1
|
Feng R, Liu J, Yao T, Yang Z, Jiang H. Neurotoxicity of Realgar: Crosstalk Between UBXD8-DRP1-Regulated Mitochondrial Fission and PINK1-Parkin-Mediated Mitophagy. Mol Neurobiol 2024:10.1007/s12035-024-04635-1. [PMID: 39570499 DOI: 10.1007/s12035-024-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Realgar is a toxic mineral medicine containing arsenic that is present in many traditional Chinese medicines. It has been reported that the abuse of drugs containing realgar has potential neurotoxicity, but its mechanism of toxicity has not been fully clarified. In this study, we demonstrated that arsenic in realgar promoted mitochondrial fission via UBXD8-mediated DRP1 translocation to the mitochondria and activated mitophagy via PINK1-Parkin, resulting in mitochondrial dysfunction and nerve cell death in the rat cortex. We used PC12 cells and treated them with inorganic arsenic (iAs). Mdivi-1, a mitochondrial fission inhibitor, and the siRNA UBXD8 or PINK1 were used as interventions to verify the precise mechanism by which arsenic affects realgar-induced mitochondrial instability. The results revealed that the arsenic in realgar accumulated in the brain and led to neurobehavioral abnormalities in the rats. We demonstrated that arsenic in realgar-induced high expression of UBXD8 promoted the translocation of DRP1 to the mitochondria, where it underwent phosphorylation, which led to the over-fission of the mitochondria and mitochondria-mediated apoptosis. Moreover, the over-fission of the mitochondria activates mitophagy, which is self-protective but only partially alleviates apoptosis and mitochondria dysfunction. Our findings revealed the crosstalk between mitochondrial fission and mitophagy in realgar-induced neurotoxicity. These results highlight the role of the transposition of DRP1 by UBXD8 in realgar-induced mitochondrial dysfunction and provide new ideas and data for the study of the mechanism of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Rui Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
| |
Collapse
|
2
|
Zhang X, Shao C, Jin L, Wan H, He Y. Optimized Separation of Carthamin from Safflower by Macroporous Adsorption Resins and Its Protective Effects on PC12 Cells Injured by OGD/R via Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18986-18998. [PMID: 37997370 DOI: 10.1021/acs.jafc.3c05285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The growing demand for safe natural products has reignited people's interest in natural food pigments. Here, we proposed the use of macroporous adsorption resins (MARs) to separate and purify carthamin from safflower. The optimal parameters for carthamin purification with HPD400 MAR were determined as follows: a mass ratio of crude carthamin in sample solution to wet resin of 0.3, a crude carthamin solution concentration of 0.125 g·mL-1, a pH of 6.00, a sample volume flow rate of 0.5 mL·min-1, an ethanol volume fraction of 58%, an elution volume of 4 BV, and an elution volume flow rate of 1.0 mL·min-1. Under the above purification conditions, the recovery rate of carthamin was above 96%. Carthamin dramatically improved the survival rate of PC12 cells damaged by oxygen-glucose deprivation/reoxygenation and protected them from oxidative stress by inhibiting the generation of reactive oxygen species and increasing the total antioxidant capacity and glutathione (GSH) levels. Carthamin promoted extracellularly regulated protein kinase phosphorylation into the nucleus, permitting Nrf2 nuclear translocation and upregulating the gene expression of the rate-limiting enzymes glutamate-cysteine ligase catalytic subunit and glutamate-cysteine ligase regulatory subunit of GSH synthesis to obliterate free radicals and exert antioxidant effects. This study revealed the purification method of carthamin and its antioxidant protective effects, providing important insights into the application of carthamin in functional foods.
