proteomics reveals the protective mechanism of tenuigenin after experimental intracerebral hemorrhage in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117213. [PMID: 37739103 DOI: 10.1016/j.jep.2023.117213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenuigenin (TNG) is an extract obtained from Polygalae Radix. It possesses anti-inflammatory, antioxidant, and neuroprotective properties. However, the potential mechanism of TNG in intracerebral hemorrhage (ICH) has not been well studied. AIM OF THE STUDY In the present study, we aimed to identify the prospective mechanism of TNG in treating ICH. MATERIALS AND METHODS A total of 120 mice were divided into five groups: Sham group, ICH + vehicle group, ICH + TNG(8 mg/kg), ICH + TNG(16 mg/kg), and ICH + TNG(32 mg/kg). The modified Garcia test and beam walking test were carried out at 24 h and 72 h after ICH. Brain water content, haematoma volume and hemoglobin content examinations were performed at 72 h after ICH. TMT-based quantitative proteomics combined with bioinformatics analysis methods was used to distinguish differentially expressed proteins (DEPs) to explore potential pharmacological mechanisms. Western blotting was performed to validate representative proteins. RESULTS Our results showed that the optimal dose of TNG was 16 mg/kg, which could markedly improve neurological functions, and reduce cerebral oedema, haematoma volume and hemoglobin levels 72 h after ICH. A total of 404 DEPs (353 up-and 51 downregulated) were identified in the ICH + vehicle vs. sham group, while 342 DEPs (306 up-and 36 downregulated) and 76 DEPs (28 up-and 48 downregulated) were quantified in the TNG vs. sham group and TNG vs. ICH + vehicle group, respectively. In addition, a total of 26 DEPs were selected according to strict criteria. Complement and coagulation cascades were the most significantly enriched pathways, and two proteins (MBL-C and Car1) were further validated as hub molecules. CONCLUSIONS Our results suggested that the therapeutic effects of TNG on ICH were closely associated with the complement system, and that MBL-C and Car1 might be potential targets of TNG for the treatment of ICH.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - YiQing Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - FangYu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - WenSong Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - ZhongSong Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - PeiZheng Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - YuXin Ran
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - RuoZhi Dang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yong He
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - QingYuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Li Y, Tao C, An N, Liu H, Liu Z, Zhang H, Sun Y, Xing Y, Gao Y. Revisiting the role of the complement system in intracerebral hemorrhage and therapeutic prospects. Int Immunopharmacol 2023; 123:110744. [PMID: 37552908 DOI: 10.1016/j.intimp.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype characterized by non-traumatic rupture of blood vessels in the brain, resulting in blood pooling in the brain parenchyma. Despite its lower incidence than ischemic stroke, ICH remains a significant contributor to stroke-related mortality, and most survivors experience poor outcomes that significantly impact their quality of life. ICH has been accompanied by various complex pathological damage, including mechanical damage of brain tissue, hematoma mass effect, and then leads to inflammatory response, thrombin activation, erythrocyte lysis, excitatory amino acid toxicity, complement activation, and other pathological changes. Accumulating evidence has demonstrated that activation of complement cascade occurs in the early stage of brain injury, and the excessive complement activation after ICH will affect the occurrence of secondary brain injury (SBI) through multiple complex pathological processes, aggravating brain edema, and pathological brain injury. Therefore, the review summarized the pathological mechanisms of brain injury after ICH, specifically the complement role in ICH, and its related pathological mechanisms, to comprehensively understand the specific mechanism of different complements at different stages after ICH. Furthermore, we systematically reviewed the current state of complement-targeted therapies for ICH, providing a reference and basis for future clinical transformation of complement-targeted therapy for ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongrui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
5
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
6
|
