1
|
Wang X, Li J, Nie J, Huang W, Tang J, Peng Y, Gao Y, Lu R. IL-33 protects retinal structure and function via mTOR/S6 signaling pathway in optic nerve crush. Exp Eye Res 2024; 248:110121. [PMID: 39401556 DOI: 10.1016/j.exer.2024.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024]
Abstract
This study demonstrated the functions and molecular mechanisms of the IL-33/ST2 axis in experimental optic neuropathy. C57BL/6J mice were used to establish an optic nerve crush (ONC) model. ONC mice were administered with IL-33 intraperitoneal injection, with PBS vehicle as control. Immunofluorescence, quantitative RT-PCR, and western blot techniques were utilized to assess the expression of the IL-33/ST2 axis. The electroretinography (ERG), optical coherence tomography (OCT), H&E, and luxol fast blue were used to assess the structural and functional changes. Western blot was employed to detect the activation of the mTOR/S6 pathway. The IL-33 expression level in the inner nuclear layer of the retina in ONC mice reached its peak on day 3, accompanied by a significant increase in IL-33 receptor ST2 expression. IL-33 treatment promoted the survival of retinal ganglion cells, restored the thickness of inner retina layer (IRL), alleviated the demyelination of the optic nerve, and recovered the decreased amplitude of b-wave in ONC mice. Furthermore, administration of IL-33 activated the mTOR/S6 signaling pathway in RGCs, which was significantly suppressed in the ONC condition. This study indicated that boosting the IL-33/ST2/mTOR/S6 pathway can protect against structural and functional damage to the retina and optic nerve induced by ONC. As a result, the IL-33/ST2 axis holds potential as a therapeutic option for treating various optic neuropathies.
Collapse
Affiliation(s)
- Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yue Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
2
|
Chiang PT, Tsai LK, Tsai HH. New targets in spontaneous intracerebral hemorrhage. Curr Opin Neurol 2024:00019052-990000000-00197. [PMID: 39325041 DOI: 10.1097/wco.0000000000001325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
PURPOSE OF REVIEW Intracerebral hemorrhage (ICH) is a devastating stroke with limited medical treatments; thus, timely exploration of emerging therapeutic targets is essential. This review focuses on the latest strategies to mitigate secondary brain injury post-ICH other than targeting surgery or hemostasis, addressing a significant gap in clinical practice and highlighting potential improvements in patient outcomes. RECENT FINDINGS Promising therapeutic targets to reduce secondary brain injury following ICH have recently been identified, including attenuation of iron toxicity and inhibition of ferroptosis, enhancement of endogenous resorption of hematoma, and modulation of perihematomal inflammatory responses and edema. Additionally, novel insights suggest the lymphatic system of the brain may potentially play a role in hematoma clearance and edema management. Various experimental and early-phase clinical trials have demonstrated these approaches may potentially offer clinical benefits, though most research remains in the preliminary stages. SUMMARY Continued research is essential to identify multifaceted treatment strategies for ICH. Clinical translation of these emerging targets could significantly enhance the efficacy of therapeutic interventions and potentially reduce secondary brain damage and improve neurological recovery. Future efforts should focus on large-scale clinical trials to validate these approaches, to pave the way for more effective treatment protocols for spontaneous ICH.
Collapse
Affiliation(s)
- Pu-Tien Chiang
- Department of Neurology, National Taiwan University Hospital
- Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology, National Taiwan University Hospital
| | - Hsin-Hsi Tsai
- Department of Neurology, National Taiwan University Hospital
| |
Collapse
|
3
|
Yang D, Sun Y, Lin D, Li S, Zhang Y, Wu A, Wei C. Interleukin-33 ameliorates perioperative neurocognitive disorders by modulating microglial state. Neuropharmacology 2024; 253:109982. [PMID: 38701943 DOI: 10.1016/j.neuropharm.2024.109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Perioperative neurocognitive disorders (PND) are cognitive dysfunctions that usually occur in elderly patients after anesthesia and surgery. Microglial overactivation is a key underlying mechanism. Interleukin-33 (IL-33) is a member of the IL-1 family that orchestrates microglial function. In the present study, we explored how IL-33, which regulates microglia, contributes to cognitive improvement in a male mouse model of PND. An exploratory laparotomy was performed to establish a PND model. The expression levels of IL-33 and its receptor ST2 were evaluated using Western blot. IL-33/ST2 secretion, microglial density, morphology, phagocytosis of synapse, and proliferation, and dystrophic microglia were assessed using immunofluorescence. Synaptic plasticity was measured using Golgi staining and long-term potentiation. The Morris water maze and open field test were used to evaluate cognitive function and anxiety. Hippocampal expression of IL-33 and ST2 were elevated on postoperative day 3. We confirmed that IL-33 was secreted by astrocytes and neurons, whereas ST2 mainly colocalized with microglia. IL-33 treatment induced microgliosis after anesthesia and surgery. These microglia had larger soma sizes and shorter and fragmented branches. Compared to the Surgery group, IL-33 treatment reduced the synaptic phagocytosis of microglia and increased microglial proliferation and dystrophic microglia. IL-33 treatment also reversed the impaired synaptic plasticity and cognitive function caused by anesthesia and surgery. In conclusion, these results indicate that IL-33 plays a key role in regulating microglial state and synaptic phagocytosis in a PND mouse model. IL-33 treatment has a therapeutic potential for improving cognitive dysfunction in PND.
Collapse
Affiliation(s)
- Di Yang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Sijie Li
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, China.
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Auriti C, Mondì V, Piersigilli F, Timelli L, Del Pinto T, Prencipe G, Lucignani G, Longo D, Bersani I. Plasmatic profiles of cytokines/chemokines, glial fibrillary acidic protein (GFAP) and MRI brain damage in neonates with hypoxic ischemic encephalopathy (HIE). Cytokine 2024; 177:156565. [PMID: 38442443 DOI: 10.1016/j.cyto.2024.156565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Perinatal hypoxia triggers the release of cytokines and chemokines by neurons, astrocytes and microglia. In response to hypoxia-ischemia resting/ramified microglia proliferate and undergo activation, producing proinflammatory molecules. The brain damage extension seems to be related to both the severity of hypoxia and the balance between pro and anti-inflammatory response and can be explored with neuroimaging. AIMS The aim of this preliminary study was to explore possible relationships between plasma levels of inflammatory cytokines/chemokines and the severe brain damage detectable by Magnetic Resonance Imaging (MRI), performed during the hospitalization. METHODS In 10 full terms neonates with hypoxic ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH), divided into cases and controls, according to MRI results, we measured and compared the plasma levels of CCL2/MCP-1, CXCL8, GFAP, IFN y, IL-10, IL-18, IL-6, CCL3, ENOLASE2, GM-CSF, IL-1b, IL-12p70, IL-33, TNFα, collected at four different time points during TH (24, 25-48, 49-72 h of life, and 7-10 days from birth). Five of enrolled babies had pathological brain MRI (cases) and 5 had a normal MRI examination (controls). Cytokines were measured by Magnetic Luminex Assay. MRI images were classified according to Barkovich's score. RESULTS Mean levels of all cytokines and molecules at time T1 were not significantly different in the two groups. Comparing samples paired by day of collection, the greatest differences between cases and controls were found at times T2 and T3, during TH. At T4, levels tended to get closer again (except for IL-6, IL10 and IL18). Infants with worse MRI showed higher plasmatic GFAP levels than those with normal MRI, while their IL-18 was lower. The mean levels of CCL3MIP1alpha, GMCSF, IL1BETA overlapped throughout the observation period in both groups. CONCLUSION In a small number of infants with worse brain MRI, we found higher levels of GFAP and of IL-10 at T4 and a trend toward low IL-18 levels than in infants with normal MRI, considered early biomarker of brain damage and a predictor of adverse outcome, respectively. The greatest, although not significant, difference between the levels of molecules was found in cases and controls at time points T2 and T3, during TH.
Collapse
Affiliation(s)
- Cinzia Auriti
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy; Villa Margherita Private Clinic, Rome, Italy.
| | - Vito Mondì
- Neonatology and Neonatal Intensive Care Unit, Policlinico Casilino, Via Casilina 1049, Rome, Italy
| | - Fiammetta Piersigilli
- Section of Neonatology, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Avenue Hippocrate 10, Bruxelles, Belgium
| | - Laura Timelli
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Tamara Del Pinto
- Unicamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - Giusi Prencipe
- Laboratory of Immuno-Rheumatology, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Giulia Lucignani
- Department of Imaging, "Bambino Gesù" Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Daniela Longo
- Department of Imaging, "Bambino Gesù" Children's Hospital IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Iliana Bersani
- Neonatal Intensive Care Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
5
|
Xu J, Zhou Y, Wang Q, Liu Y, Tang J. Zinc finger protein 263 upregulates interleukin 33 and suppresses autophagy to accelerate the malignant progression of non-small cell lung cancer. Clin Transl Oncol 2024; 26:924-935. [PMID: 37821764 DOI: 10.1007/s12094-023-03325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) is a complex disease that remains a major public health concern worldwide. One promising avenue for NSCLC treatment is the targeting of transcription factors that regulate key pathways involved in cancer progression. In this study, we investigated the role of the transcription factor ZNF263 in NSCLC and its impact on the regulation of IL33, apoptosis, and autophagy. METHODS Levels of ZNF263 in tissues and cell lines were identified, after which the effects of its knockdown on cellular malignant behaviors, apoptosis and autophagy were assessed. Based on bioinformatics analysis, ZNF263 was found to bind to IL33 promoter, their mutual relationship was confirmed, as well as the role of IL33 in the regulation of ZNF263. The involvement of ZNF263 in the growth of xenograft tumors was assessed using tumor-bearing nude mouse models. RESULTS Experimental results revealed that ZNF263 was upregulated in NSCLC tissue samples and cell lines. Its expression level is positively correlated with cellular malignant behaviors. We further demonstrated that ZNF263 upregulated IL33 expression, which, in turn, promoted the proliferation and migration, inhibited apoptosis and autophagy in NSCLC cells. Furthermore, ZNF263 knockdown reduced the growth of xenograft tumors in nude mice. CONCLUSION This finding suggests that the inhibition of ZNF263 or IL33 may represent a novel therapeutic strategy for NSCLC. Importantly, our results highlight the crucial role of transcription factors in NSCLC and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jiao Xu
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Affiliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China
| | - Yanjuan Zhou
- Department of Respiratory and Critical Care Medicine, WuJin Hospital Affiliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China
| | - Qiang Wang
- Department of Cardiothoracic Surgery, WuJin Hospital Affiliated to Jiangsu University, WuJin Clinical College of Xuzhou Medical University, Changzhou, 213017, Jiangsu, People's Republic of China
| | - Yuxin Liu
- Department of Internal Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Jianlei Tang
- Department of Intensive Care Unit, WuJin Hospital Affiliated With Jiangsu University, WuJin Clinical College of Xuzhou Medical University, 2 Yongning North Road, Changzhou, 213017, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
7
|
Huang HT, Tzeng SF. Interleukin-33 has the protective effect on oligodendrocytes against impairment induced by cuprizone intoxication. Neurochem Int 2024; 172:105645. [PMID: 38016520 DOI: 10.1016/j.neuint.2023.105645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Our prior investigations have demonstrated the pivotal role of IL-33 in facilitating the maturation of oligodendrocytes (OLs), prompting our interest in exploring its potential therapeutic effects. In this study, our focus was directed towards deciphering the functions of interleukin-33 (IL-33) in established demyelinating mouse model induced by the feeding of cuprizone (CPZ)-containing diet. We observed the reduction in corpus callosal adenomatous polyposis coli (APC)+ OLs with IL-33 expression in mice subjected to CPZ feeding for durations of 6 and 8 weeks. In parallel, the levels of IL-33 in the corpus callosum declined after CPZ-containing diet. Furthermore, we conducted experiments utilizing primary oligodendrocyte precursor cells (OPCs) and mature OLs, which were exposed to CPZ. A decrease in the expression of myelin basic protein (MBP) was evident in the cultures of mature OLs after treatment with CPZ. Additionally, both IL-33 mRNA and protein levels exhibited downregulation. To counteract the diminished IL-33 levels induced by CPZ, we employed a lentiviral vector to overexpress IL-33 in OLs. Intriguingly, the overexpression of IL-33 (IL33OE) in OLs resulted in a more distinct membranous morphology following CPZ treatment when compared to that observed in OL Mock cultures. Moreover, MBP protein levels in the presence of CPZ were higher in IL33OE OLs than that detected in OL Mock cultures. These findings collectively indicate that IL-33 possesses the capability to mitigate CPZ-induced damage and bolster OL homeostasis. In summary, our study underscores the importance of IL-33 in the context of demyelinating diseases, shedding light on its potential therapeutic implications for fostering remyelination and preserving OL function.