Collapse
Affiliation(s)
- Xian Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Chongyu Shao
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Lei Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
3
|
Feng R, Liu J, Yang Z, Yao T, Ye P, Li X, Zhang J, Jiang H. Realgar-Induced Neurotoxicity: Crosstalk Between the Autophagic Flux and the p62-NRF2 Feedback Loop Mediates p62 Accumulation to Promote Apoptosis. Mol Neurobiol 2023; 60:6001-6017. [PMID: 37400749 DOI: 10.1007/s12035-023-03452-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/20/2023] [Indexed: 07/05/2023]
Abstract
Realgar is a traditional Chinese medicine that contains arsenic. It has been reported that the abuse of medicine-containing realgar has potential central nervous system (CNS) toxicity, but the toxicity mechanism has not been elucidated. In this study, we established an in vivo realgar exposure model and selected the end product of realgar metabolism, DMA, to treat SH-SY5Y cells in vitro. Many assays, including behavioral, analytical chemistry, and molecular biology, were used to elucidate the roles of the autophagic flux and the p62-NRF2 feedback loop in realgar-induced neurotoxicity. The results showed that arsenic could accumulate in the brain, causing cognitive impairment and anxiety-like behavior. Realgar impairs the ultrastructure of neurons, promotes apoptosis, perturbs autophagic flux homeostasis, amplifies the p62-NRF2 feedback loop, and leads to p62 accumulation. Further analysis showed that realgar promotes the formation of the Beclin1-Vps34 complex by activating JNK/c-Jun to induce autophagy and recruit p62. Meanwhile, realgar inhibits the activities of CTSB and CTSD and changes the acidity of lysosomes, leading to the inhibition of p62 degradation and p62 accumulation. Moreover, the amplified p62-NRF2 feedback loop is involved in the accumulation of p62. Its accumulation promotes neuronal apoptosis by upregulating the expression levels of Bax and cleaved caspase-9, resulting in neurotoxicity. Taken together, these data suggest that realgar can perturb the crosstalk between the autophagic flux and the p62-NRF2 feedback loop to mediate p62 accumulation, promote apoptosis, and induce neurotoxicity. Realgar promotes p62 accumulation to produce neurotoxicity by perturbing the autophagic flux and p62-NRF2 feedback loop crosstalk.
Collapse
Affiliation(s)
- Rui Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Ping Ye
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Xiuhan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jiaxin Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
| |
Collapse
|
4
|
Zhang W, Geng X, Dong Q, Li X, Ye P, Lin M, Xu B, Jiang H. Crosstalk between autophagy and the Keap1-Nrf2-ARE pathway regulates realgar-induced neurotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115776. [PMID: 36191662 DOI: 10.1016/j.jep.2022.115776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Realgar, the main component of which is As2S2 or As4S4 (≥90%), is a traditional Chinese natural medicine that has been used to treat carbuncles, furuncles, snake and insect bites, abdominal pain caused by parasitic worms, and epilepsy in China for many years. Because realgar contains arsenic, chronic or excessive use of single-flavor realgar and realgar-containing Chinese patent medicine can lead to drug-induced arsenic poisoning, but the exact mechanism underlying its toxicity to the central nervous system is unclear. AIM OF THE STUDY The aim of this study was to clarify the mechanism of realgar-induced neurotoxicity and to investigate the effects of realgar on autophagy and the Keap1-Nrf2-ARE pathway. MATERIALS AND METHODS We used rats treated with the autophagy inhibitor 3-methyladenine (3-MA) or adeno-associated virus (AAV2/9-r-shRNA-Sqstm1, sh-p62) to investigate realgar-induced neurotoxicity and explore the specific relationship between autophagy and the Keap1-Nrf2-ARE pathway (the Nrf2 pathway) in the cerebral cortex. Molecular docking analysis was used to assess the interactions among the Nrf2, p62 and Keap1 proteins. RESULTS Our results showed that arsenic from realgar accumulated in the brain and blood to cause neuronal and synaptic damage, decrease exploratory behavior and spontaneous movement, and impair memory ability in rats. The mechanism may have involved realgar-mediated autophagy impairment and continuous activation of the Nrf2 pathway via the LC3-p62-Keap1-Nrf2 axis. However, because this activation of the Nrf2 pathway was not sufficient to counteract oxidative damage, apoptosis was aggravated in the cerebral cortex. CONCLUSIONS This study revealed that autophagy, the Nrf2 pathway, and apoptosis are involved in realgar-induced central nervous system toxicity and identified p62 as the hub of the LC3-p62-Keap1-Nrf2 axis in the regulation of autophagy, the Nrf2 pathway, and apoptosis.