Huang L, Zhan D, Xing Y, Yan Y, Li Q, Zhang J, Li S, Ning Q, Zhang C, Luo X. FGL2 deficiency alleviates maternal inflammation-induced blood-brain barrier damage by blocking PI3K/NF-κB mediated endothelial oxidative stress. Front Immunol 2023; 14:1157027. [PMID: 37051251 PMCID: PMC10083319 DOI: 10.3389/fimmu.2023.1157027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/16/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionThe impairment of blood-brain barrier (BBB) is one of the key contributors to maternal inflammation induced brain damage in offspring. Our previous studies showed Fibrinogen-like protein 2 (FGL2) deficiency alleviated maternal inflammation induced perinatal brain damage. However, its role in BBB remains undefined.MethodsLipopolysaccharide (LPS) was intraperitoneally injected to dams at Embryonic day 17 to establish maternal inflammation model. FGL2 knockout mice and primary brain microvascular endothelial cells (BMECs) were used for the in-vivo and in-vitro experiments. BBB integrity was assessed by sodium fluorescein extravasation and tight junction (TJ) protein expression. Oxidative stress and the activation of PI3K/NF-κB pathway were evaluated to explore the mechanisms underlying.ResultsUpon maternal inflammation, BBB integrity was remarkedly reduced in neonatal mice. Meanwhile, FGL2 expression was consistently increased in BBB-impaired brain as well as in LPS-treated BMECs. Moreover, FGL2 deficiency attenuated the hyperpermeability of BBB, prevented the decline of TJ proteins, and reduced the cytokine expressions in LPS-exposed pups. Mechanistically, the indicators of oxidative stress, as well as the activation of PI3K/NF-κB pathway, were upregulated after LPS exposure in vivo and in vitro. FGL2 deletion decreased the generation of ROS and NO, reduced the endothelial iNOS and NOX2 expressions, and suppressed the PI3K/NF-κB pathway activation. Besides, inhibition of PI3K by LY294002 decreased the oxidative stress in LPS-treated wild-type BMECs. While, overexpression of PI3K by lentivirus reemerged the induction of NOX2 and iNOS as well as NF-κB activation in FGL2-deleted BMECs.ConclusionOur findings indicate that FGL2 deficiency alleviates the maternal inflammation-induced BBB disruption by inhibiting PI3K/NF-κB mediated oxidative stress in BMECs. Targeting FGL2 may provide a new therapy for prenatal brain damage of offspring.
Collapse
Affiliation(s)
- Lianjing Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Di Zhan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Xing
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqin Yan
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingyi Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sujuan Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qin Ning
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cai Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaoping Luo, ; Cai Zhang,
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Xiaoping Luo, ; Cai Zhang,
| |
Collapse
|
7
|
Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023; 176:105948. [PMID: 36481437 PMCID: PMC10013956 DOI: 10.1016/j.nbd.2022.105948] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for about 10% of all strokes in the United States of America causing a high degree of disability and mortality. There is initial (primary) brain injury due to the mechanical disruption caused by the hematoma. There is then secondary injury, triggered by the initial injury but also the release of various clot-derived factors (e.g., thrombin and hemoglobin). ICH alters brain fluid homeostasis. Apart from the initial hematoma mass, ICH causes blood-brain barrier disruption and parenchymal cell swelling, which result in brain edema and intracranial hypertension affecting patient prognosis. Reducing brain edema is a critical part of post-ICH care. However, there are limited effective treatment methods for reducing perihematomal cerebral edema and intracranial pressure in ICH. This review discusses the mechanisms underlying perihematomal brain edema formation, the effects of sex and age, as well as how edema is resolved. It examines progress in pharmacotherapy, particularly focusing on drugs which have been or are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Wu M, Chen K, Jiang M, Xie F, Cao X, Chen L, Chen Z, Yin X. High plasma complement C4 levels as a novel predictor of clinical outcome in intracerebral hemorrhage. Front Aging Neurosci 2023; 15:1103278. [PMID: 36891553 PMCID: PMC9986541 DOI: 10.3389/fnagi.2023.1103278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/20/2023] [Indexed: 02/22/2023] Open
Abstract
Objective The complement cascade is activated and contributes to the brain injury after intracerebral hemorrhage (ICH). Complement component 4 (C4), an important component of complement cascade, has been associated with severity of neurological impairment that occurs during ICH. However, the correlation of plasma complement C4 levels with hemorrhagic severity and clinical outcome in ICH patients has not been reported. Materials and methods This study is a monocentric, real-world, cohort study. In this study, we measured the plasma complement C4 levels of 83 ICH patients and 78 healthy controls. The hematoma volume, the National Institutes of Health Stroke Scale (NIHSS) score, the Glasgow Coma Scale (GCS) score, and the permeability surface (PS) were used to assess and quantify neurological deficit following ICH. Logistic regression