Collapse
Affiliation(s)
- Hui-Ting Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Wasman Smail S, Ziyad Abdulqadir S, Omar Khudhur Z, Elia Ishaq S, Faqiyazdin Ahmed A, Ghayour MB, Abdolmaleki A. IL-33 promotes sciatic nerve regeneration in mice by modulating macrophage polarization. Int Immunopharmacol 2023; 123:110711. [PMID: 37531832 DOI: 10.1016/j.intimp.2023.110711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Despite the innate regenerative capacity of peripheral nerves, regeneration after a severe injury is insufficient, and sensorimotor recovery is incomplete. As a result, finding alternative methods for improving regeneration and sensorimotor recovery is essential. In this regard, we investigated the effect of IL-33 treatment as a chemokine with neuroprotective properties. IL-33 can facilitate tissue healing by potentiating the type 2 immune response and polarizing macrophages toward the pro-healing M2 phenotype. However, its effects on nerve regeneration remain unclear. Therefore, this research aimed to evaluate the neuroprotective effects of IL-33 on sciatic nerve injury in male C57BL/6 mice. After crushing the left sciatic nerve, the animals were given 10, 25, or 50 µg/kg IL-33 intraperitoneally for seven days. The sensorimotor recovery was then assessed eight weeks after surgery. In addition, immunohistochemistry, ELISA, and real-time PCR were used to assess macrophage polarization, cytokine secretion, and neurotrophic factor expression in the injured nerves. IL-33 at 50 and 25 µg/kg doses could significantly accelerate nerve regeneration and improve sensorimotor recovery when compared to 10 µg/kg IL-33 and control groups. Furthermore, at 50 and 25 µg/kg doses, IL-33 polarized macrophages toward an M2 phenotype and reduced proinflammatory cytokines at the injury site. It also increased the mRNA expression of NGF, VEGF, and BDNF. These findings suggest that a seven-day IL-33 treatment had neuroprotective effects in a mouse sciatic nerve crush model, most likely by inducing macrophage polarization toward M2 and regulating inflammatory microenvironments.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq; Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University - Erbil, Kurdistan Region, Iraq.
| | - Sonia Elia Ishaq
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | | | - Mohammad B Ghayour
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
| |
Collapse
|
9
|
Lan T, Hu L, Sun T, Wang X, Xiao Z, Shen D, Wu W, Luo Z, Wei C, Wang X, Liu M, Guo Y, Wang L, Wang Y, Lu Y, Yu Y, Yang F, Zhang C, Li Q. H3K9 trimethylation dictates neuronal ferroptosis through repressing Tfr1. J Cereb Blood Flow Metab 2023; 43:1365-1381. [PMID: 36960698 PMCID: PMC10369154 DOI: 10.1177/0271678x231165653] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 01/22/2023] [Accepted: 02/28/2023] [Indexed: 03/25/2023]
Abstract
Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high morbidity and mortality worldwide. We have previously shown that ferroptosis contributes to neuronal loss in ICH mice. The overload of iron and dysfunction of glutathione peroxidase 4 (GPx4) promote neuronal ferroptosis post-ICH. However, how epigenetic regulatory mechanisms affect the ferroptotic neurons in ICH remains unclear. In the current study, hemin was used to induce ferroptosis in N2A and SK-N-SH neuronal cells to mimic ICH. The results showed that hemin-induced ferroptosis was accompanied by an increment of global level of trimethylation in histone 3 lysine 9 (H3K9me3) and its methyltransferase Suv39h1. Transcriptional target analyses indicated that H3K9me3 was enriched at the promoter region and gene body of transferrin receptor gene 1 (Tfr1) and repressed its expression upon hemin stimulation. Inhibition of H3K9me3 with inhibitor or siRNA against Suv39h1 aggravated hemin- and RSL3-induced ferroptosis by upregulating Tfr1 expression. Furthermore, Suv39h1-H3K9me3 mediated repression of Tfr1 contributes to the progression of ICH in mice. These data suggest a protective role of H3K9me3 in ferroptosis post ICH. The knowledge gained from this study will improve the understanding of epigenetic regulation in neuronal ferroptosis and shed light on future clinical research after ICH.
Collapse
Affiliation(s)
- Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liye Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tingting Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xuechun Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhongnan Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Danmin Shen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weihua Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoli Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chao Wei
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaotong Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Meng Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing, China
| | - Yamei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yabin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Yu
- Chinese Institute of Rehabilitation Science, China Rehabilitation Science Institute, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, China Rehabilitation Research Center, Beijing, China
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Chenguang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liu M, Huang J, Liu T, Yuan J, Lv C, Sha Z, Wu C, Jiang W, Liu X, Nie M, Chen Y, Dong S, Qian Y, Gao C, Fan Y, Wu D, Jiang R. Exogenous interleukin 33 enhances the brain's lymphatic drainage and toxic protein clearance in acute traumatic brain injury mice. Acta Neuropathol Commun 2023; 11:61. [PMID: 37024941 PMCID: PMC10080777 DOI: 10.1186/s40478-023-01555-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
The persistent dysregulation and accumulation of poisonous proteins from destructive neural tissues and cells activate pathological mechanisms after traumatic brain injury (TBI). The lymphatic drainage system of the brain, composed of the glymphatic system and meningeal lymphatic vessels (MLVs), plays an essential role in the clearance of toxic waste after brain injury. The neuroprotective effect of interleukin 33 (IL-33) in TBI mice has been demonstrated; however, its impact on brain lymphatic drainage is unclear. Here, we established a fluid percussion injury model to examine the IL-33 administration effects on neurological function and lymphatic drainage in the acute brain of TBI mice. We verified that exogenous IL-33 could improve the motor and memory skills of TBI mice and demonstrated that in the acute phase, it increased the exchange of cerebrospinal and interstitial fluid, reversed the dysregulation and depolarization of aquaporin-4 in the cortex and hippocampus, improved the drainage of MLVs to deep cervical lymph nodes, and reduced tau accumulation and glial activation. We speculate that the protective effect of exogenous IL-33 on TBI mice's motor and cognitive functions is related to the enhancement of brain lymphatic drainage and toxic metabolite clearance from the cortex and hippocampus in the acute stage. These data further support the notion that IL-33 therapy may be an effective treatment strategy for alleviating acute brain injury after TBI.
Collapse
Affiliation(s)
- Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jinhao Huang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China.
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| | - Tao Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin University, Changchun, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chenrui Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yu Qian
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Chuang Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Yibing Fan
- Department of Neurosurgery, Tianjin First Central Hospital, Tianjin, China
| | - Di Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China.