Collapse
Affiliation(s)
- Weiwei Zhang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| | - Xu Geng
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Qing Dong
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Xiuhan Li
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Ping Ye
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Mengyuan Lin
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Bin Xu
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China.
| | - Hong Jiang
- School of Public Health, China Medical University, Shenyang, Liaoning, 110122, PR China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Liaoning, PR China.
| |
Collapse
|
5
|
A review of mechanisms underlying the protective effects of natural compounds against arsenic-induced neurotoxicity. Biometals 2022:10.1007/s10534-022-00482-6. [PMID: 36564665 DOI: 10.1007/s10534-022-00482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022]
Abstract
Arsenic (As) is a toxic metalloid that is widely distributed in the earth's crust. People are continuously exposed to this toxicant in their food and drinking water. Inorganic arsenic occurs in two oxidation states, arsenite 3+ (iAs3+) and arsenate 5+ (iAs5+). The most toxic form is its trivalent form which interferes with the electron transfer cycle and induces overproduction of reactive oxygen species, leading to depletion of the antioxidant defense system, as well as altering fatty acid levels and mitochondrial action. Since arsenic crosses the blood-brain barrier, it can damage cells in different regions of the brain, causing neurological disorders through the induction of oxidative stress, inflammation, DNA damage, and cell death. Hydroxytyrosol, taurine, alpha-lipoic acid, ellagic acid, and thymoquinone have been shown to effectively alleviate arsenic-induced neurotoxicity. The protective effects are the result of the anti-oxidative and anti-inflammatory properties of the phytochemicals and in particular their anti-apoptotic function via the Nrf2 and PI3/Akt/SIRT1 signaling pathways.
Collapse
|
6
|
18β-glycyrrhetinic acid protects neuronal cells from ferroptosis through inhibiting labile iron accumulation and preventing coenzyme Q10 reduction. Biochem Biophys Res Commun 2022; 635:57-64. [DOI: 10.1016/j.bbrc.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/19/2022]
|
7
|
Hu T, Chen R, Qian Y, Ye K, Long X, Park KY, Zhao X. Antioxidant effect of Lactobacillus fermentum HFY02-fermented soy milk on D-galactose-induced aging mouse model. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part II). Int J Mol Sci 2022; 23:ijms23168896. [PMID: 36012159 PMCID: PMC9408012 DOI: 10.3390/ijms23168896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/18/2022] Open
Abstract
Triterpenic acids are a widespread class of phytocompounds which have been found to possess valuable therapeutic properties such as anticancer, anti-inflammatory, hepatoprotective, cardioprotective, antidiabetic, neuroprotective, lipolytic, antiviral, and antiparasitic effects. They are a subclass of triterpenes bearing a characteristic lipophilic structure that imprints unfavorable in vivo properties which subsequently limit their applications. The early investigation of the mechanism of action (MOA) of a drug candidate can provide valuable information regarding the possible side effects and drug interactions that may occur after administration. The current paper aimed to summarize the most recent (last 5 years) studies regarding the MOA of betulinic acid, boswellic acid, glycyrrhetinic acid, madecassic acid, moronic acid, and pomolic acid in order to provide scientists with updated and accessible material on the topic that could contribute to the development of future studies; the paper stands as the sequel of our previously published paper regarding the MOA of triterpenic acids with therapeutic value. The recent literature published on the topic has highlighted the role of triterpenic acids in several signaling pathways including PI3/AKT/mTOR, TNF-alpha/NF-kappa B, JNK-p38, HIF-α/AMPK, and Grb2/Sos/Ras/MAPK, which trigger their various biological activities.
