1
|
Li Y, Guan X, Lan T, Zhang ZR, Zhang Y, Jiang S, Li M, Shi FD, Jin WN. The miR-451a facilitates natural killer cell-associated immune deficiency after ischemic stroke. J Cereb Blood Flow Metab 2025:271678X251321641. [PMID: 39985210 PMCID: PMC11846095 DOI: 10.1177/0271678x251321641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Ischemic stroke is a devastating neurological disease. Brain ischemia impairs systemic immune responses and heightens susceptibility to infections, though the underlying mechanisms remain incompletely understood. Natural killer (NK) cells exhibited decreased frequency and compromised function after acute stage of stroke, resulting in NK cell-associated immune deficiency and increased risk of infection. MicroRNAs (miRNAs) are post-transcriptional molecular modulators. Our previous study revealed a significant upregulation of miR-451a in circulating NK cells from patients with ischemic stroke, but its effects and precise mechanism on immune defense remain elusive. In this study, we observed a substantial elevation of miR-451a level in brain and splenic NK cells in murine model of ischemic stroke miR-451a mimics suppressed NK cell activation and cytotoxicity within the ischemic brain and periphery, including a downregulation of activation marker CD69, and reduced production of effector molecules IFN-γ and perforin. Conversely, miR-451a inhibitor preserved NK cell activation and cytotoxicity, rescuing local inflammation, and reducing bacterial burden in the lung. Pharmacological inhibition of Akt-mTOR pathway with AZD8055 effectively blocked the impacts of miR-451a on NK cell functions. Collectively, these findings suggest miR-451a negatively regulates NK cell cytotoxicity in both the brain and periphery, which could be re-addressed by modulating the Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiuchen Guan
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Tian Lan
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuo-ran Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shihe Jiang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Minshu Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fu-Dong Shi
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei-Na Jin
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Expression analysis and targets prediction of microRNAs in OGD/R treated astrocyte-derived exosomes by smallRNA sequencing. Genomics 2023; 115:110594. [PMID: 36863417 DOI: 10.1016/j.ygeno.2023.110594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023]
Abstract
Astrocytes activate and crosstalk with neurons influencing inflammatory responses following ischemic stroke. The distribution, abundance, and activity of microRNAs in astrocytes-derived exosomes after ischemic stroke remains largely unknown. In this study, exosomes were extracted from primary cultured mouse astrocytes via ultracentrifugation, and exposed to oxygen glucose deprivation/re‑oxygenation injury to mimic experimental ischemic stroke. SmallRNAs from astrocyte-derived exosomes were sequenced, and differentially expressed microRNAs were randomly selected and verified by stem-loop real time quantitative polymerase chain reaction. We found that 176 microRNAs, including 148 known and 28 novel microRNAs, were differentially expressed in astrocyte-derived exosomes following oxygen glucose deprivation/re‑oxygenation injury. In gene ontology enrichment, Kyoto encyclopedia of genes and genomes pathway analyses, and microRNA target gene prediction analyses, these alteration in microRNAs were associated to a broad spectrum of physiological functions including signaling transduction, neuroprotection and stress responses. Our findings warrant further investigating of these differentially expressed microRNAs in human diseases particularly ischemic stroke.
Collapse
|
4
|
Gelisin O, Susgun S, Toruntay C, Yabaci A, Baran G, Gursoy AEB, Yildiz GB, Yucesan E. Evaluation of miR-526b-3p, miR-1179, miR-3529-3p, miR-5011-5p as potential diagnostic biomarkers in isolated cervical dystonia. Rev Neurol (Paris) 2023:S0035-3787(23)00753-1. [PMID: 36759300 DOI: 10.1016/j.neurol.2022.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Cervical dystonia (CD) also named spasmodic torticollis is the most common type of focal dystonias and characterized by abnormal head, neck, and shoulder movements due to involuntary muscular spasm. Although CD is mostly idiopathic, to date, several genes have been associated with CD. However, to the best of our knowledge, microRNAs (miRNAs) which are interacted with CD-associated genes have been not evaluated yet. miRNAs are regulatory small non-coding RNAs and are suggested as potential biomarkers for many diseases through their stability in clinical samples. Therefore, we aimed to assess the expression levels of miRNAs (miR-526b-3p, miR-1179, miR-3529-3p, miR-5011-5p) which are targeted the CD-associated genes, and evaluate their performance as diagnostic biomarkers. METHODS Peripheral blood samples were obtained from 30 patients with isolated CD (ICD) and 25 healthy controls. The expression levels of miR-526b-3p, miR-1179, miR-3529-3p, and miR-5011-5p were analyzed via quantitative real-time PCR (qRT-PCR), and receiver operating characteristic (ROC) curves were generated to evaluate the diagnostic values. RESULTS miR-526b-3p, miR-1179, and miR-3529-3p were significantly up-regulated while miR-5011-5p was significantly down-regulated in ICD patients compared to healthy controls. ROC analysis revealed that all miRNAs, especially miR-1179 and miR-3529-3p were statistically significant with the area under the curve (AUC) of 0.905 and 0.933, respectively. CONCLUSION Altered expression levels of aforementioned miRNAs may be associated with CD pathogenesis. Our findings suggest using these four miRNAs as remarkable biomarkers in the diagnosis of ICD.