- Tianjin Neurological Institute, Key Laboratory of Post Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| |
Collapse
|
11
|
Gao Y, Wang T, Cheng Y, Wu Y, Zhu L, Gu Z, Wu Y, Cai L, Wu Y, Zhang Y, Gao C, Li L, Li J, Li Q, Wang Z, Wang Y, Wang F, Luo C, Tao L. Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic Biol Med 2023; 199:97-112. [PMID: 36805045 DOI: 10.1016/j.freeradbiomed.2023.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Although traumatic brain injury (TBI) is a common cause of death and disability worldwide, there is currently a lack of effective therapeutic drugs and targets. To reveal the complex pathophysiologic mechanisms of TBI, we performed transcriptome analysis of the mouse cerebral cortex and immunohistochemical analysis of human cerebral tissues. The genes Mt1, Mt2, Il33, and Fth1 were upregulated post-TBI and enriched in pathways associated with the inflammatory response, oxidative phosphorylation, and ferroptosis. As an agonist of MT1/2, melatonin (MLT) confers anti-oxidant, anti-inflammatory, and anti-ferroptosis effects after TBI. However, whether these upregulated genes and their corresponding pathways are involved in the neuroprotective effect of MLT remains unclear. In this study, interventions to inhibit MT1/2, IL-33, and ferroptosis (i.e., ferritin H (Fth)-KO) were applied post-TBI. The results showed that MLT attenuated TBI-induced cerebral edema and neurological outcomes by inhibiting inflammation and ferroptosis. Mechanistically, MLT mainly suppressed inflammatory responses and ferroptosis via the activation of MT2 and IL-33 pathways. Building on the previous finding that Fth deletion increases susceptibility to ferroptosis post-TBI, we demonstrated that Fth depletion remarkably exacerbated the post-TBI inflammatory response, and abolished the anti-inflammatory effects of MLT both in vivo and in vitro. Furthermore, the post-TBI anti-inflammatory effect of MLT, which occurs by promoting the polarization of CD206+ macrophages, was dependent on Fth. Taken together, these results clarified that MLT alleviates inflammation- and ferroptosis-mediated brain edema and neurological deficits by activating the MT2/IL-33/Fth pathway, which provides a novel target and theoretical basis for MLT to treat TBI patients.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China; Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tao Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Cheng
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yumin Wu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Luwen Zhu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhiya Gu
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Youzhuang Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Luwei Cai
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yimin Wu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yidan Zhang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Cheng Gao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Lili Li
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, Jiangsu, 215021, China
| | - Jing Li
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, Anhui, 241002, China
| | - Zufeng Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Ying Wang
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, 310058, China; The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Chengliang Luo
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| | - Luyang Tao
- Department of Forensic Medicine, School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L, Yan J. Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci 2023; 16:1036313. [PMID: 36726453 PMCID: PMC9884704 DOI: 10.3389/fncel.2022.1036313] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/19/2022] [Indexed: 01/18/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is the second-largest stroke subtype and has a high mortality and disability rate. Secondary brain injury (SBI) is delayed after ICH. The main contributors to SBI are inflammation, oxidative stress, and excitotoxicity. Harmful substances from blood and hemolysis, such as hemoglobin, thrombin, and iron, induce SBI. When cells suffer stress, a critical protective mechanism called "autophagy" help to maintain the homeostasis of damaged cells, remove harmful substances or damaged organelles, and recycle them. Autophagy plays a critical role in the pathology of ICH, and its function remains controversial. Several lines of evidence demonstrate a pro-survival role for autophagy in ICH by facilitating the removal of damaged proteins and organelles. However, many studies have found that heme and iron can aggravate SBI by enhancing autophagy. Autophagy and inflammation are essential culprits in the progression of brain injury. It is a fascinating hypothesis that autophagy regulates inflammation in ICH-induced SBI. Autophagy could degrade and clear pro-IL-1β and apoptosis-associated speck-like protein containing a CARD (ASC) to antagonize NLRP3-mediated inflammation. In addition, mitophagy can remove endogenous activators of inflammasomes, such as reactive oxygen species (ROS), inflammatory components, and cytokines, in damaged mitochondria. However, many studies support the idea that autophagy activates microglia and aggravates microglial inflammation via the toll-like receptor 4 (TLR4) pathway. In addition, autophagy can promote ICH-induced SBI through inflammasome-dependent NLRP6-mediated inflammation. Moreover, some resident cells in the brain are involved in autophagy in regulating inflammation after ICH. Some compounds or therapeutic targets that regulate inflammation by autophagy may represent promising candidates for the treatment of ICH-induced SBI. In conclusion, the mutual regulation of autophagy and inflammation in ICH is worth exploring. The control of inflammation by autophagy will hopefully prove to be an essential treatment target for ICH.
Collapse
Affiliation(s)
- Kaijing Fu
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Teng Deng
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fangzhou Guo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,Ligen Mo,
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Jun Yan,
| |
Collapse
|
13
|
Wu Y, Sun Y, Wang X, Zhu C. The Regulated Cell Death and Potential Interventions in Preterm Infants after Intracerebral Hemorrhage. Curr Neuropharmacol 2023; 21:1488-1503. [PMID: 36397619 PMCID: PMC10472811 DOI: 10.2174/1570159x21666221117155209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Intracerebral hemorrhage (ICH) in preterm infants is one of the major co-morbidities of preterm birth and is associated with long-term neurodevelopmental deficits. There are currently no widely accepted treatments to prevent ICH or therapies for the neurological sequelae. With studies broadening the scope of cell death, the newly defined concept of regulated cell death has enriched our understanding of the underlying mechanisms of secondary brain injury after ICH and has suggested potential interventions in preterm infants. In this review, we will summarize the current evidence for regulated cell death pathways in preterm infants after ICH, including apoptosis, necroptosis, pyroptosis, ferroptosis, autophagy, and PANoptosis as well as several potential intervention strategies that may protect the immature brain from secondary injury after ICH through regulating regulated cell death.
Collapse
Affiliation(s)
- Yanan Wu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
| | - Yanyan Sun
- Department of Human Anatomy, School of Basic Medical Science, Zhengzhou University, Zhengzhou, China
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
- Centre for Perinatal Medicine and Health, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Third Affiliated Hospital and Institute of Neuroscience of Zhengzhou University, Zhengzhou 450052, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Banday MM, Rao SB, Shankar S, Khanday MA, Finan J, O'Neill E, Coppolino A, Seyfang A, Kumar A, Rinewalt DE, Goldberg HJ, Woolley A, Mallidi HR, Visner G, Gaggar A, Patel KN, Sharma NS. IL-33 mediates Pseudomonas induced airway fibrogenesis and is associated with CLAD. J Heart Lung Transplant 2023; 42:53-63. [PMID: 37014805 PMCID: PMC10260236 DOI: 10.1016/j.healun.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Long term outcomes of lung transplantation are impacted by the occurrence of chronic lung allograft dysfunction (CLAD). Recent evidence suggests a role for the lung microbiome in the occurrence of CLAD, but the exact mechanisms are not well defined. We hypothesize that the lung microbiome inhibits epithelial autophagic clearance of pro-fibrotic proteins in an IL-33 dependent manner, thereby augmenting fibrogenesis and risk for CLAD. METHODS Autopsy derived CLAD and non-CLAD lungs were collected. IL-33, P62 and LC3 immunofluorescence was performed and assessed using confocal microscopy. Pseudomonas aeruginosa (PsA), Streptococcus Pneumoniae (SP), Prevotella Melaninogenica (PM), recombinant IL-33 or PsA-lipopolysaccharide was co-cultured with primary human bronchial epithelial cells (PBEC) and lung fibroblasts in the presence or absence of IL-33 blockade. Western blot analysis and quantitative reverse transcription (qRT) PCR was performed to evaluate IL-33 expression, autophagy, cytokines and fibroblast differentiation markers. These experiments were repeated after siRNA silencing and upregulation (plasmid vector) of Beclin-1. RESULTS Human CLAD lungs demonstrated markedly increased expression of IL-33 and reduced basal autophagy compared to non-CLAD lungs. Exposure of co-cultured PBECs to PsA, SP induced IL-33, and inhibited PBEC autophagy, while PM elicited no significant response. Further, PsA exposure increased myofibroblast differentiation and collagen formation. IL-33 blockade in these co-cultures recovered Beclin-1, cellular autophagy and attenuated myofibroblast activation in a Beclin-1 dependent manner. CONCLUSION CLAD is associated with increased airway IL-33 expression and reduced basal autophagy. PsA induces a fibrogenic response by inhibiting airway epithelial autophagy in an IL-33 dependent manner.
Collapse
Affiliation(s)
- Mudassir M Banday
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Shruthi Shankar
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | | | - Jon Finan
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Edward O'Neill
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Antonio Coppolino
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andreas Seyfang
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Archit Kumar
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel E Rinewalt
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hilary J Goldberg
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ann Woolley
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hari Reddy Mallidi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gary Visner
- Boston Children's Hospital. Harvard Medical School
| | | | - Kapil N Patel
- University of South Florida, Morsani College of Medicine/Tampa General Hospital
| | - Nirmal S Sharma
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Boston VA Medical Center.
| |
Collapse
|
15
|
The IL-33/ST2 Pathway in Cerebral Malaria. Int J Mol Sci 2022; 23:ijms232113457. [PMID: 36362246 PMCID: PMC9658244 DOI: 10.3390/ijms232113457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Interleukin-33 (IL-33) is an immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. IL-33 is abundant within the brain and spinal cord tissues where it acts as a key cytokine to coordinate the exchange between the immune and central nervous system (CNS). In this review, we report the recent advances to our knowledge regarding the role of IL-33 and of its receptor ST2 in cerebral malaria, and in particular, we highlight the pivotal role that IL-33/ST2 signaling pathway could play in brain and cerebrospinal barriers permeability. IL-33 serum levels are significantly higher in children with severe Plasmodium falciparum malaria than children without complications or noninfected children. IL-33 levels are correlated with parasite load and strongly decrease with parasite clearance. We postulate that sequestration of infected erythrocytes or merozoites liberation from schizonts could amplify IL-33 production in endothelial cells, contributing either to malaria pathogenesis or recovery.
Collapse
|
16
|
Yang H, Hu Q, Yang P, Gao X, Luo L, Zhang D, Liu Q, Mao S. Benzene, 1,2,4-Trimethoxy-5-(2-Methyl-1-Propen-1-yl), a New Neuroprotective Agent, Treats Intracerebral Hemorrhage by Inhibiting Apoptosis, Inflammation, and Oxidative Stress. Neuroscience 2022; 503:69-82. [PMID: 36115514 DOI: 10.1016/j.neuroscience.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 10/31/2022]
Abstract
The highest disability rates and mortality among neurodegenerative diseases were caused by intracerebral hemorrhage (ICH). We previously proved that Benzene, 1,2,4-trimethoxy-5-(2-methyl-1-propen-1-yl) (BTY) has an inhibitory effect on sodium ion channel and an activation effect on GABAA receptor, which were related to the brain injury. Based on this, we aimed to investigate BTY's neuroprotection on intracerebral hemorrhage and its underlying mechanism. In the in vivo study, a stereotactic injection of collagenase VII in Sprague Dawley rats (0.5 U) induced ICH and the BTY was intraperitoneally injected at 2 h after ICH. The neurological deficit scores, blood-brain barrier (BBB) permeability, and other indicators were assessed 24 h after ICH. The results showed that the BTY reduced brain edema and hematoma volume, improved neurological function and BBB permeability, and inhibited inflammatory factors and neuron apoptosis. The cell experiments proved that the BTY suppressed oxidative stress, cell apoptosis, intracellular calcium influx, and stabilized mitochondrial membrane potential by reducing glutamate's excitotoxicity. This study for the first time exhibited desirable neuroprotection of BTY, indicating it may be a promising neuroprotective agent for ICH therapy.