analysis was configured to determine the independent relation of plasma complement C4 levels to hemorrhagic severity and clinical outcomes. The contribution of complement C4 to secondary brain injury (SBI) was assessed by changes in plasma C4 levels between admission and at day 7 after ICH. Results There was a significant elevation of plasma complement C4 levels in ICH patients than in healthy controls (40.48 ± 1.07 vs. 35.25 ± 0.60, p < 0.0001), and the plasma complement C4 levels were closely related to the hemorrhagic severity. Moreover, plasma complement C4 levels of patients were positively correlated with the hematoma volume (r = 0.501, p < 0.001), NIHSS score (r = 0.362, p < 0.001), the GCS score (r = -0.490, p < 0.001), and PS (r = 0.683, p = 0.045) following ICH. Logistic regression analysis also confirmed that patients with high plasma complement C4 levels show a poor clinical outcome after ICH (p < 0.001). Meanwhile, the elevated plasma levels at day 7 after ICH indicated the correlation of complement C4 with SBI (p < 0.01). Conclusion Plasma complement C4 levels are significantly elevated in ICH patients and positively correlated with the illness severity. Thus, these findings highlight the importance of complement C4 in brain injury after ICH and provide a novel predictor of clinical outcome for this disease.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China.,Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Kai Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China
| | - Fusheng Xie
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xianming Cao
- Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Liang Chen
- Department of Radiology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, China
| |
Collapse
|
9
|
Trivedi VS, Magnusen AF, Rani R, Marsili L, Slavotinek AM, Prows DR, Hopkin RJ, McKay MA, Pandey MK. Targeting the Complement-Sphingolipid System in COVID-19 and Gaucher Diseases: Evidence for a New Treatment Strategy. Int J Mol Sci 2022; 23:14340. [PMID: 36430817 PMCID: PMC9695449 DOI: 10.3390/ijms232214340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2)-induced disease (COVID-19) and Gaucher disease (GD) exhibit upregulation of complement 5a (C5a) and its C5aR1 receptor, and excess synthesis of glycosphingolipids that lead to increased infiltration and activation of innate and adaptive immune cells, resulting in massive generation of pro-inflammatory cytokines, chemokines and growth factors. This C5a-C5aR1-glycosphingolipid pathway- induced pro-inflammatory environment causes the tissue damage in COVID-19 and GD. Strikingly, pharmaceutically targeting the C5a-C5aR1 axis or the glycosphingolipid synthesis pathway led to a reduction in glycosphingolipid synthesis and innate and adaptive immune inflammation, and protection from the tissue destruction in both COVID-19 and GD. These results reveal a common involvement of the complement and glycosphingolipid systems driving immune inflammation and tissue damage in COVID-19 and GD, respectively. It is therefore expected that combined targeting of the complement and sphingolipid pathways could ameliorate the tissue destruction, organ failure, and death in patients at high-risk of developing severe cases of COVID-19.
Collapse
Affiliation(s)
- Vyoma Snehal Trivedi
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Albert Frank Magnusen
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Reena Rani
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Luca Marsili
- Department of Neurology, James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati, 3113 Bellevue Ave, Cincinnati, OH 45219, USA
| | - Anne Michele Slavotinek
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Daniel Ray Prows
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Robert James Hopkin
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Mary Ashley McKay
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Building R1, MLC 7016, Cincinnati, OH 45229, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, 3230 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
10
|
Li Z, Khan S, Liu Y, Wei R, Yong VW, Xue M. Therapeutic strategies for intracerebral hemorrhage. Front Neurol 2022; 13:1032343. [PMID: 36408517 PMCID: PMC9672341 DOI: 10.3389/fneur.2022.1032343] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/17/2022] [Indexed: 09/03/2023] Open
Abstract
Stroke is the second highest cause of death globally, with an increasing incidence in developing countries. Intracerebral hemorrhage (ICH) accounts for 10-15% of all strokes. ICH is associated with poor neurological outcomes and high mortality due to the combination of primary and secondary injury. Fortunately, experimental therapies are available that may improve functional outcomes in patients with ICH. These therapies targeting secondary brain injury have attracted substantial attention in their translational potential. Here, we summarize recent advances in therapeutic strategies and directions for ICH and discuss the barriers and issues that need to be overcome to improve ICH prognosis.