Collapse
Affiliation(s)
- O Gelisin
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - S Susgun
- Department of Genetics, Istanbul University, Aziz Sancar Institute of Experimental Research, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - C Toruntay
- Department of Molecular Biology and Genetics, Yildiz Technical University, Graduate School of Science and Engineering, Istanbul, Turkey
| | - A Yabaci
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - G Baran
- Department of Neurology, Marmara University, Pendik Training and Research Hospital, Istanbul, Turkey
| | - A E B Gursoy
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - G B Yildiz
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - E Yucesan
- Department of Neurogenetics, Institute of Neurological Sciences , Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
5
|
Wufuer A, Luohemanjiang X, Du L, Lei J, Shabier M, Han DF, Ma J. ANRIL overexpression globally induces expression and alternative splicing of genes involved in inflammation in HUVECs. Mol Med Rep 2022; 27:27. [PMID: 36524379 PMCID: PMC9813546 DOI: 10.3892/mmr.2022.12915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022] Open
Abstract
Long non‑coding (lnc)RNAs serve important cellular functions and certain lncRNAs have roles in different mechanisms of gene regulation. lncRNA‑antisense non‑coding RNA in the INK4 locus (ANRIL) affects cell inflammation; however, the potential genes underlying the inflammatory response regulated by ANRIL remain unclear. In the present study, the potential function of ANRIL in regulating gene expression and alternative splicing was assessed. ANRIL‑regulated human umbilical vein endothelial cell (HUVEC) transcriptome was obtained using high‑throughput RNA sequencing (RNA‑seq) to evaluate the potential role of ANRIL. Following plasmid transfection, gene expression profile and alternative splicing pattern of HUVECs overexpressing ANRIL were analyzed using RNA‑seq. ANRIL overexpression affected the transcription levels of genes associated with the inflammatory response, NF‑κB signaling pathway, type I interferon‑mediated signal transduction pathway and innate immune response. ANRIL regulated the alternative splicing of hundreds of genes with functions such as gene expression, translation, DNA repair, RNA processing and participation in the NF‑κB signaling pathway. Many of these genes serve a key role in the inflammatory response. ANRIL‑regulated inflammatory response may be achieved by regulating alternate splicing and transcription. The present study broadened the understanding of ANRIL‑mediated gene regulation mechanisms and clarified the role of ANRIL in mediating inflammatory response mechanisms.
Collapse
Affiliation(s)
- Alimu Wufuer
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Xiemusiye Luohemanjiang
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Lei Du
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jing Lei
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Mayila Shabier
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Deng Feng Han
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China
| | - Jianhua Ma
- Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054, P.R. China,Correspondence to: Dr Jianhua Ma, Department of Neurology, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, Xinjiang 830054, P.R. China, E-mail:
| |
Collapse
|
6
|
Stroke and Etiopathogenesis: What Is Known? Genes (Basel) 2022; 13:genes13060978. [PMID: 35741740 PMCID: PMC9222702 DOI: 10.3390/genes13060978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Background: A substantial portion of stroke risk remains unexplained, and a contribution from genetic factors is supported by recent findings. In most cases, genetic risk factors contribute to stroke risk as part of a multifactorial predisposition. A major challenge in identifying the genetic determinants of stroke is fully understanding the complexity of the phenotype. Aims: Our narrative review is needed to improve our understanding of the biological pathways underlying the disease and, through this understanding, to accelerate the identification of new drug targets. Methods: We report, the research in the literature until February 2022 in this narrative review. The keywords are stroke, causes, etiopathogenesis, genetic, epigenetic, ischemic stroke. Results: While better risk prediction also remains a long-term goal, its implementation is still complex given the small effect-size of genetic risk variants. Some authors encourage the use of stroke genetic panels for stroke risk assessment and further stroke research. In addition, new biomarkers for the genetic causes of stroke and new targets for gene therapy are on the horizon. Conclusion: We summarize the latest evidence and perspectives of ischemic stroke genetics that may be of interest to the physician and useful for day-to-day clinical work in terms of both prevention and treatment of ischemic stroke.