Collapse
Affiliation(s)
- Huiyuan Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qingrui Hu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Peng Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xiaofeng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lijun Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Shengjun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
18
|
Wang X, Liu W, Liu Y, Jiao Y, Rong C, Liu Q, Shi W. Florfenicol induced renal inflammatory response and apoptosis via cell adhesion molecules signaling pathway. Poult Sci 2022; 101:102152. [PMID: 36152436 PMCID: PMC9508351 DOI: 10.1016/j.psj.2022.102152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Early use of florfenicol (FFC) can adversely affect the health of broilers. Our previous studies showed that FFC caused kidney injury in broilers. However, the mechanism by which FFC causes nephrotoxicity remains unclear. In order to further explore the regulatory effect of FFC on specific signal pathway in the injured kidneys and the interaction between genes and proteins in this signal pathway, the transcriptome and proteome sequencing were performed on the chick kidneys in the control group and the FFC treatment group. Then, the sequencing data were analyzed, and the screened genes and proteins were verified by real-time quantitative PCR (qPCR) and parallel reaction monitoring (PRM), respectively. The results of sequencing showed that FFC exposure altered significantly the expression levels of 657 genes and 477 proteins in chick kidneys. Among them, 9 significantly differentially expressed genes (including CD28, ICOS, BLB1, BLB2, DMB2, CLDN8, CLDN18, CLDN19, and NEGR1) and 3 significantly differentially expressed proteins (including CD28, ICOS, and CLDN8) were involved in the cell adhesion molecules signaling pathway. Further analysis found that, the changes of the above genes and proteins were related to inflammation and apoptosis of the tissues and histiocytes in chick kidneys. Therefore, the structure and morphology of renal tissues, the expression levels of inflammatory and apoptotic factors, and the apoptotic rate of renal histocytes were detected. It was found that compared with the control group, there was obvious inflammatory cell infiltration in renal tissues of the FFC treatment group. At the same time, the levels of pro-inflammatory factors and pro-apoptotic factors raised significantly, and the apoptotic rate of renal histocytes increased significantly. The above results confirmed that FFC induced inflammatory reaction and apoptosis in chick kidneys by activating the cell adhesion molecules signaling pathway.
Collapse
Affiliation(s)
- Xiao Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Wei Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Ying Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yulan Jiao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China; Ringpu (Baoding) Biological Pharmaceutical Co., Ltd., Baoding, 071001, China
| | - Chang Rong
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Qi Liu
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China; Veterinary Biotechnology Innovation Center of Hebei Province, Baoding, 071001, China.
| |
Collapse
|
19
|
Wang Z, Wu J, Jiang J, Ma Q, Song M, Xu T, Liu Y, Chen Z, Bao Y, Huang M, Zhang M, Ji N. KIF2A decreases IL-33 production and attenuates allergic asthmatic inflammation. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2022; 18:55. [PMID: 35718777 PMCID: PMC9208156 DOI: 10.1186/s13223-022-00697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022]
Abstract
Background The microtubule-dependent molecular motor protein Kinesin Family Member 2A (KIF2A) is down-regulated in asthmatic human airway epithelium. However, little is known about the roles of KIF2A as well as the possible underlying mechanisms in asthma. Methods House dust mite (HDM) extract was administered to establish a murine model of asthma. The expression of KIF2A, IL-33 and the autophagy pathways were detected. The plasmid pCMV-KIF2A was used to overexpress KIF2A in the airway epithelial cells in vitro and in vivo. IL-4, IL-5, IL-33 and other cytokines in bronchoalveolar lavage fluid (BALF) and lung tissues homogenates were measured. Results In response to the challenge of house dust mite (HDM) in vitro and in vivo, airway epithelial cells displayed decreased production of KIF2A. Meanwhile, autophagy and IL-33 were increased in HMD-treated epithelial cells. Mechanistically, KIF2A decreased autophagy via suppressing mTORC1 pathway in HDM-treated epithelial cells, which contributed to the reduced production of IL-33. Moreover, in vivo KIF2A transfection reduced IL-33 and autophagy in the lung, leading to the attenuation of allergic asthma. Conclusion KIF2A suppressed mTORC1-mediated autophagy and decreased the production of epithelial-derived cytokine IL-33 in allergic airway inflammation. These data indicate that KIF2A may be a novel target in allergic asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s13223-022-00697-9.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meijuan Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanan Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanmin Bao
- Department of Respiratory Medicine, Shenzhen Children's Hospital, Shenzhen, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Hua Y, Zhou L, Yang W, An W, Kou X, Ren J, Su H, Chen R, Zhang Z, Zou J, Zhao Z. Y-2 reduces oxidative stress and inflammation and improves neurological function of collagenase-induced intracerebral hemorrhage rats. Eur J Pharmacol 2021; 910:174507. [PMID: 34536364 DOI: 10.1016/j.ejphar.2021.174507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating disease, and there is currently no specific pharmacological treatment that can improve clinical outcomes. Y-2 sublingual tablets, each containing 30 mg edaravone and 6 mg (+)-borneol, is undergoing a phase III clinical trial for treatment of ischemic stroke in China. The purpose of the present study is to investigate the efficacy and potential mechanism of Y-2 in a rat model of collagenase IV injection induced ICH. Sublingual administration of Y-2 at the dose of 1, 3 and 6 mg/kg improved ICH-induced sensorimotor dysfunction, alleviated cell death and histopathological change, restored the hippocampal long-term potentiation (LTP), reduced brain edema and maintained blood-brain barrier (BBB) integrality in ICH rats. Further study demonstrated that Y-2 could reduce inflammatory response and oxidative stress by decreasing the levels of myeloperoxidase (MPO), ionized calcium-binding adaptor protein-1 (Iba-1), inflammatory cytokines and oxidative products, inhibit transcription factor nuclear factor-κB (NF-κB) activation, cyclooxygenase-2 (COX-2) and matrix metallopeptidase 9 (MMP-9) expression in brain tissue around in the core regions of hematoma. Importantly, the protective efficacy of Y-2 from ICH-induced injury was superior to edaravone. In conclusion, Y-2 sublingual tablets might be a promising therapeutic agent for the treatment of ICH.
Collapse
Affiliation(s)
- Yao Hua
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Limei Zhou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Weidong Yang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Wenji An
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Xiaolin Kou
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Jian Ren
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Hailang Su
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Rong Chen
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China
| | - Zhengping Zhang
- NeuroDawn Pharmaceutical Co., Ltd., Nanjing, 211199, China; State Key Laboratory of Translational Medicine and Innovative Drug, No.699-18, Xuanwu Avenue, Nanjing, Jiangsu, 210042, PR China.
| | - Jianjun Zou
- Department of Clinical Pharmacology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Zhihong Zhao
- Department of Neurology, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410005, China.
| |
Collapse
|
22
|
Wu X, Zhang Y, Zhang Y, Xia L, Yang Y, Wang P, Xu Y, Ren Z, Liu H. MST4 attenuates NLRP3 inflammasome-mediated neuroinflammation and affects the prognosis after intracerebral hemorrhage in mice. Brain Res Bull 2021; 177:31-38. [PMID: 34534636 DOI: 10.1016/j.brainresbull.2021.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The kinase MST4 limits inflammatory responses through direct phosphorylation of the adaptor TRAF6. TRAF6 interacts with NLRP3 to promote the activation of NLRP3 inflammasome. However, the role of MST4 in neuroinflammation after intracerebral hemorrhage (ICH) and how it interacts with NLRP3 inflammasome remain unclear. METHODS Mice were administered MST4 AAV four weeks before collagenase-induced ICH. ICH mice received either hesperadin (MST4 selective inhibitor), or MCC950 (NLRP3 inflammasome selective inhibitor). Neurological deficits and brain water content were assessed. Western blot and immunofluorescence were performed to evaluate the proteins content and localization in MST4/NLRP3 signaling pathway. RESULTS The expression of endogenous MST4 and NLRP3 was increased after ICH compared to sham group. MST4 and NLRP3 were respectively colocalized in microglia. Upregulation of MST4 gene inhibited the activation of NLRP3 inflammasome, the release of IL-1β and TNF-α, and significantly improved brain edema and neurological deficits. Hesperadin pretreatment inhibited the expression of MST4 and increased the expression of NLRP3 inflammasome-mediated proteins, which aggravated neurological deficits and cerebral edema. MCC950 markedly alleviated neurological deficits and brain edema but had no effect on the expression of MST4 protein. CONCLUSIONS MST4 alleviates inflammatory progression and brain injury in ICH mice possibly by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Xiaodong Wu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yan Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yulong Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Lei Xia
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Ping Wang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| | - Yang Xu
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institutes, Wannan Medical College, Wuhu, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China.
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui Province, China.
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei, Anhui Province, China; Department of Psychiatry, Anhui Psychiatric Center, Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
23
|
Role of Interleukin-1 Receptor-Like 1 (ST2) in Cerebrovascular Disease. Neurocrit Care 2021; 35:887-893. [PMID: 34231185 DOI: 10.1007/s12028-021-01284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Following both ischemic and hemorrhagic stroke, innate immune cells initiate a proinflammatory response that further exacerbate tissue injury in the acute phase, but these cells also play an important reparative role thereafter. Numerous cytokines and signaling pathways have been implicated in driving the deleterious proinflammatory response, but less is known about the mediators that connect the initial vascular injury to the systemic immune response and the relationship between proinflammatory and reparative immune responses. The Interleukin-33 (IL-33) and serum stimulation-2 (ST2) axis is an interleukin signaling pathway that is a prime candidate to fulfill this role. In this review, we describe the biology of the IL-33/ST2 system, present evidence that its soluble decoy receptor, soluble ST2 (sST2), plays a key role in secondary neurologic injury after stroke, and discuss this in the context of the known role of IL-33/ST2 in other disease.