Collapse
Affiliation(s)
- Zhe Li
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| | - V. Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, China
| |
Collapse
|
11
|
Yao X, Song Y, Wang Z, Bai S, Yu H, Wang Y, Guan Y. Proteinase-activated receptor-1 antagonist attenuates brain injury via regulation of FGL2 and TLR4 after intracerebral hemorrhage in mice. Neuroscience 2022; 490:193-205. [PMID: 35182700 DOI: 10.1016/j.neuroscience.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022]
Abstract
Proteinase-activated receptor-1 (PAR1) antagonist plays a protective effect in brain injury. We investigated the potential function and mechanisms of PAR1 antagonist in ICH-induced brain injury. Results showed that PAR1 antagonist protected against neurobehavior deficits, brain edema and BBB integrity in ICH mice via activating JNK/ERK/p38 MAPK signaling pathway at 24h after ICH. In addition, ICH resulted in the increase of FGL2 and TLR4 expression over time, and phosphorylated JNK, ERK and p38 MAPK expression. Suppression of FGL2 and TLR4 alleviated brain injury and decreased the expression of p-JNK, p-ERK, p-p38 MAPK and p-IKKα at 24 h after ICH; while overexpression of them showed the opposite result. Moreover, the protective effect of PAR1 antagonist on ICH-induced brain injury was blocked by FGL2 or TLR4 overexpression, and the levels of p-JNK, p-ERK and p-p38 MAPK were inhibited. Furthermore, PAR1 antagonist combined with TLR4 antagonist markedly alleviated brain injury after ICH at 72h. Overall, PAR1 antagonist protected against short-term brain injury, and the effect of PAR1 antagonist on ICH-induced brain injury was mediated by FGL2 or TLR4.
Collapse
Affiliation(s)
- Xiaoying Yao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaying Song
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ze Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuwei Bai
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haojun Yu
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yishu Wang
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
12
|
Shi Y, Jin Y, Li X, Chen C, Zhang Z, Liu X, Deng Y, Fan X, Wang C. C5aR1 Mediates the Progression of Inflammatory Responses in the Brain of Rats in the Early Stage after Ischemia and Reperfusion. ACS Chem Neurosci 2021; 12:3994-4006. [PMID: 34637270 DOI: 10.1021/acschemneuro.1c00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C5a receptor 1 (C5aR1) can induce a strong inflammatory response to an injury. Targeting C5aR1 has emerged as a novel anti-inflammatory therapeutic method. However, the role of C5aR1 in cerebral ischemia and reperfusion (I/R) injury and the definitive mechanism have not been elucidated clearly. Here, we determined whether C5aR1 signaling was essential to the post-ischemic inflammation and brain injury and whether it is a valid target for therapeutic blockade by using soluble receptor antagonist PMX53 in the early stage after I/R injury. In an in vitro model (oxygen and glucose deprivation and reperfusion, OGD/R) and in vivo model (middle cerebral artery occlusion and reperfusion, MCAO/R) of I/R, the neuronal cells of rats showed significantly up-regulated gene expression of C5aR1, and a notable inflammatory response was demonstrated with elevated tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6. Inhibition of C5aR1 by PMX53 treatment significantly reduced cell injury and inflammation and promoted brain function recovery. Further mechanism studies showed that inhibiting C5aR1 by PMX53 protected the rats from MCAO/R injury, decreased cell inflammation, and apoptosis via inhibiting the TLR4 and NF-κB signaling pathway and reducing the production of TNF-α, IL-1β, and IL-6 in MCAO/R rats. In addition, manipulation of the C5aR1 gene expression in vitro displayed that the inflammatory cascade signals including TLR4, TNF-α, IL-1β, and IL-6 were coincidently regulated with the regulation of C5aR1 expression levels. Thus, our results demonstrated a pathogenic role for C5aR1 in the progression of brain injury and inflammation response following I/R injury. Our study clearly demonstrated that C5aR1 inhibition might be an effective treatment strategy for ischemic stroke.