Collapse
|
7
|
Ekkert A, Šliachtenko A, Grigaitė J, Burnytė B, Utkus A, Jatužis D. Ischemic Stroke Genetics: What Is New and How to Apply It in Clinical Practice? Genes (Basel) 2021; 13:48. [PMID: 35052389 PMCID: PMC8775228 DOI: 10.3390/genes13010048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The etiology of ischemic stroke is multifactorial. Although receiving less emphasis, genetic causes make a significant contribution to ischemic stroke genesis, especially in early-onset stroke. Several stroke classification systems based on genetic information corresponding to various stroke phenotypes were proposed. Twin and family history studies, as well as candidate gene approach, are common methods to discover genetic causes of stroke, however, both have their own limitations. Genome-wide association studies and next generation sequencing are more efficient, promising and increasingly used for daily diagnostics. Some monogenic disorders, despite covering only about 7% of stroke etiology, may cause well-known clinical manifestations that include stroke. Polygenic disorders are more frequent, causing about 38% of all ischemic strokes, and their identification is a rapidly developing field of modern stroke genetics. Current advances in human genetics provide opportunity for personalized prevention of stroke and novel treatment possibilities. Genetic risk scores (GRS) and extended polygenic risk scores (PRS) estimate cumulative contribution of known genetic factors to a specific outcome of stroke. Combining those scores with clinical information and risk factor profiles might result in better primary stroke prevention. Some authors encourage the use of stroke gene panels for stroke risk evaluation and further stroke research. Moreover, new biomarkers for stroke genetic causes and novel targets for gene therapy are on the horizon. In this article, we summarize the latest evidence and perspectives of ischemic stroke genetics that could be of interest to the practitioner and useful for day-to-day clinical work.
Collapse
Affiliation(s)
- Aleksandra Ekkert
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| | | | - Julija Grigaitė
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| | - Birutė Burnytė
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Algirdas Utkus
- Center for Medical Genetics, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Dalius Jatužis
- Center of Neurology, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (J.G.); (D.J.)
| |
Collapse
|
8
|
Wu T, Tang C, Fan J, Tao J. Administration of rTMS Alleviates Stroke-Induced Cognitive Deficits by Modulating miR-409-3p/CTRP3/AMPK/Sirt1 Axis. J Mol Neurosci 2021; 72:507-515. [PMID: 34655390 DOI: 10.1007/s12031-021-01924-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Cognitive deficit is a typical complication induced by stroke injuries. Repetitive transcranial magnetic stimulation (rTMS) is a technique that can both attenuate neuropsychiatric disorders and influence miR levels. We attempted to assess effects of rTMS on post-stroke cognitive deficit (PSCD) by focusing on the activity of miR-409-3p/CTRP3/AMPK/Sirt1 axis. PSCD was induced in rats using middle cerebral artery occlusion (MCAO) method and handled with rTMS. MiRs responding to rTMS administration were determined using microarray method. Changes in cognitive function, brain histological feature, neuron apoptosis, and activity of miR-409-3p/CTR3/AMPK/Sirt1 axis were detected. The interaction between of miR-409-3p and rTMS was verified by inducing its level in MCAO rats. rTMS influenced levels of miRs in MCAO rats, with 104 miRs being upregulated and 249 s miR being downregulated, contributing to the function changes in multiple biological processes. Moreover, the technique improved brain function and structure in model rats. At the molecular level, rTMS inhibited miR-409-3p and activated CTRP3/AMPK/Sirt1 pathway. After the induction of miR-409-3p, effects of rTMS were counteracted, which were represented by the impaired cognitive function and neuron viability in model rats. Collectively, rTMS could protect against stroke-induced cognitive deficits, which depended on the inhibition of miR-409-3p level.