Collapse
|
24
|
Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, Mao L, Wang H, Chen Z, Yang X. Therapeutic Opportunities of Interleukin-33 in the Central Nervous System. Front Immunol 2021; 12:654626. [PMID: 34079543 PMCID: PMC8165230 DOI: 10.3389/fimmu.2021.654626] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/04/2021] [Indexed: 01/14/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, is involved in various diseases. IL-33 exerts its effects via its heterodimeric receptor complex, which comprises suppression of tumorigenicity 2 (ST2) and the IL-1 receptor accessory protein (IL-1RAP). Increasing evidence has demonstrated that IL-33/ST2 signaling plays diverse but crucial roles in the homeostasis of the central nervous system (CNS) and the pathogenesis of CNS diseases, including neurodegenerative diseases, cerebrovascular diseases, infection, trauma, and ischemic stroke. In the current review, we focus on the functional roles and cellular signaling mechanisms of IL-33 in the CNS and evaluate the potential for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Yun Sun
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yankai Wen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Wen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wendong You
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shuang Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lin Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaofeng Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
IL-33 as a Novel Serum Prognostic Marker of Intracerebral Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5597790. [PMID: 33854693 PMCID: PMC8019392 DOI: 10.1155/2021/5597790] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 02/08/2023]
Abstract
Objective Interleukin 33 (IL-33) is a key cytokine involved in inflammation and oxidative stress. The significance of serum IL-33 levels on the prognosis of patients with intracerebral hemorrhage (ICH) has not been well studied. The purpose of this study is to determine whether there is a relationship between the serum IL-33 level and the prognosis of patients with ICH upon admission. Methods A total of 402 patients with confirmed ICH were included in this study. Their demographic data, medical history, laboratory data, imaging data, and clinical scores on admission were collected. At the same time, enzyme-linked immunoassay (ELISA) was used to detect the serum IL-33 levels of patients. The prognosis of patients was evaluated by mRS scale after 3 months, and mRS > 2 was defined as poor prognosis. Results Among 402 patients with ICH, the number of patients with good prognosis and poor prognosis after 3 months was 148 and 254, respectively. Compared with the ICH group with poor prognosis, the ICH group with good prognosis had lower baseline NHISS scores (p = 0.039) and hematoma volume (p = 0.025) and higher GCS scores (p < 0.001) and serum IL-33 levels (p < 0.001). The results of linear correlation analysis showed that serum IL-33 levels were significantly negatively correlated with baseline NHISS scores (r = −0.224, p = 0.033) and hematoma volume (r = −0.253, p = 0.046) but were significantly positively correlated with baseline GCS scores (r = 0.296, p = 0.020). The receiver operating characteristic curve (ROC) analysis showed that the sensitivity and specificity of serum IL-33 level in evaluating the prognosis of ICH were 72.1% and 74.3%, respectively. A cut-off value of serum IL-33 level < 109.3 pg/mL may indicate a poor prognosis for ICH. Conclusions Serum IL-33 level on admission may be a prognostic indicator of ICH, and its underlying mechanism needs further study.
Collapse
|
26
|
Zhang Y, Rui T, Luo C, Li Q. Mdivi-1 alleviates brain damage and synaptic dysfunction after intracerebral hemorrhage in mice. Exp Brain Res 2021; 239:1581-1593. [PMID: 33754161 DOI: 10.1007/s00221-021-06089-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022]
Abstract
As a selective inhibitor of mitochondrial fission protein dynamin-related protein-1 (Drp1), mitochondrial division inhibitor 1 (mdivi-1) can cross the blood-brain barrier (BBB) and exert neuroprotection. However, it remains unclear whether mdivi-1 can attenuate intracerebral hemorrhage (ICH)-induced secondary brain injury. This study was undertaken to characterize the roles of mdivi-1 in short-term and long-term behavioral outcomes, along with synaptic plasticity changes in mice after ICH. The results indicated mdivi-1 reversed Drp1 translocation and the morphologic changes of mitochondria, as well as ameliorated short-term neurobehavioral deficits, the BBB disruption and brain edema remarkably. In addition, mdivi-1 could rescue ICH-induced motor and memory dysfunctions. Mdivi-1 could also prevent ICH-induced reductions in synaptic proteins (synapsin I, PSD95) and phosphorylated cAMP-response element binding (p-CREB). In vitro, mdivi-1 inhibited hemin-induced hippocampal neuron death and improved neurite outgrowth. In conclusion, we found that mdivi-1 can alleviate short-term and long-term neurological deficits, synaptic dysfunction. These findings demonstrate that mdivi-1 may be beneficial in the treatment of secondary brain injury, synaptic dysfunction and neurological outcomes caused by ICH.
Collapse
Affiliation(s)
- Yunge Zhang
- Institute of Forensic Science, Changzhou De'an Hospital, Changzhou, 213003, Jiangsu, China
| | - Tongyu Rui
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|
27
|
Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo PC, Cai J, Qiao Y, Li M, Huang S, Wang H, Mo Y, Wang Q. Baicalin Inhibits Ferroptosis in Intracerebral Hemorrhage. Front Pharmacol 2021; 12:629379. [PMID: 33815110 PMCID: PMC8017143 DOI: 10.3389/fphar.2021.629379] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by high mortality and disability rates. To date, the exact etiology of ICH-induced brain injury is still unclear. Moreover, there is no effective treatment to delay or prevent disease progression currently. Increasing evidence suggests that ferroptosis plays a dominant role in the pathogenesis of ICH injury. Baicalin is a main active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has been reported to exhibit neuroprotective effects against ICH-induced brain injury as well as reduce iron deposition in multiple tissues. Therefore, in this study, we focused on the protective mechanisms of baicalin against ferroptosis caused by ICH using a hemin-induced in vitro model and a Type IV collagenase-induced in vivo model. Our results revealed that baicalin enhanced cell viability and suppressed ferroptosis in rat pheochromocytoma PC12 cells treated with hemin, erastin and RSL3. Importantly, baicalin showed anti-ferroptosis effect on primary cortical neurons (PCN). Furthermore, baicalin alleviated motor deficits and brain injury in ICH model mice through inhibiting ferroptosis. Additionally, baicalin existed no obvious toxicity towards the liver and kidney of mice. Evidently, ferroptosis is a key pathological feature of ICH and baicalin can prevent the development of ferroptosis in ICH. As such, baicalin is a potential therapeutic drug for ICH treatment.
Collapse
Affiliation(s)
- Lining Duan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Yang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiyu Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ligui Zhou
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Po-Chieh Lo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaying Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiqi Qiao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuiqing Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yousheng Mo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
28
|
Mo Y, Duan L, Yang Y, Liu W, Zhang Y, Zhou L, Su S, Lo PC, Cai J, Gao L, Liu Q, Chen X, Yang C, Wang Q, Chen T. Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage. NANOSCALE 2021; 13:3827-3840. [PMID: 33565555 DOI: 10.1039/d0nr06249a] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intracerebral hemorrhage (ICH) is a neurological disorder resulting from the nontraumatic rupture of blood vessels in the brain. Ferroptosis is a newly identified form of programmed cell death, which is an important pathological feature of ICH injury. At present, the therapeutic efficacy of ICH treatment is far from satisfactory, so it is urgent to develop a safer and more effective method to treat ICH injury. Resveratrol (Res), a widely used nonflavonoid polyphenol compound, plays a neuroprotective role in many diseases. However, its poor oral bioavailability limits its clinical application in ICH. Polymer nanoparticles (NPs) are a commonly used drug delivery matrix material with good biocompatibility. To improve its bioavailability and accumulation in the brain, we used NPs to encapsulate Res. These spherical Res nanoparticles (Res-NPs) had a particle size of 297.57 ± 7.07 nm, a PDI of 0.23 ± 0.02 and a zeta potential of -5.45 ± 0.27 mV. They could be taken up by Madin-Darby canine kidney (MDCK) cells through a variety of nonspecific endocytosis mechanisms, mainly mediated by clathrin and plasma membrane microcapsules. After entering the cell, Res-NPs tend to accumulate in the endoplasmic reticulum and lysosomes. In a zebrafish model, we observed that Res-NPs could transport across physiological barriers. In a Sprague-Dawley (SD) rat model, we found that Res-NPs had more desirable improvements in Res accumulation within the plasma and brain. Moreover, we demonstrated that Res-NPs were able to inhibit ferroptosis induced by erastin in HT22 mouse hippocampal cells, which are commonly used in in vitro studies to examine neuronal differentiation and neurotoxicity implicated in brain injuries or neurological diseases. Finally, in an ICH mouse model, we confirmed that Res-NPs are a safer and effective treatment for ICH injury. Collectively, Res-NPs are effective to improve Res brain delivery and its therapeutic efficacy in ICH treatment.
Collapse
Affiliation(s)
- Yousheng Mo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. Proc Natl Acad Sci U S A 2020; 117:32679-32690. [PMID: 33293423 DOI: 10.1073/pnas.2018497117] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating form of stroke affecting millions of people worldwide. Parenchymal hematoma triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia and macrophages carry out hematoma clearance, thereby facilitating functional recovery after ICH. Here, we elucidate a pivotal role for the interleukin (IL)-4)/signal transducer and activator of transcription 6 (STAT6) axis in promoting long-term recovery in both blood- and collagenase-injection mouse models of ICH, through modulation of microglia/macrophage functions. In both ICH models, STAT6 was activated in microglia/macrophages (i.e., enhanced expression of phospho-STAT6 in Iba1+ cells). Intranasal delivery of IL-4 nanoparticles after ICH hastened STAT6 activation and facilitated hematoma resolution. IL-4 treatment improved long-term functional recovery in young and aged male and young female mice. In contrast, STAT6 knockout (KO) mice exhibited worse outcomes than WT mice in both ICH models and were less responsive to IL-4 treatment. The construction of bone marrow chimera mice demonstrated that STAT6 KO in either the CNS or periphery exacerbated ICH outcomes. STAT6 KO impaired the capacity of phagocytes to engulf red blood cells in the ICH brain and in primary cultures. Transcriptional analyses identified lower level of IL-1 receptor-like 1 (ST2) expression in microglia/macrophages of STAT6 KO mice after ICH. ST2 KO diminished the beneficial effects of IL-4 after ICH. Collectively, these data confirm the importance of IL-4/STAT6/ST2 signaling in hematoma resolution and functional recovery after ICH. Intranasal IL-4 treatment warrants further investigation as a clinically feasible therapy for ICH.