Collapse
Affiliation(s)
- Yunwei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Ying Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xing Li
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Chen Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Zhihong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| | - Yijun Deng
- Department of ICU, No. 1 People’s Hospital of Yancheng City, The Fourth Affiliated Hospital of Nantong University, Yancheng 224000, Jiangsu, China
| | - Xingjuan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Caiping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
13
|
Bi R, Fang Z, You M, He Q, Hu B. Microglia Phenotype and Intracerebral Hemorrhage: A Balance of Yin and Yang. Front Cell Neurosci 2021; 15:765205. [PMID: 34720885 PMCID: PMC8549831 DOI: 10.3389/fncel.2021.765205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) features extremely high rates of morbidity and mortality, with no specific and effective therapy. And local inflammation caused by the over-activated immune cells seriously damages the recovery of neurological function after ICH. Fortunately, immune intervention to microglia has provided new methods and ideas for ICH treatment. Microglia, as the resident immune cells in the brain, play vital roles in both tissue damage and repair processes after ICH. The perihematomal activated microglia not only arouse acute inflammatory responses, oxidative stress, excitotoxicity, and cytotoxicity to cause neuron death, but also show another phenotype that inhibit inflammation, clear hematoma and promote tissue regeneration. The proportion of microglia phenotypes determines the progression of brain tissue damage or repair after ICH. Therefore, microglia may be a promising and imperative therapeutic target for ICH. In this review, we discuss the dual functions of microglia in the brain after an ICH from immunological perspective, elaborate on the activation mechanism of perihematomal microglia, and summarize related therapeutic drugs researches.
Collapse
Affiliation(s)
- Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingfeng You
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quanwei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Jiang Y, Chen Y, Sun H, Zhang X, He L, Li J, Zhao G, Sun S. MERS-CoV infection causes brain damage in human DPP4-transgenic mice through complement-mediated inflammation. J Gen Virol 2021; 102. [PMID: 34704923 PMCID: PMC8604193 DOI: 10.1099/jgv.0.001667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The highly pathogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a severe respiratory virus. Recent reports indicate additional central nervous system (CNS) involvement. In this study, human DPP4 transgenic mice were infected with MERS-CoV, and viral antigens were first detected in the midbrain-hindbrain 4 days post-infection, suggesting the virus may enter the brainstem via peripheral nerves. Neurons and astrocytes throughout the brain were infected, followed by damage of the blood brain barrier (BBB), as well as microglial activation and inflammatory cell infiltration, which may be caused by complement activation based on the observation of deposition of complement activation product C3 and high expression of C3a receptor (C3aR) and C5a receptor (C5aR1) in neurons and glial cells. It may be concluded that these effects were mediated by complement activation in the brain, because of their reduction resulted from the treatment with mouse C5aR1-specific mAb. Such mAb significantly reduced nucleoprotein expression, suppressed microglial activation and decreased activation of caspase-3 in neurons and p38 phosphorylation in the brain. Collectively, these results suggest that MERS-CoV infection of CNS triggers complement activation, leading to inflammation-mediated damage of brain tissue, and regulating of complement activation could be a promising intervention and adjunctive treatment for CNS injury by MERS-CoV and other coronaviruses.
Collapse
Affiliation(s)
- Yuting Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Hong Sun
- Department of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, PR China
| | - Xiaolu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Lei He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jiangfan Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| |
Collapse
|
15
|
Wang F, Huang L, Yu J, Zang D, Ye L, Zhu Q. Altered levels of complement components associated with non-immediate drug hypersensitivity reactions. J Immunotoxicol 2021; 17:1-9. [PMID: 31795786 DOI: 10.1080/1547691x.2019.1695985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nonimmediate drug hypersensitivity reactions (niDHRs) range from mild-type maculopapular exanthema (MPE) to severe type Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) with unentirely clarified pathogenesis. This study sought to explore whether complement components participated in niDHRs. The participants comprised of three groups as follows: MPE (n = 65), SJS/TEN (n = 13, contains 7 SJS, 2 SJS-TEN overlap and 4 TEN), and equal healthy controls (n = 78). Skin pathological changes were confirmed by hematoxylin and eosin staining. The mRNA and protein levels of complement components were assessed. In the MPE group, there were no alterations in complement components at the protein and mRNA levels found except for a decrease in factor H mRNA. In the SJS/TEN group, up-regulated levels of C3aR and C5aR mRNA and down-regulated factor H mRNA levels in blood were noted. A lower plasma protein level of C3, Factor H and a higher level of C3a, C5, C5a, C5b-9, Factor B (p < 0.05) were found in the SJS/TEN group compared with in the control (p < 0.05). In SJS/TEN skin lesions, indirect immunofluorescence assays showed positive specific staining for C5b-9, but not C3. Both C3aR and C5aR were positive staining in the SJS/TEN samples, while staining for C1q, mannose-binding lectin (MBL), Factor B, and Factor H were only weak or negative. The findings reported here are the first to define the expression profiles/extent of the presence of various complement components at the mRNA and protein levels in niDHRs, especially in SJS/TEN. These altered complement components might, at least in part, be integral to the mechanisms underlying the pathogeneses of SJS and TEN.