Collapse
Affiliation(s)
- Tianya Wu
- Department of Neurology, Zhuji People's Hospital of Zhejiang Province, No. 9, Jianmin Road, Zhuji, 311800, China
| | - Chunrong Tang
- Department of Anesthesiology, Songzi People's Hospital of Hubei Province, No. 282, Hebingyan Road, Songzi, 434200, China
| | - Junwei Fan
- Department of General Surgery, Qingdao West Coast New Area Central Hospital, No. 9, Huangpujiang Road, Qingdao, 434200, China
| | - Jian Tao
- Shanxian Haijia Hospital Co. Ltd, Hoxi Road, Heze, Shandong, 274300, China.
| |
Collapse
|
9
|
Sun Y, Wang J, Han B, Meng K, Han Y, Ding Y. Elucidating the Molecular Mechanism of Ischemic Stroke Using Integrated Analysis of miRNA, mRNA, and lncRNA Expression Profiles. Front Integr Neurosci 2021; 15:638114. [PMID: 34483854 PMCID: PMC8415716 DOI: 10.3389/fnint.2021.638114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Objective: This study aimed to investigate the possible molecular mechanisms associated with ischemic stroke through the construction of a lncRNA-miRNA-mRNA network. miRNA expression profile in GSE55937, mRNA and lncRNA expression profiles in GSE122709, and mRNA expression profile in GSE146882 were downloaded from the NCBI GEO database. After the identification of the differentially expressed miRNA, lncRNA, and mRNA using GSE55937 and GSE122709 in ischemic stroke vs. control groups, a protein-protein interaction (PPI) network was constructed. The lncRNA-miRNA, lncRNA-mRNA, and miRNA-mRNA pairs were predicted, and a lncRNA-miRNA-mRNA network was constructed. Additionally, the gene-drug interactions were predicted. Characteristic genes were used to construct a support vector machine (SVM) model and verified using quantitative reverse transcription polymerase chain reaction. In total 38 miRNAs, 115 lncRNAs, and 990 mRNAs were identified between ischemic stroke and control groups. A PPI network with 371 nodes and 2306 interaction relationships was constructed. The constructed lncRNA-miRNA-mRNA network contained 7 mRNAs, 14 lncRNAs, such as SND1-IT1, NAPA-AS1, LINC01001, LUCAT1, and ASAP1-IT2, and 8 miRNAs, such as miR-93-3p and miR-24-3p. The drug action analysis of the seven differential mRNAs included in the lncRNA-miRNA-mRNA network showed that four genes (GPR17, ADORA1, OPRM1 and LPAR3) were predicted as molecular targets of drugs. The area under the curve of the constructed SVM model was 0.886. The verification results of the relative expression of RNA by qRT-PCR were consistent with the results of bioinformatics analysis. LPAR3, ADORA1, GPR17, and OPRM1 may serve as therapeutic targets of ischemic stroke. lncRNA-miRNA-mRNA regulatory axis such as SND1-IT1/NAPA-AS1/LINC01001-miR-24-3p-LPAR3/ADORA1 and LUCAT1/ASAP1-IT2-miR-93-3p-GPR17 may play important roles in the progression of ischemic stroke.
Collapse
Affiliation(s)
- Yaxuan Sun
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Jing Wang
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Bin Han
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Kun Meng
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Yan Han
- Department of Neurology, Shanxi People's Hospital, Taiyuan, China
| | - Yongxia Ding
- College of Nursing, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
10
|
Gong J, Yan Z, Liu Q. Progress in experimental research on SPRED protein family. J Int Med Res 2020; 48:300060520929170. [PMID: 32851895 PMCID: PMC7457668 DOI: 10.1177/0300060520929170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
The Sprouty-related Ena/vasodilator-stimulated phosphoprotein homology-1 (EVH-1) domain (SPRED) family of proteins was discovered in 2001. These Sprouty-related tyrosine kinase-binding proteins negatively regulate a variety of growth factor-induced Ras/ERK signaling pathways. In recent years, SPRED proteins have been found to regulate vital activities such as cell development, movement, and proliferation, and to participate in pathophysiological processes such as tumor metastasis, hematopoietic regulation, and allergic reactions. The findings of these studies have important implications regarding the involvement of SPRED proteins in disease. Early studies of SPRED proteins focused mainly on various tumors, cardiovascular diseases, and organ development. However, in recent years, great progress has been made in elucidating the role of SPRED proteins in neuropsychiatric, inflammatory, endocrine, and ophthalmic diseases. This article provides a review of the experimental studies performed in recent years on the SPRED proteins and their role in the pathogenesis of certain diseases.