Collapse
|
30
|
Kim MS, Ma S, Chelariu-Raicu A, Leuschner C, Alila HW, Lee S, Coleman RL, Sood AK. Enhanced Immunotherapy with LHRH-R Targeted Lytic Peptide in Ovarian Cancer. Mol Cancer Ther 2020; 19:2396-2406. [PMID: 32943548 DOI: 10.1158/1535-7163.mct-20-0030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/08/2020] [Accepted: 08/26/2020] [Indexed: 11/16/2022]
Abstract
Here, we examined the role of EP-100 [luteinizing hormone-releasing hormone (LHRH) ligand joined to a lytic peptide], improving the efficacy of immune checkpoint blockade. LHRH-R-positive murine ovarian cancer cells (ID8, IG10, IF5, and 2C12) were sensitive to EP-100 and were specifically killed at low micromolar levels through LHRH-R. EP-100 increased PD-L1 levels on murine ovarian cancer cells. In vivo syngeneic mouse models (ID8 and IG10) demonstrated that single-agent EP-100 reduced tumor volume, tumor weight, and ascites volume. The greatest reductions in tumor and ascites volume were observed with the combination of EP-100 with an anti-PD-L1 antibody. Immune profiling analysis showed that the population of CD8+ T cells, natural killer cells, dendritic cells, and macrophages were significantly increased in tumor and ascitic fluid samples treated with anti-PD-L1, EP-100, and the combination. However, monocytic myeloid suppressor cells, B cells, and regulatory T cells were decreased in tumors treated with anti-PD-L1, EP-100, or the combination. In vitro cytokine arrays revealed that EP-100 induced IL1α, IL33, CCL20, VEGF, and Low-density lipoprotein receptor (LDLR) secretion. Of these, we validated increasing IL33 levels following EP-100 treatment in vitro and in vivo; we determined the specific biological role of CD8+ T-cell activation with IL33 gene silencing using siRNA and Cas9-CRISPR approaches. In addition, we found that CD8+ T cells expressed very low level of LHRH-R and were not affected by EP-100. Taken together, EP-100 treatment had a substantial antitumor efficacy, particularly in combination with an anti-PD-L1 antibody. These results warrant further clinical development of this combination.
Collapse
Affiliation(s)
- Mark Seungwook Kim
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Reproductive Medicine Research Center, the Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Obstetrics and Gynecology, University of Hospital, LMU Munich, Germany
| | | | | | - Sanghoon Lee
- Department of System Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
31
|
Chen G, Gao C, Yan Y, Wang T, Luo C, Zhang M, Chen X, Tao L. Inhibiting ER Stress Weakens Neuronal Pyroptosis in a Mouse Acute Hemorrhagic Stroke Model. Mol Neurobiol 2020; 57:5324-5335. [PMID: 32880859 DOI: 10.1007/s12035-020-02097-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/17/2023]
Abstract
Intracerebral hemorrhage (ICH) is a form of stroke, characterized by high morbidity and mortality and currently lacks specific therapy. ICH leads to endoplasmic reticulum (ER) stress, which can induce neurological impairment through crosstalk with programmed cell death (PCD). Pyroptosis, a newly discovered form of PCD, has received attention because of its close relationship with some certain diseases, such as traumatic brain injury and ischemic and hemorrhagic stroke. However, the relationship between ER stress and pyroptosis in ICH remains unclear. In this study, we investigated the role of ER stress in evoking neuronal pyroptosis and related mechanisms in a mouse ICH model. We used tauroursodeoxycholic acid (TUDCA) to inhibit ER stress and observed that TUDCA reduces neuronal pyroptosis and has a neuroprotective role. We explored the potential mechanisms underlying the regulation of neuronal pyroptosis by ER stress through testing the expression of interleukin-13 (IL-13). We found that ER stress inhibition alleviates neuronal pyroptosis through decreasing the expression of IL-13 after ICH. In summary, this study revealed that IL-13 is involved in ER stress-induced neuronal pyroptosis after ICH, pointing to IL-13 as a novel therapeutic target for ICH treatment.
Collapse
Affiliation(s)
- Guang Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Cheng Gao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Ya'nan Yan
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Tao Wang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Mingyang Zhang
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China
| | - Xiping Chen
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China.
| | - Luyang Tao
- Department of Forensic Medicine, Medical School of Soochow University, 178 East Ganjiang Road, Suzhou, 215213, China.
| |
Collapse
|
32
|
Gao Y, Luo C, Yao Y, Huang J, Fu H, Xia C, Ye G, Yu L, Han J, Fan Y, Tao L. IL-33 Alleviated Brain Damage via Anti-apoptosis, Endoplasmic Reticulum Stress, and Inflammation After Epilepsy. Front Neurosci 2020; 14:898. [PMID: 32982679 PMCID: PMC7487557 DOI: 10.3389/fnins.2020.00898] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-33 belongs to a novel chromatin-associated cytokine newly recognized by the IL-1 family, and its specific receptor is the orphan IL-1 receptor (ST2). Cumulative evidence suggests that IL-33 plays a crucial effect on the pathological changes and pathogenesis of central nervous system (CNS) diseases and injuries, such as recurrent neonatal seizures (RNS). However, the specific roles of IL-33 and its related molecular mechanisms in RNS remain confused. In the present study, we investigated the protein expression changes and co-localized cell types of IL-33 or ST2, as well as the effect of IL-33 on RNS-induced neurobehavioral defects, weight loss, and apoptosis. Moreover, an inhibitor of IL-33, anti-IL-33 was performed to further exploited underlying mechanisms. We found that administration of IL-33 up-regulated the expression levels of IL-33 and ST2, and increased the number of its co-localization with Olig-2-positive oligodendrocytes and NeuN-positive neurons at 72 h post-RNS. Noteworthily, RNS-induced neurobehavioral deficits, bodyweight loss, and spatial learning and memory impairment, as well as cell apoptosis, were reversed by IL-33 pretreatment. Additionally, the increase in IL-1β and TNF-α levels, up-regulation of ER stress, as well as a decrease in anti-apoptotic protein Bcl-2 and an increase in pro-apoptotic protein CC-3 induced by RNS are prevented by administration of IL-33. Moreover, IL-33 in combination with Anti-IL-33 significantly inverted the effects of IL-33 or Anti-IL-33 alone on apoptosis, ER stress, and inflammation. Collectively, these data suggest that IL-33 attenuates RNS-induced neurobehavioral disorders, bodyweight loss, and spatial learning and memory deficits, at least in part through mechanisms involved in inhibition of apoptosis, ER stress, and neuro-inflammation.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Forensic Science, Medical College of Soochow University, Suzhou, China.,Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China.,Shanghai Key Laboratory of Forensic Medicine, Department of Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chengliang Luo
- Department of Forensic Science, Medical College of Soochow University, Suzhou, China
| | - Yi Yao
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Junjie Huang
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Huifang Fu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,Department of Pathology, Traditional Chinese Medicine Hospital, Nanjing, China
| | - Chongjian Xia
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Guanghua Ye
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Linsheng Yu
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Junge Han
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Yanyan Fan
- Department of Forensic Science, Wenzhou Medical University, Wenzhou, China.,The Forensic Center, Wenzhou Medical University, Wenzhou, China.,Center of Basic Medical Experiment, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, China
| | - Luyang Tao
- Department of Forensic Science, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
33
|
Compound K inhibits autophagy-mediated apoptosis induced by oxygen and glucose deprivation/reperfusion via regulating AMPK-mTOR pathway in neurons. Life Sci 2020; 254:117793. [PMID: 32416164 DOI: 10.1016/j.lfs.2020.117793] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/26/2020] [Accepted: 05/12/2020] [Indexed: 12/27/2022]
|
34
|
Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Curr Med Chem 2020; 27:2161-2188. [DOI: 10.2174/0929867326666181129095309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Metabolic pathways perturbations lead to skeletal muscular atrophy in the
cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic
pathways that impair the muscle integrity and function. Hence, this review primarily concentrates
on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.
Objective:
This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during
muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines
and their regulated molecular signaling pathways which increase the protein degradation will be
discussed.
Results:
During normal conditions, pro-inflammatory cytokines are required to balance anabolism
and catabolism and to maintain normal myogenesis process. However, during muscle wasting their
enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory
cytokines primarily exert their effects by increasing the expression of calpains and E3
ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory
cytokines also locally suppress the IGF-1and insulin functions, hence increase the
FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein
metabolism.
Conclusion:
Current advancements have revealed that the muscle mass loss during skeletal muscular
atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available
in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines
that need to be further understood and explored.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| |
Collapse
|
35
|
Nian JB, Zeng M, Zheng J, Zeng LY, Fu Z, Huang QJ, Wei X. Epithelial cells expressed IL-33 to promote degranulation of mast cells through inhibition on ST2/PI3K/mTOR-mediated autophagy in allergic rhinitis. Cell Cycle 2020; 19:1132-1142. [PMID: 32298206 DOI: 10.1080/15384101.2020.1749402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nasal epithelial cells are the first barrier against allergen infiltration in allergic rhinitis (AR), and the relationship between nasal epithelial cells and mast cell-mediated hypersensitivity remains unclear. This study aimed to investigate the possible association between allergen-challenged nasal epithelial cells (AR-HNEpC) and mast cell degranulation in AR. Our data revealed that calcium influx and degranulation were increased in AR-HNEpC-co-cultured mast cells. Expression of IL-33, a factor that binds to ST2 receptors on mast cells and regulates their degranulation, was elevated in AR-HNEpC. Blocking IL-33/ST2 pathway activated autophagy and inhibited degranulation and inflammatory factor release in mast cells. Furthermore, PI3K/mTOR was increased in IL-33-treated mast cells. Inhibition on PI3K/mTOR pathway enhanced autophagy and inhibited degranulation. Analysis using an in vivo AR model supported the above findings. In conclusion, IL-33 from epithelial cells promotes degranulation of mast cells in AR through inhibition on ST2/PI3K/mTOR-mediated autophagy, which provides a potential therapeutic target for the disease.Abbreviations: AR: allergic rhinitis; IL: interleukin; TNF-α: tumor necrosis factor-alpha; INF-γ: interferon-gamma; HNEpC: human nasal epithelial cell line; ATCC: American Type Culture Collection; C48/80: compound 48/80; 3-MA: 3-methyladenine; qPCR: quantitative PCR; AR-HNEpC: dust mite allergen-treated nasal epithelial cells; IgE: immunoglobulin E; Atg7: autophagy-related gene 7.