Collapse
Affiliation(s)
- Feng Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Hefei, China
| | - Liping Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Junfeng Yu
- Department of Dermatology, Fifth Affiliated Hospital of Chengdu City, Chengdu, China
| | - Dandan Zang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Liangping Ye
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Hefei, China
| |
Collapse
|
16
|
The role of complement in brain injury following intracerebral hemorrhage: A review. Exp Neurol 2021; 340:113654. [PMID: 33617886 DOI: 10.1016/j.expneurol.2021.113654] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a significant cause of death and disability and current treatment is limited to supportive measures to reduce brain edema and secondary hematoma expansion. Current evidence suggests that the complement cascade is activated early after hemorrhage and contributes to brain edema/injury in multiple ways. The aim of this review is to summarize the most recent literature about the role of the complement cascade after ICH. Primary literature demonstrating complement mediated brain edema and neurologic injury through the membrane attack complex (MAC) as well as C3a and C5a are reviewed. Further, attenuation of brain edema and improved functional outcomes are demonstrated after inhibition of specific components of the complement cascade. Conversely, complement also plays a significant role in neurologic recovery after ICH and in other neurologic disorders. We conclude that the role of complement after ICH is complex. Understanding the role of complement after ICH is essential and may elucidate possible interventions to reduce brain edema and injury.
Collapse
|
17
|
Zhan D, Zhang C, Long W, Wei L, Jin S, Du C, Li Z, Guo S, Huang L, Ning Q, Luo X. Intrauterine inflammation induced white matter injury protection by fibrinogen-like protein 2 deficiency in perinatal mice. Pediatr Res 2021; 89:1706-1714. [PMID: 33075801 PMCID: PMC8249236 DOI: 10.1038/s41390-020-01211-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND White matter injury (WMI) induced by intrauterine inflammation can cause adverse neurological outcomes. Fibrinogen-like protein 2 (FGL2)/fibroleukin is an important trigger of inflammatory responses and is involved in some cerebral diseases. However, the role of FGL2 in intrauterine inflammation-induced WMI remains unclear. METHODS Lipopolysaccharide (LPS) was intraperitoneally injected into wild-type and FGL2 knockout mice to induce intrauterine inflammation. Body weight and brain weight of offspring were monitored. Major basic protein (MBP) expression was evaluated to demonstrate the myelination of offspring. To investigate the regulatory mechanism of FGL2, cytokine expression, microglial polarization, and the activation of mitogen-activated protein kinase (MAPK) signaling pathway in the offspring were analyzed. RESULTS Upon LPS exposure, FGL2 knockout offspring showed a significant increase in body weight loss. MBP reduction induced by LPS was prevented in FGL2 knockout offspring. Expression levels of proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α, and M1 marker CD86 were suppressed, while the expression levels of anti-inflammatory cytokines IL-10 and M2 marker CD206 were increased. FGL2 deficiency significantly inhibited the phosphorylation of p38MAPK and c-Jun N-terminal kinase (JNK) protein. CONCLUSIONS FGL2 deficiency can ameliorate WMI induced by intrauterine inflammation, reducing inflammatory cascade and improving hypomyelination, through the regulation of microglial polarization and MAPK signaling pathways. IMPACT Intrauterine inflammation induces WMI leading to severe neurological sequelae. FGL2 plays an important role in the progression of WMI induced by intrauterine inflammation. FGL2 deficiency can protect against WMI by inhibiting p38 MAPK and JNK phosphorylation, regulating microglia polarization, and reducing inflammation response. FGL2 could be a novel molecular target for protecting against WMI induced by intrauterine inflammation.