Collapse
|
9
|
Meng Y, Feng R, Yang Z, Liu T, Huo T, Jiang H. Oxidative stress induced by realgar in neurons: p38 MAPK and ERK1/2 perturb autophagy and induce the p62-Keap1-Nrf2 feedback loop to activate the Nrf2 signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114582. [PMID: 34492322 DOI: 10.1016/j.jep.2021.114582] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Due to the modernization of traditional Chinese medicine (TCM) and the influence of traditional medication habits (TCM has no toxicity or side effects), arsenic poisoning incidents caused by the abuse of realgar and realgar-containing Chinese patent medicines have occurred occasionally. However, the potential mechanism of central nervous system toxicity of realgar remains unclear. AIM OF THE STUDY This study aimed to clarify the specific mechanism of realgar-induced neurotoxicity. MATERIALS AND METHODS In this study, the roles of ERK1/2 and p38 MAPK in realgar-induced neuronal autophagy and overactivation of the nuclear factor erythroid-derived factor 2-related factor (Nrf2) signalling pathways was investigated in vivo and in vitro. RESULTS The arsenic in realgar passed through the blood-brain barrier and accumulated in the brain, resulting in damage to neurons, synapses and myelin sheaths in the cerebral cortex and a decrease in the total antioxidant capacity. The specific mechanism is that the excessive activation of Nrf2 is regulated by the upstream signalling molecules ERK1/2 and p38MAPK. At the same time, p38 MAPK and ERK1/2 interfere with autophagy, thereby promoting autophagy initiation but causing subsequent dysfunctional autophagic degradation and inducing the p62-Keap1-Nrf2 feedback loop to promote Nrf2 signalling pathway activation and nerve cell apoptosis. CONCLUSIONS This study confirmed the role of the signalling molecules p38 MAPK and ERK1/2 in perturbing autophagy and inducing the p62-Keap1-Nrf2 feedback loop to activate the Nrf2 signalling pathway in realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Rui Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Tingting Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning, People's Republic of China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Wan X, Ma B, Wang X, Guo C, Sun J, Cui J, Li L. S-Adenosylmethionine Alleviates Amyloid-β-Induced Neural Injury by Enhancing Trans-Sulfuration Pathway Activity in Astrocytes. J Alzheimers Dis 2021; 76:981-995. [PMID: 32597804 DOI: 10.3233/jad-200103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Glutathione (GSH) is an important endogenous antioxidant protecting cells from oxidative injury. Cysteine (Cys), the substrate limiting the production of GSH, is mainly generated from the trans-sulfuration pathway. S-adenosylmethionine (SAM) is a critical molecule produced in the methionine cycle and can be utilized by the trans-sulfuration pathway. Reductions in GSH and SAM as well as dysfunction in the trans-sulfuration pathway have been documented in the brains of Alzheimer's disease (AD) patients. Our previous in vivo study revealed that SAM administration attenuated oxidative stress induced by amyloid-β (Aβ) through the enhancement of GSH. OBJECTIVE To investigate the effect of Aβ-induced oxidative stress on the trans-sulfuration pathway in astrocytes and neurons, respectively, and the protective effect of SAM on neurons. METHODS APP/PS1 transgenic mice and the primary cultured astrocytes, neurons, and HT22 cells were used in the current study. RESULTS SAM could rescue the low trans-sulfuration pathway activity induced by Aβ only in astrocytes, accompanying with increasing levels of Cys and GSH. The decrease of cellular viability of neurons caused by Aβ was greatly reversed when co-cultured with astrocytes with SAM intervention. Meanwhile, SAM improved cognitive performance in APP/PS1 mice. CONCLUSION In terms of astrocyte protection from oxidative stress, SAM might be a potent antioxidant in the therapy of AD patients.