Collapse
Affiliation(s)
- Jia-Bin Nian
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Lian-Ya Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Zhi Fu
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Qiu-Ju Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, P.R. China
| |
Collapse
|
36
|
Chd8 Rescued TBI-Induced Neurological Deficits by Suppressing Apoptosis and Autophagy Via Wnt Signaling Pathway. Cell Mol Neurobiol 2020; 40:1165-1184. [DOI: 10.1007/s10571-020-00806-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
|
37
|
Rui T, Wang Z, Li Q, Wang H, Wang T, Zhang M, Tao L, Luo C. A TrkB receptor agonist N-acetyl serotonin provides cerebral protection after traumatic brain injury by mitigating apoptotic activation and autophagic dysfunction. Neurochem Int 2020; 132:104606. [DOI: 10.1016/j.neuint.2019.104606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 01/26/2023]
|
38
|
Shan H, Qiu J, Chang P, Chu Y, Gao C, Wang H, Chen G, Luo C, Wang T, Chen X, Zhang M, Tao L. Exogenous Hydrogen Sulfide Offers Neuroprotection on Intracerebral Hemorrhage Injury Through Modulating Endogenous H 2S Metabolism in Mice. Front Cell Neurosci 2019; 13:349. [PMID: 31440142 PMCID: PMC6693577 DOI: 10.3389/fncel.2019.00349] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/15/2019] [Indexed: 11/21/2022] Open
Abstract
Hydrogen sulfide (H2S), an important endogenous signaling molecule, has a significant neuroprotective role in the central nervous system. In this study, we examined the protective effects of exogenous H2S against intracerebral hemorrhage (ICH), as well as its underlying mechanisms. We investigated the effects of exogenous H2S on ICH using Western blotting, injury volume, measurement of brain edema, propidium iodide (PI) staining, and behavior assessment, respectively. We found that endogenous H2S production was downregulated in the brain after ICH, which is caused by the decrease in cystathionine β-synthase (CBS) as the predominant cerebral H2S-generating enzyme in the brain. Treatment with sodium hydrosulfide (NaHS; an H2S producer) could restore the H2S production and the expression of CBS. NaHS could also attenuate brain edema, injury volume, and neurological deficits in the Morris water maze test after ICH. Western blotting results indicated that H2S pretreatment reversed the increase in caspase 3 cleavage and the decrease in Bcl-2, suppressed the activation of autophagy marker (LC3II and Beclin-1), and maintained the p62 level in injured striatum post-ICH. However, H2S could not restore brain CBS expression and H2S content, reduce brain edema, and improve motor performance and memory function after ICH through modulating autophagy and apoptosis when pretreated with the CBS inhibitor aminooxyacetic acid (AOAA). We also found that AOAA reduced the endogenous H2S production through inhibiting the enzyme activity of CBS rather than modulating the expression of CBS protein level. These present results indicate that H2S may possess potential therapeutic value in the treatment of brain injury after ICH, and the protective effect of exogenous H2S against ICH may be not a direct action but an indirect effect through inducing endogenous H2S metabolism responses.
Collapse
Affiliation(s)
- Haiyan Shan
- Institute of Forensic Sciences, Soochow University, Suzhou, China.,Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianping Qiu
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Pan Chang
- Central Laboratory, The Second Affiliated Hospital of Xi'an Medical College, Xi'an, China
| | - Yang Chu
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Cheng Gao
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Haocheng Wang
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Guang Chen
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Chengliang Luo
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Tao Wang
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Xiping Chen
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Soochow University, Suzhou, China.,School of Pharmacy, Soochow University, Suzhou, China
| | - Luyang Tao
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| |
Collapse
|
39
|
Different intensity of autophagy regulate interleukin-33 to control the uncontrolled inflammation of acute lung injury. Inflamm Res 2019; 68:665-675. [PMID: 31147742 DOI: 10.1007/s00011-019-01250-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES Cytokines participate in the progression of acute respiratory distress syndrome (ARDS), and uncontrolled inflammation is a central issue of acute lung injury (ALI). Interleukin (IL)-33 is a nuclear protein that has been reported to have a proinflammatory role in ARDS. Studies have shown that excessive autophagy may lead to the increased mortality of patients with ARDS, while several investigations indicated that IL-33 and autophagy interact with one another. The present study sought to clarify the relation between autophagy and IL-33's proinflammatory role in ARDS. METHODS We built a lipopolysaccharide (LPS)-induced lung injury mouse model. To study the relationship between IL-33 and autophagy, mice were pretreated with rapamycin (RAPA; a promoter of autophagy) and 3-methyladenine (3-MA; an inhibitor of autophagy) prior to LPS administration. The expression of IL-33 in serum and bronchoalveolar lavage fluid (BALF) was measured. Immunohistochemistry of IL-33 in lung tissue was examined. Th1,Th2 cytokines/chemokine levels in serum and BALF were tested. Further, the severity of lung injury was evaluated. And the nuclear factor-kappa B (NF-κB)'s nuclear translocation in lung tissue was detected. RESULTS In comparison with the control group, the levels of IL-33 in serum and BALF were increased after LPS injection. Th1 cytokines/chemokine levels were significantly increased in serum and BALF, while Th2 cytokine levels changed only a little. The levels of IL-33 in serum and BALF of the RAPA group was significantly increased after LPS was injected as compared with the LPS group; additionally, the levels of IL-33 in serum and BALF of the 3-MA group was significantly reduced after LPS was injected as compared with the LPS group, and that lung injury was ameliorated after 3-MA pretreatment. Th1 cytokines and chemokines in both serum and BALF were also decreased in the 3-MA group. Furthermore, we found that the nuclear translocation of NF-κB increased after LPS administration, and NF-κB's nuclear translocation was significantly increased in comparison with the LPS group after RAPA pretreatment. In contrast, NF-κB's nuclear translocation decreased after 3-MA pretreatment as compared with the LPS group. CONCLUSIONS These findings showed that autophagy might regulate IL-33 by activating or inhibiting NF-κB to control the uncontrolled inflammation of acute lung injury.
Collapse
|
40
|
Chen Z, Xu N, Dai X, Zhao C, Wu X, Shankar S, Huang H, Wang Z. Interleukin-33 reduces neuronal damage and white matter injury via selective microglia M2 polarization after intracerebral hemorrhage in rats. Brain Res Bull 2019; 150:127-135. [PMID: 31129170 DOI: 10.1016/j.brainresbull.2019.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Interleukin-33 (IL-33) is closely related to the regulation of immunological cells, and its receptor ST2 is a member of the interleukin-1 (IL-1) receptor family. Inflammatory responses play critical roles in neuronal damage and white matter injury (WMI) post intracerebral hemorrhage (ICH). In this study, we tried to explore the role of IL-33 in neuronal damage and WMI after ICH and the underlying mechanisms. The in vivo ICH model was performed by autologous whole blood injection into the right basal ganglia in rats. Immunoblotting, immunofluorescence, brain water content measurement, FJB staining, and TUNEL staining were applied in this study. IL-33 expression was increased in whole brain tissues post-ICH, mainly rapidly increased in ipsilateral astrocyte and microglia, but stayed at a low level in neurons. Intracerebroventricular infusion of IL-33 after ICH attenuated short-term and long-term neurological deficits, WMI, neuronal degeneration, cell death and promoted the transformation of microglia phenotype from M1 to M2 in brain tissues after ICH. These results suggest that IL-33 reduces neuronal damage and WMI by promoting microglia M2 polarization after ICH, thereby improving the outcomes of neurological function.
Collapse
Affiliation(s)
- Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Na Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, 200032, China.
| | - Xuejiao Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, 410008, China.
| | - Chongshun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Sandhya Shankar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Huachen Huang
- Department of Neurology, First affiliate Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
41
|
Ma J, Ni H, Rui Q, Liu H, Jiang F, Gao R, Gao Y, Li D, Chen G. Potential Roles of NIX/BNIP3L Pathway in Rat Traumatic Brain Injury. Cell Transplant 2019; 28:585-595. [PMID: 30961359 PMCID: PMC7103607 DOI: 10.1177/0963689719840353] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
NIX/BNIP3L is known as a proapoptotic protein that is also related to mitophagy. Previous
reports have shown that NIX could be involved in neuronal apoptosis after intracerebral
hemorrhage, but it also plays a protective role in mitophagy in ischemic brain injury. How
NIX works in traumatic brain injury (TBI) is unclear. Thus, this study was designed to
observe the expression of NIX and perform a preliminary exploration of the possible
effects of NIX in a rat TBI model. The results showed that NIX expression decreased after
damage, and colocalized with neuronal cells in cortical areas. Moreover, when we induced
upregulation of NIX, autophagy was increased, while neuronal apoptosis and brain water
content decreased along with neurological deficits. These findings remind us that NIX
probably plays a neuroprotective role in TBI through autophagy and apoptosis pathways.
Collapse
Affiliation(s)
- Jialing Ma
- 1 Department of Anesthesia, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Haibo Ni
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Qin Rui
- 3 Department of Laboratory, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Huixiang Liu
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Feng Jiang
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Rong Gao
- 2 Department of Neurosurgery, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Yanping Gao
- 1 Department of Anesthesia, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Di Li
- 4 Department of Neurosurgery and Translational Medicine Center, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Gang Chen
- 5 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, SuZhou, China
| |
Collapse
|
42
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Duan Y, Dong Y, Hu H, Wang Q, Guo S, Fu D, Song X, Kalvakolanu DV, Tian Z. IL-33 contributes to disease severity in Psoriasis-like models of mouse. Cytokine 2019; 119:159-167. [PMID: 30913451 DOI: 10.1016/j.cyto.2019.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Immune cells infiltrating the psoriatic skin secrete high amounts of pro-inflammatory cytokines IL-17, TNF-α, IL-21 and IL-36 resulting in chronic inflammation. However, the exact cellular and molecular mechanisms have not been fully understood. We report here elevation of IL-33 expression in psoriatic lesions. Studies in imiquimod (IMQ)-induced mice with psoriatic inflammation confirmed a critical role for IL-33 in driving the disease. IL-33 reduces the CD4+ and CD8+ cells, inhibits autophagy in IMQ-treated mouse skin, and promoted tyrosyl phosphorylation of STAT3. Thus, IL-33 appears to be a major risk factor for severity of psoriasis-like skin inflammation. Our findings may open new perspectives for understanding the mechanisms and developing a therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Yaju Duan
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Henan, Xinxiang 453000, China
| | - Yonghua Dong
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Henan, Xinxiang 453000, China
| | - Hua Hu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Henan, Xinxiang 453000, China
| | - Qiumei Wang
- Department of Dermatology, The Central Hospital of Xinxiang, Henan, Xinxiang 453000, China
| | - Sheng Guo
- Institute of Precision Medicine, Xinxiang Medical University, School of Basic Medical Sciences, Xinxiang Medical University, Henan, Xinxiang 453000, China; Department of Immunology, Xinxiang Medical University, Henan, Xinxiang 453000, China
| | - Dandan Fu
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Henan, Xinxiang 453000, China
| | - Xiangfeng Song
- Institute of Precision Medicine, Xinxiang Medical University, School of Basic Medical Sciences, Xinxiang Medical University, Henan, Xinxiang 453000, China; Department of Immunology, Xinxiang Medical University, Henan, Xinxiang 453000, China
| | - Dhan V Kalvakolanu
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Zhongwei Tian
- Department of Dermatology, The First Affiliated Hospital of Xinxiang Medical University, Henan, Xinxiang 453000, China.
