1
|
Kruyer A. Astrocyte Heterogeneity in Regulation of Synaptic Activity. Cells 2022; 11:cells11193135. [PMID: 36231097 PMCID: PMC9562199 DOI: 10.3390/cells11193135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 02/07/2023] Open
Abstract
Our awareness of the number of synapse regulatory functions performed by astroglia is rapidly expanding, raising interesting questions regarding astrocyte heterogeneity and specialization across brain regions. Whether all astrocytes are poised to signal in a multitude of ways, or are instead tuned to surrounding synapses and how astroglial signaling is altered in psychiatric and cognitive disorders are fundamental questions for the field. In recent years, molecular and morphological characterization of astroglial types has broadened our ability to design studies to better analyze and manipulate specific functions of astroglia. Recent data emerging from these studies will be discussed in depth in this review. I also highlight remaining questions emerging from new techniques recently applied toward understanding the roles of astrocytes in synapse regulation in the adult brain.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
2
|
Kumagawa T, Moro N, Maeda T, Kobayashi M, Furukawa Y, Shijo K, Yoshino A. Anti-inflammatory effect of P2Y1 receptor blocker MRS2179 in a rat model of traumatic brain injury. Brain Res Bull 2022; 181:46-54. [DOI: 10.1016/j.brainresbull.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 02/07/2023]
|
3
|
Pietrowski MJ, Gabr AA, Kozlov S, Blum D, Halle A, Carvalho K. Glial Purinergic Signaling in Neurodegeneration. Front Neurol 2021; 12:654850. [PMID: 34054698 PMCID: PMC8160300 DOI: 10.3389/fneur.2021.654850] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Purinergic signaling regulates neuronal and glial cell functions in the healthy CNS. In neurodegenerative diseases, purinergic signaling becomes dysregulated and can affect disease-associated phenotypes of glial cells. In this review, we discuss how cell-specific expression patterns of purinergic signaling components change in neurodegeneration and how dysregulated glial purinergic signaling and crosstalk may contribute to disease pathophysiology, thus bearing promising potential for the development of new therapeutical options for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marie J Pietrowski
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Amr Ahmed Gabr
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Stanislav Kozlov
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| | - Annett Halle
- Microglia and Neuroinflammation Laboratory, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute of Neuropathology, University of Bonn, Bonn, Germany
| | - Kevin Carvalho
- University of Lille, Inserm, CHU Lille, U1172 LilNCog - Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, Labex DISTALZ, Lille, France
| |
Collapse
|
4
|
Astrocytes promote ethanol-induced enhancement of intracellular Ca 2+ signals through intercellular communication with neurons. iScience 2021; 24:102436. [PMID: 33997707 PMCID: PMC8105650 DOI: 10.1016/j.isci.2021.102436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Ethanol (EtOH) abuse induces significant mortality and morbidity worldwide because of detrimental effects on brain function. Defining the contribution of astrocytes to this malfunction is imperative to understanding the overall EtOH effects due to their role in homeostasis and EtOH-seeking behaviors. Using a highly controllable in vitro system, we identify chemical signaling mechanisms through which acute EtOH exposure induces a modulatory feedback loop between neurons and astrocytes. Neuronally-derived purinergic signaling primed a subpopulation of astrocytes to respond to subsequent acute EtOH exposures (SEastrocytes: signal enhanced astrocytes) with greater calcium signal strength. Generation of SEastrocytes arose from astrocytic hemichannel-derived ATP and accumulation of its metabolite adenosine within the astrocyte microenvironment to modulate adenylyl cyclase and phospholipase C activity. These results highlight an important role of astrocytes in shaping the overall physiological responsiveness to EtOH and emphasize the unique plasticity of astrocytes to adapt to single and multiple exposures of EtOH.
Collapse
|
5
|
Rocchio F, Tapella L, Manfredi M, Chisari M, Ronco F, Ruffinatti FA, Conte E, Canonico PL, Sortino MA, Grilli M, Marengo E, Genazzani AA, Lim D. Gene expression, proteome and calcium signaling alterations in immortalized hippocampal astrocytes from an Alzheimer's disease mouse model. Cell Death Dis 2019; 10:24. [PMID: 30631041 PMCID: PMC6328590 DOI: 10.1038/s41419-018-1264-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/29/2022]
Abstract
Evidence is rapidly growing regarding a role of astroglial cells in the pathogenesis of Alzheimer’s disease (AD), and the hippocampus is one of the important brain regions affected in AD. While primary astroglial cultures, both from wild-type mice and from rodent models of AD, have been useful for studying astrocyte-specific alterations, the limited cell number and short primary culture lifetime have limited the use of primary hippocampal astrocytes. To overcome these limitations, we have now established immortalized astroglial cell lines from the hippocampus of 3xTg-AD and wild-type control mice (3Tg-iAstro and WT-iAstro, respectively). Both 3Tg-iAstro and WT-iAstro maintain an astroglial phenotype and markers (glutamine synthetase, aldehyde dehydrogenase 1 family member L1 and aquaporin-4) but display proliferative potential until at least passage 25. Furthermore, these cell lines maintain the potassium inward rectifying (Kir) current and present transcriptional and proteomic profiles compatible with primary astrocytes. Importantly, differences between the 3Tg-iAstro and WT-iAstro cell lines in terms of calcium signaling and in terms of transcriptional changes can be re-conducted to the changes previously reported in primary astroglial cells. To illustrate the versatility of this model we performed shotgun mass spectrometry proteomic analysis and found that proteins related to RNA binding and ribosome are differentially expressed in 3Tg-iAstro vs WT-iAstro. In summary, we present here immortalized hippocampal astrocytes from WT and 3xTg-AD mice that might be a useful model to speed up research on the role of astrocytes in AD.
Collapse
Affiliation(s)
- Francesca Rocchio
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,International Center for T1D, Pediatric Clinic Research Center Fondazione Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy
| | - Laura Tapella
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy.,ISALIT S.r.l., Spin-off of Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Mariangela Chisari
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Francesca Ronco
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | | | - Eleonora Conte
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Via Santa Sofia, 97, 95123, Catania, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, Università degli Studi del Piemonte Orientale, Alessandria, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
6
|
Valdebenito S, Barreto A, Eugenin EA. The role of connexin and pannexin containing channels in the innate and acquired immune response. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:154-165. [PMID: 28559189 DOI: 10.1016/j.bbamem.2017.05.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022]
Abstract
Connexin (Cx) and pannexin (Panx) containing channels - gap junctions (GJs) and hemichannels (HCs) - are present in virtually all cells and tissues. Currently, the role of these channels under physiological conditions is well defined. However, their role in the immune response and pathological conditions has only recently been explored. Data from several laboratories demonstrates that infectious agents, including HIV, have evolved to take advantage of GJs and HCs to improve viral/bacterial replication, enhance inflammation, and help spread toxicity into neighboring areas. In the current review, we discuss the role of Cx and Panx containing channels in immune activation and the pathogenesis of several infectious diseases. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Andrea Barreto
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), Newark, NJ, USA; Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA.
| |
Collapse
|