Collapse
Affiliation(s)
- Di Zhan
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Cai Zhang
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenjun Long
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lan Wei
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shengjuan Jin
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Caiqi Du
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Zhuxi Li
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Shusen Guo
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lianjing Huang
- grid.33199.310000 0004 0368 7223Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Qin Ning
- grid.33199.310000 0004 0368 7223Department of Infectious Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Tang R, Huang Z, Chu H. Phenotype change of polarized microglia after intracerebral hemorrhage: Advances in research. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
19
|
Song Y, Lu M, Yuan H, Chen T, Han X. Mast cell-mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 2020; 20:714-726. [PMID: 32742317 PMCID: PMC7388140 DOI: 10.3892/etm.2020.8789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic-pituitary adrenal axis or disruption of the blood-brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
Collapse
Affiliation(s)
- Yuchen Song
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Manqi Lu
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Haixia Yuan
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Tianyi Chen
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xinmin Han
- Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
20
|
Low Serum Uric Acid Levels Promote Hypertensive Intracerebral Hemorrhage by Disrupting the Smooth Muscle Cell-Elastin Contractile Unit and Upregulating the Erk1/2-MMP Axis. Transl Stroke Res 2020; 11:1077-1094. [PMID: 32323149 DOI: 10.1007/s12975-020-00791-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
Intracerebral hemorrhage (ICH) is a catastrophic stroke with high mortality, and the mechanism underlying ICH is largely unknown. Previous studies have shown that high serum uric acid (SUA) levels are an independent risk factor for hypertension, cardiovascular disease (CVD), and ischemic stroke. However, our metabolomics data showed that SUA levels were lower in recurrent intracerebral hemorrhage (R-ICH) patients than in ICH patients, indicating that lower SUA might contribute to ICH. In this study, we confirmed the association between low SUA levels and the risk for recurrence of ICH and for cardiac-cerebral vascular mortality in hypertensive patients. To determine the mechanism by which low SUA effects ICH pathogenesis, we developed the first low SUA mouse model and conducted transcriptome profiling of the cerebrovasculature of ICH mice. When combining these assessments with pathological morphology, we found that low SUA levels led to ICH in mice with angiotensin II (Ang II)-induced hypertension and aggravated the pathological progression of ICH. In vitro, our results showed that p-Erk1/2-MMP axis were involved in the low UA-induce degradation of elastin, and that physiological concentrations of UA and p-Erk1/2-specific inhibitor exerted a protective role. This is the first report describing to the disruption of the smooth muscle cell (SMC)-elastin contractile units in ICH. Most importantly, we revealed that the upregulation of the p-Erk1/2-MMP axis, which promotes the degradation of elastin, plays a vital role in mediating low SUA levels to exacerbate cerebrovascular rupture during the ICH process.
Collapse
|
21
|
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 2020; 143:1297-1314. [PMID: 31919518 DOI: 10.1093/brain/awz393] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 01/24/2023] Open
Abstract
Abstract
The prognosis of intracerebral haemorrhage continues to be devastating despite much research into this condition. A prominent feature of intracerebral haemorrhage is neuroinflammation, particularly the excessive representation of pro-inflammatory CNS-intrinsic microglia and monocyte-derived macrophages that infiltrate from the circulation. The pro-inflammatory microglia/macrophages produce injury-enhancing factors, including inflammatory cytokines, matrix metalloproteinases and reactive oxygen species. Conversely, the regulatory microglia/macrophages with potential reparative and anti-inflammatory roles are outcompeted in the early stages after intracerebral haemorrhage, and their beneficial roles appear to be overwhelmed by pro-inflammatory microglia/macrophages. In this review, we describe the activation of microglia/macrophages following intracerebral haemorrhage in animal models and clinical subjects, and consider their multiple mechanisms of cellular injury after haemorrhage. We review strategies and medications aimed at suppressing the pro-inflammatory activities of microglia/macrophages, and those directed at elevating the regulatory properties of these myeloid cells after intracerebral haemorrhage. We consider the translational potential of these medications from preclinical models to clinical use after intracerebral haemorrhage injury, and suggest that several approaches still lack the experimental support necessary for use in humans. Nonetheless, the preclinical data support the use of deactivator or inhibitor of pro-inflammatory microglia/macrophages, whilst enhancing the regulatory phenotype, as part of the therapeutic approach to improve the prognosis of intracerebral haemorrhage.