Collapse
Affiliation(s)
- Xinkun Wan
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Ma
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoxuan Wang
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chenjia Guo
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Sun
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Cui
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liang Li
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Chu S, Niu Z, Guo Q, Bi H, Li X, Li F, Zhang Z, He W, Cao P, Chen N, Sun X. Combination of monoammonium glycyrrhizinate and cysteine hydrochloride ameliorated lipopolysaccharide/galactosamine-induced acute liver injury through Nrf2/ARE pathway. Eur J Pharmacol 2020; 882:173258. [PMID: 32544505 DOI: 10.1016/j.ejphar.2020.173258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
Combination of monoammonium glycyrrhizinate and cysteine hydrochloride (MG-CH) has been used for treatment of chronic liver damage in clinic for several years, however, the effect of MG-CH on acute liver injury (ALI) is still obscure. In this study, we aimed to investigate the effect of MG-CH on ALI induced by co-injection of lipopolysaccharide (LPS) and d-galactosamine (GalN). Our results found that MG-CH produced the optimal therapeutic effect at the ratio of 2:1, as manifested by the increased survival percentage, decreased ALT and AST level and improved hepatic pathology. Both oxidative stress and inflammation induced by LPS/GalN were attenuated by MG-CH. Mechanism study showed that MG-CH promoted the nuclear accumulation of Nrf2 and its transcriptional activity, as well as improved Nrf2-target genes' expression. It was also found that activation of Nrf2 is dependent on the MG, not CH. Blockade of Nrf2 abolished the anti-inflammatory effect of MG-CHinduced by LPS/GalN, while inhibition of NFκB showed no effect on its anti-oxidative effect, though the inhibited phosphorylation of IκB and NFκB were detected in liver. The protective effect of MG-CH against ALI was abolished in Nrf2-/- mice. All of these results suggested that MG-CH ameliorated LPS/GalN induced ALI through Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ziquan Niu
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China
| | - Qingxin Guo
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China
| | - Haozhi Bi
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Xinyu Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Taiyuan, 030024, China
| | - Peng Cao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaoyun Sun
- Beijing Aohe Pharmaceutical Research Institute Co., Ltd., Beijing, 101113, China.
| |
Collapse
|
12
|
Zhang W, Huo T, Li A, Wu X, Feng C, Liu J, Jiang H. Identification of neurotoxicity markers induced by realgar exposure in the mouse cerebral cortex using lipidomics. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121567. [PMID: 32061421 DOI: 10.1016/j.jhazmat.2019.121567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Realgar is a traditional Chinese medicine containing arsenic and has neurotoxicity. This study used realgar exposure mice model, neurobehavioral tests, analytical chemistry, molecular biology and nontargeted lipidomics to explore the mechanism of realgar damages the nervous system. The arsenic contained in realgar passed through the BBB and accumulated in the brain. Neurons, synapses and myelin showed abnormal changes in the cerebral cortex. The number of autophagosomes were incresed as well as levels of MDA, Lp-PLA2, and cPLA2 but the CAT level was significant reduced. Finally, the cognition and memory of mice were decreased. Nontargeted lipidomics detected 34 lipid subclasses including 1603 lipid molecules. The levels of the LPC and LPE were significantly increased. Under the condition of variable importance for the projection (VIP)>1 and P < 0.05, only 28 lipid molecules satisfied the criteria. The lipid molecular markers SM (d36:2), PE (18:2/22:6) and PE (36:3) which were filtered by receiver operating characteristic (ROC) curve (AUC>0.8 or AUC<0.2) were used to identify the neurotoxicity induced by realgar. Therefore, realgar induces neurotoxicity through exacerbating oxidative damage and lipid dysfunction. Providing research basis for the clinical diagnosis and treatment of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinyu Wu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
13
|
Wang C, Niu Q, Ma R, Song G, Hu Y, Xu S, Li Y, Wang H, Li S, Ding Y. The Variable Regulatory Effect of Arsenic on Nrf2 Signaling Pathway in Mouse: a Systematic Review and Meta-analysis. Biol Trace Elem Res 2019; 190:362-383. [PMID: 30357758 DOI: 10.1007/s12011-018-1549-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