Collapse
Affiliation(s)
- Jian Gong
- School of Clinical Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Zhangren Yan
- Department of Dermatology, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| | - Qiao Liu
- Department of Dermatology, The Second Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi Province, China
| |
Collapse
|
11
|
Fang F, Xu Z, Suo Y, Wang H, Cheng S, Li H, Li W, Wang Y. Gene panel for Mendelian strokes. Stroke Vasc Neurol 2020; 5:416-421. [PMID: 32341005 PMCID: PMC7804056 DOI: 10.1136/svn-2020-000352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mendelian stroke causes nearly 7% of ischaemic strokes and is also an important aetiology of cryptogenic stroke. Identifying the genetic abnormalities in Mendelian strokes is important as it would facilitate therapeutic management and genetic counselling. Next-generation sequencing makes large-scale sequencing and genetic testing possible. METHODS A systematic literature search was conducted to identify causal genes of Mendelian strokes, which were used to construct a hybridization-based gene capture panel. Genetic variants for target genes were detected using Illumina HiSeq X10 and the Novaseq platform. The sensitivity and specificity were evaluated by comparing the results with Sanger sequencing. RESULTS 53 suspected patients of Mendelian strokes were analysed using the panel of 181 causal genes. According to the American College of Medical Genetics and Genomics standard, 16 likely pathogenic/variants of uncertain significance genetic variants were identified. Diagnostic testing was conducted by comparing the consistency between the results of panel and Sanger sequencing. Both the sensitivity and specificity were 100% for the panel. CONCLUSION This panel provides an economical, time-saving and labour-saving method to detect causal mutations of Mendelian strokes.
Collapse
Affiliation(s)
- Fang Fang
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhe Xu
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Suo
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Si Cheng
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Monogenic Disease Research Center for Neurological Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China .,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China .,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
| |
Collapse
|
12
|
Bao Y, Li S, Ding Y, Du X, Zhang M, Tang W, Zhou S. MiRNA: a potential target for gene diagnosis and treatment of atherosclerotic stroke. Int J Neurosci 2020; 131:283-288. [PMID: 32129115 DOI: 10.1080/00207454.2020.1738428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stroke is one of the major diseases that endanger the physical health life of middle-aged and old people. It has the characteristics of high incidence, mortality and disability rate. Atherosclerosis is the main intervention target for stroke prevention and treatment. MiRNAs are highly expressed in the cerebral vasculature and play an important regulatory role in the pathogenesis of neuronal damage and ischemic stroke. This article reviews the mechanism of action between miRNAs and atherosclerosis, stroke, ischemia-reperfusion injury, collateral circulation and circRNA molecular networks, providing theoretical support for miRNA in gene diagnosis and drug therapy of atherosclerotic stroke.
Collapse
Affiliation(s)
- Yi Bao
- Department of Neurology, Hubei University of Medicine, Shiyan City, Hubei Province, China.,Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Sijing Li
- Department of Neurology, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Yayong Ding
- Department of Neurology, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Xinyu Du
- Department of Neurology, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Miao Zhang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Wanjuan Tang
- Department of Neurology, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Siqin Zhou
- Department of Neurology, Hubei University of Medicine, Shiyan City, Hubei Province, China
| |
Collapse
|
13
|
Wu Y, Gao Z, Zhang J. Transcription Factor E2F1 Aggravates Neurological Injury in Ischemic Stroke via microRNA-122-Targeted Sprouty2. Neuropsychiatr Dis Treat 2020; 16:2633-2647. [PMID: 33177827 PMCID: PMC7651997 DOI: 10.2147/ndt.s271320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND It has been documented that microRNAs (miRs) assume a pivotal role in the development of ischemic stroke (IS). However, it remains poorly identified about the role of miR-122 in IS. Herein, this study was intended to explore the mechanism of E2F1-orchestrated miR-122 in IS. PATIENTS AND METHODS E2F1, miR-122, and SPRY2 expression in serum from patients with IS and oxygen-glucose deprivation (OGD)-treated N2a cells was detected by RT-qPCR. After gain- and loss-of-function