Collapse
Affiliation(s)
- Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
22
|
Xu WB, Hu QH, Wu CN, Fan ZK, Song ZF. Serum soluble fibrinogen-like protein 2 concentration predicts delirium after acute pancreatitis. Brain Behav 2019; 9:e01261. [PMID: 30884164 PMCID: PMC6456778 DOI: 10.1002/brb3.1261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Inflammation can cause delirium. Soluble fibrinogen-like protein 2 (sFGL2) is a modulator of the immune response and more recently found to be a biomarker for brain injury. This study was designed to discover the predictive capability of serum sFGL2 concentrations for delirium after acute pancreatitis (AP). MATERIALS AND METHODS In this prospective, observational study, serum sFGL2 concentrations were quantified in 184 healthy controls and in 184 AP patients. Disease severity was assessed by Acute Physiology and Chronic Health Care Evaluation II score, Ranson score, multiple organ dysfunction score, and sequential organ failure assessment score. Delirium was recorded during hospital stay. Predictors of delirium were identified using multivariate analysis. RESULTS Serum sFGL2 concentrations were substantially higher in AP patients than in controls. Serum sFGL2 concentrations were intimately correlated with the preceding severity parameters. Serum sFGL2 and the aforementioned severity parameters were independent predictors for delirium. Under receiver operating characteristic curve, the discriminatory ability of serum sFGL2 was equivalent to those of the above-mentioned severity parameters. Moreover, serum sFGL2 dramatically improved the predictive value of the aforementioned severity parameters. CONCLUSIONS Elevation of serum sFGL2 concentrations is strongly associated with the AP severity and has the potential to distinguish delirium after AP.
Collapse
Affiliation(s)
- Wen-Bin Xu
- Department of General Surgery, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Qian-Hua Hu
- Department of General Surgery, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Chan-Ni Wu
- Department of Gastroenterology, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Zhi-Kun Fan
- Department of General Surgery, The Zhejiang Xiaoshan Hospital, Hangzhou, China
| | - Zhang-Fa Song
- Department of Anorectal Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
24
|
Chen TJ, Ji MX, Tao ZQ, Fu QY, Xiong K, Cheng B. The relationship between serum fibrinogen-like protein 2 concentrations and 30-day mortality of patients with traumatic brain injury. Clin Chim Acta 2018; 489:53-57. [PMID: 30503273 DOI: 10.1016/j.cca.2018.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2) is an inflammatory procoagulant protein. We discerned the impact of serum FGL2 on trauma severity and 30-day mortality in patients with traumatic brain injury (TBI). METHODS A total of 114 severe TBI patients were subjected to assessment of trauma severity using the Glasgow coma scale (GCS). Measurement of the serum concentrations of FGL2 was done. 114 matched control subjects for their age and sex were included for comparison of serum concentration of FGL2. RESULTS The concentration of FGL2 was dramatically increased in the patients as compared with the control subjects. FGL2 concentration was inversely correlated with GCS score among the patients. The non-survivors within 30 days exhibited substantially higher FGL2 concentrations than the alive. FGL2 concentrations discriminated the patients at risk of 30-day death with significantly high area under receiver operating characteristic curve. Serum FGL2 emerged as an independent predictor for mortality and overall survival at 30 days after head trauma. CONCLUSIONS Serum FGL2 is a promising biomarker for assessing the severity and prognosis in severe TBI.
Collapse
Affiliation(s)
- Tie-Jiang Chen
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China.
| | - Ming-Xia Ji
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Zhi-Qiang Tao
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Qing-Yang Fu
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Kai Xiong
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| | - Bin Cheng
- Department of Emergency Surgery, Yiwu Central Hospital, 699 Jiangdong Road, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
25
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 318] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
26
|
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13:420-433. [PMID: 28524175 PMCID: PMC5575938 DOI: 10.1038/nrneurol.2017.69] [Citation(s) in RCA: 581] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral haemorrhage (ICH) is the most lethal subtype of stroke but currently lacks effective treatment. Microglia are among the first non-neuronal cells on the scene during the innate immune response to ICH. Microglia respond to acute brain injury by becoming activated and developing classic M1-like (proinflammatory) or alternative M2-like (anti-inflammatory) phenotypes. This polarization implies as yet unrecognized actions of microglia in ICH pathology and recovery, perhaps involving microglial production of proinflammatory or anti-inflammatory cytokines and chemokines. Furthermore, alternatively activated M2-like microglia might promote phagocytosis of red blood cells and tissue debris, a major contribution to haematoma clearance. Interactions between microglia and other cells modulate microglial activation and function, and are also important in ICH pathology. This Review summarizes key studies on modulators of microglial activation and polarization after ICH, including M1-like and M2-like microglial phenotype markers, transcription factors and key signalling pathways. Microglial phagocytosis, haematoma resolution, and the potential crosstalk between microglia and T lymphocytes, neurons, astrocytes, and oligodendrocytes in the ICH brain are described. Finally, the clinical and translational implications of microglial polarization in ICH are presented, including the evidence that therapeutic approaches aimed at modulating microglial function might mitigate ICH injury and improve brain repair.
Collapse
Affiliation(s)
- Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| |
Collapse
|