Arsenic is known to cause oxidative damage. Nuclear factor E2-relate factor-2 (Nrf2) can resist this toxicity. Scholars demonstrated that Nrf2 pathway was activated by arsenic. In contrast, other articles established arsenic-induced inhibition of Nrf2 pathway. To resolve the contradiction and elucidate the mechanism of Nrf2 induced by arsenic, 39 publications involving mouse models were identified through exhaustive database retrieval and were analyzed. The pooled results suggested that arsenic obviously elevated transcription and translation levels of Nrf2 and its downstream genes, NAD(P)H dehydrogenase 1 (NQO1), heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), and GST-glutathione-S-transferase1/2 (GSTO1/2). Arsenic increased the level of reactive oxygen species (ROS), but reduced the level of glutathione (GSH). Subgroup analysis between arsenic and control groups showed that the levels of Nrf2 and its downstream genes are greater in high dose than that in the low dose, higher in short-term exposure than long term, female subjects tolerated better than males, higher in mice than the rats, and greater in other organs than the liver. However, the contents of genes of Nrf2 pathway between the arsenic and control groups were lower in rats than in mice and were less for long-term exposure than the short term (P < 0.05). Conclusively, a variable regulation of arsenic on Nrf2 pathway is noted. Higher dose and short-term exposure of female mice organs except for liver promoted Nrf2 pathway. On the other hand, arsenic inhibited Nrf2 pathway for long-term exposure on rats.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Qiang Niu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Rulin Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Shangzhi Xu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Yu Li
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Haixia Wang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China
| | - Shugang Li
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China.
| | - Yusong Ding
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), Shihezi University School of Medicine, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
14
|
Liang Y, Huang W, Zeng D, Huang X, Chan L, Mei C, Feng P, Tan CH, Chen T. Cancer-targeted design of bioresponsive prodrug with enhanced cellular uptake to achieve precise cancer therapy. Drug Deliv 2018; 25:1350-1361. [PMID: 29869567 PMCID: PMC6058652 DOI: 10.1080/10717544.2018.1477862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Chemical drug design based on the biochemical characteristics of cancer cells has become an important strategy for discovery of novel anticancer drugs to enhance the cancer targeting effects and biocompatibility, and decrease toxic side effects. Camptothecin (CPT) demonstrated strong anticancer activity in clinical trials but also notorious adverse effects. In this study, we presented a smart targeted delivery system (Biotin-ss-CPT) that consists of cancer-targeted moiety (biotin), a cleavable disulfide linker (S-S bond) and the active drug CPT. Biotin-ss-CPT was found to exhibit potent effects on the migration of cancer cells and induced apoptosis by induction of ROS-mediated mitochondrial dysfunction and perturbation of GSH/GPXs system, as well as activation of caspases. In vivo tumor suppression investigation including toxicity evaluation and pathology analysis, accompanied by MR images showed that Biotin-ss-CPT can be recognized specifically and selectively and taken up preferentially by cancers cells, followed by localization and accumulation effectively in tumor site, then released CPT by biological response to achieve high therapeutic effect and remarkably reduced the side effects that free CPT caused, such as liver damage, renal injury, and weight loss to realize precise cancer therapy. Taken together, our results suggest that biotinylation and bioresponsive functionalization of anticancer drugs could be a good way for the discovery of next-generation cancer therapeutics.
Collapse
Affiliation(s)
- Yuanwei Liang
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Wei Huang
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Delong Zeng
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Xiaoting Huang
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Leung Chan
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Chaoming Mei
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Pengju Feng
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| | - Choon-Hong Tan
- b Division of Chemistry and Biological Chemistry , Nanyang Technological University , Singapore
| | - Tianfeng Chen
- a The First Affiliated Hospital, and Department of Chemistry , Jinan University , Guangzhou , China
| |
Collapse
|