| |
Collapse
|
44
|
Wang Z, Shi L, Hua S, Qi C, Fang M. IL-33 ameliorates experimental colitis involving regulation of autophagy of macrophages in mice. Cell Biosci 2019; 9:10. [PMID: 30651971 PMCID: PMC6332617 DOI: 10.1186/s13578-019-0271-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Background Previously, we have demonstrated that IL-33 administration protecting TNBS-induced experimental colitis is associated with facilitation of Th2/Tregs responses in mice. However, whether IL-33 regulates autophagy to ameliorate experimental colitis is unclear. Results IL-33 administration (2 μg/day, intraperitoneal injection), while facilitating Th2/Tregs responses, also enhances the autophagy in mice with TNBS-induced colitis as well as macrophages. In the meantime, we observed that inhibition of the autophagy with 3-methyladenine (3-MA) (24 mg/kg, intraperitoneal injection) in mice exacerbates TNBS-induced experimental colitis. On the contrary, administration of rapamycin (2 mg/kg,intragastric administration), an autophagy-enhancer, alleviates the colitis in mice. In vivo, Immunofluorescence analysis revealed that TNBS combined with IL-33 enhanced the autophagy of macrophages in the inflammatory gut tissue. In vitro, treatment with IL-33 promoted the autophagy of macrophages generated from bone marrow cells in dose-dependant manner. Furthermore, the effect of autophagy-enhancement by IL-33 is TLR4 signaling pathway dependant. Our notion was further confirmed by IL-33-deficient bone marrow-derived macrophages cells. Conclusions IL-33 regulates the autophagy is a new immunoregulatory property on TNBS-induced experimental colitis in mice.
Collapse
Affiliation(s)
- Zhongyan Wang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, China
| | - Lifeng Shi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, China
| | - Shuyao Hua
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, China
| | - Chang Qi
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, China
| | - Min Fang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13# Hangkong Road, Wuhan, China
| |
Collapse
|
45
|
Nishizaki T. IL-33 suppresses GSK-3β activation through an ST2-independent MyD88/TRAF6/RIP/PI3K/Akt pathway. Heliyon 2018; 4:e00971. [PMID: 30533546 PMCID: PMC6260469 DOI: 10.1016/j.heliyon.2018.e00971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/14/2018] [Accepted: 11/21/2018] [Indexed: 01/17/2023] Open
Abstract
Aims The present study was conducted to explore the effect of interleukin-33 (IL-33) on glycogen synthase kinase-3β (GSK-3β) activation involving Tau phosphorylation, a critical causative factor for Alzheimer's disease (AD). Main methods Experiments were performed using PC-12 cells. Target proteins were knocked-down by transfecting with the siRNA for each protein. The kinase activities were assessed by monitoring phosphorylation of Thr308 and Ser473 for Akt and phosphorylation of Ser9 and Tyr216 for GSK-3β in the Western blotting. Key findings Exogenously applied IL-33 activated Akt and inactivated GSK-3β. IL-33-induced Akt activation and GSK-3β inactivation were significantly inhibited by knocking-down myeloid differentiation factor 88 (MyD88), tumor necrosis factor receptor associated factor 6 (TRAF6), receptor-interacting protein (RIP), or phosphatidylinositol 3 kinase (PI3K). IL-33 neutralized amyloid β1-42 (Aβ1-42)-induced Akt inactivation and GSK-3β activation. Significance The results of the present study show that IL-33 inactivates GSK-3β through an ST2-independent MyD88/TRAF6/RIP/PI3K/Akt pathway and inhibits Aβ1-42-induced GSK-3β activation. This suggests that IL-33 could restrain GSK-3β-mediated Tau phosphorylation in AD.
Collapse
Affiliation(s)
- Tomoyuki Nishizaki
- Shanghai University of Traditional Chinese Medicine, Education College of Medicine, Osaka, 530-0047, Japan.,Innovative Bioinformation Research Organization, Kobe, 651-1223, Japan
| |
Collapse
|
46
|
Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and Function of IL-33/ST2 Axis in the Central Nervous System Under Normal and Diseased Conditions. Front Immunol 2018; 9:2596. [PMID: 30515150 PMCID: PMC6255965 DOI: 10.3389/fimmu.2018.02596] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Interleukin-33 (IL-33) is a well-recognized immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. The abundant expression of IL-33 in brain and spinal cord prompted many scientists to explore its unique role in the central nervous system (CNS) under physiological and pathological conditions. Indeed emerging evidence from over a decade's research suggests that IL-33 acts as one of the key molecular signaling cues coordinating the network between the immune and CNS systems, particularly during the development of neurological diseases. Here, we highlight the recent advances in our knowledge regarding the distribution and cellular localization of IL-33 and its receptor ST2 in specific CNS regions, and more importantly the key roles IL-33/ST2 signaling pathway play in CNS function under normal and diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui-Rong Jiang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
47
|
Ye L, Gao L, Cheng H. Inflammatory Profiles of the Interleukin Family and Network in Cerebral Hemorrhage. Cell Mol Neurobiol 2018; 38:1321-1333. [PMID: 30027390 DOI: 10.1007/s10571-018-0601-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Cerebral hemorrhage is a series of devastating cerebrovascular diseases with high mortality, morbidity and recurrence rate. Localized and systemic immuno-reactions are involved. Aggregation of immunocytes, which were both recruited from the peripheral circulation and resident in the central nervous system, is induced and activated by hematoma-related blood components. Subsequently, various cytokines, chemokines, free radicals and toxic chemicals are secreted to participant host defense responses. Among these, neuro-inflammation plays critical roles in both the pathologic processes of secondary injuries and recovery of neural damages. Numerous treatment strategies have been proposed, aiming at controlling the balance between anti- and proinflammation. Here, we summarized our current understanding and potential clinical applications for cytokines of the interleukin family in the pathogenesis of hemorrhagic stroke. In addition, we conducted protein-protein network, gene ontology and KEGG analysis on the interleukins using online bioinformatic tools to further elaborate the comprehensive mechanisms of interleukins in cerebral hemorrhage.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi 218, Hefei, 230022, People's Republic of China
- Institute of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi 218, Hefei, 230022, People's Republic of China
| | - Lu Gao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi 218, Hefei, 230022, People's Republic of China
- Institute of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi 218, Hefei, 230022, People's Republic of China
| | - Hongwei Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi 218, Hefei, 230022, People's Republic of China.
- Institute of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Jixi 218, Hefei, 230022, People's Republic of China.
| |
Collapse
|
48
|
Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev 2018; 43:38-46. [PMID: 30031632 DOI: 10.1016/j.cytogfr.2018.07.001] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023]
Abstract
Autophagy is a ubiquitous cellular process that regulates cell growth, survival, development and death. Its process is closely associated with diverse conditions, such as liver diseases, neurodegenerative diseases, myopathy, heart diseases, cancer, immunization, and inflammatory diseases. Thus, understanding the modulation of autophagy may provide novel insight into potential therapeutic targets. Autophagy is closely intertwined with inflammatory and immune responses, and cytokines may help mediate this interaction. Autophagy has been shown to regulate, and be regulated by, a wide range of proinflammatory cytokines. This review aims to summarize recent progress in elucidating the interplay between autophagy and proinflammatory cytokines, including IFN-γ, TNF-α, IL-17, and cytokines of the IL-1 family (e.g., IL-1α, IL-1β, IL-33, and IL-36).
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Ming Yao
- Trauma Research Center, First Hospital Affiliated to the Chinese PLA General Hospital, No.51 Fu-Cheng Road, Beijing 100048, China.
| |
Collapse
|
49
|
Targeting the IL33-NLRP3 axis improves therapy for experimental cerebral malaria. Proc Natl Acad Sci U S A 2018; 115:7404-7409. [PMID: 29954866 DOI: 10.1073/pnas.1801737115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cerebral malaria (CM) is a serious neurological complication caused by Plasmodium falciparum infection. Currently, the only treatment for CM is the provision of antimalarial drugs; however, such treatment by itself often fails to prevent death or development of neurological sequelae. To identify potential improved treatments for CM, we performed a nonbiased whole-brain transcriptomic time-course analysis of antimalarial drug chemotherapy of murine experimental CM (ECM). Bioinformatics analyses revealed IL33 as a critical regulator of neuroinflammation and cerebral pathology that is down-regulated in the brain during fatal ECM and in the acute period following treatment of ECM. Consistent with this, administration of IL33 alongside antimalarial drugs significantly improved the treatment success of established ECM. Mechanistically, IL33 treatment reduced inflammasome activation and IL1β production in microglia and intracerebral monocytes in the acute recovery period following treatment of ECM. Moreover, treatment with the NLRP3-inflammasome inhibitor MCC950 alongside antimalarial drugs phenocopied the protective effect of IL33 therapy in improving the recovery from established ECM. We further showed that IL1β release from macrophages was stimulated by hemozoin and antimalarial drugs and that this was inhibited by MCC950. Our results therefore demonstrate that manipulation of the IL33-NLRP3 axis may be an effective therapy to suppress neuroinflammation and improve the efficacy of antimalarial drug treatment of CM.
Collapse
|
50
|
Neuroprotective potential of glibenclamide is mediated by antioxidant and anti-apoptotic pathways in intracerebral hemorrhage. Brain Res Bull 2018; 142:18-24. [PMID: 29933037 DOI: 10.1016/j.brainresbull.2018.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/04/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022]
Abstract
The sulfonylurea receptor 1 (SUR1)-regulated NCca-ATP channels were progressively upregulated and demonstrated unchecked opening in central nervous system (CNS) injury, which induced cerebral damage. Glibenclamide (GLI) can block NCca-ATP channels and consequently exert protective effects. Recent studies have found that GLI has antioxidative effects. In this study, we primarily explored the antioxidative effects of GLI in a rat model of intracerebral hemorrhage (ICH). We found that GLI could scavenge free radicals, reduce activated-caspase-3 expression, increase the Bcl-2/Bax ratio, inhibit apoptosis, and improve functional neurological outcomes in a rat model of ICH.
Collapse
|