approaches in OGD-induced N2a cells, GAFP staining, flow cytometry, and Western blot analysis were adopted to assess neuronal viability, cell cycle and apoptosis, and expression of apoptosis- and autophagy-related proteins, respectively. Meanwhile, mice with IS were induced, in which E2F1, miR-122, and SPRY2 were overexpressed, followed by evaluation of neurological deficit and cerebral infarction area. The MAPK pathway activity in tissues of mice and cells was determined. RESULTS miR-122 was down-regulated, and E2F1 and SPRY2 were up-regulated in IS patients and OGD-induced N2a cells. E2F1 inhibited miR-122 transcription, while miR-122 targeted SPRY2. Overexpression (OE) of miR-122 or down-regulation of E2F1 or SPRY2 increased viability, but decreased apoptosis, cell cycle arrest, and autophagy in OGD-induced N2a cells. In IS mice, the neurological deficit score and cerebral infarction area were elevated, which was aggravated by up-regulating E2F1 or SPRY2 but attenuated by overexpressing miR-122. E2F1/miR-122/SPRY2 axis mediated the MAPK pathway in vivo and in vitro. CONCLUSION Collectively, E2F1 reduced miR-122 transcription to up-regulate SPRY2, which inactivated MAPK pathway and promoted neurological deficit in IS.
Collapse
Affiliation(s)
- Yunxia Wu
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Zhiqiang Gao
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| | - Jiang Zhang
- Department of Neurology, Linyi Central Hospital, Linyi, Shandong 276400, People's Republic of China
| |
Collapse
|
14
|
Berkowitz A. Playing the genome card. J Neurogenet 2019; 34:189-197. [PMID: 31872788 DOI: 10.1080/01677063.2019.1706093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the 1990s, prominent biologists and journalists predicted that by 2020 each of us would carry a genome card, which would allow physicians to access our entire genome sequence and routinely use this information to diagnose and treat common and debilitating conditions. This is not yet the case. Why not? Common and debilitating diseases are rarely caused by single-gene mutations, and this was recognized before these genome card predictions had been made. Debilitating conditions, including common psychiatric disorders, are typically caused either by rare mutations or by complex interactions of many genes, each having a small effect, and epigenetic, environmental, and microbial factors. In such cases, having a complete genome sequence may have limited utility in diagnosis and treatment. Genome sequencing technologies have transformed biological research in many ways, but had a much smaller effect than expected on treatments of common diseases. Thus, early proponents of genome sequencing effectively "mis-promised" its benefits. One reason may be that there are incentives for both biologists and journalists to tell simple stories, including the idea of relatively simple genetic causation of common, debilitating diseases. These incentives may have led to misleading predictions, which to some extent continue today. Although the Human Genome Project has facilitated biological research generally, the mis-promising of medical benefits, at least for treating common and debilitating disorders, could undermine support for scientific research over the long term.
Collapse
Affiliation(s)
- Ari Berkowitz
- Department of Biology and Cellular & Behavioral Neurobiology Graduate Program, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
15
|
Thin KZ, Tu JC, Raveendran S. Long non-coding SNHG1 in cancer. Clin Chim Acta 2019; 494:38-47. [PMID: 30849309 DOI: 10.1016/j.cca.2019.03.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) consist of a cluster of RNAs having >200 nucleotides lacking protein-coding function. Recent studies indicate that lncRNAs are involved in various cellular processes and their aberrant expression may lead to tumour development and progression. They may also serve as oncogenes or tumour suppressor genes in other diseases. In this review, we emphasize current investigations involving clinical management, tumour progression and the molecular mechanism of SNHG1 in human cancer. MATERIALS AND METHODS We investigate and summarize recent studies regarding the biologic functions and mechanisms of lncRNA SNHG1 in tumorigenesis. Related studies were obtained through a systematic search of google scholar, PubMed, Embase and Cochrane Library. RESULTS SNHG1 is a novel oncogenic lncRNA aberrantly expressed in different diseases including colorectal, liver, lung, prostate, gastric and esophageal cancers as well as ischemic stroke, nasopharyngeal carcinoma, laryngeal squamous cell carcinoma, neuroblastoma, renal cell carcinoma and osteosarcoma. Upregulation of SNHG1 was significantly associated with advanced tumour stage, tumour size, TNM stage and decreased overall survival. Furthermore, aberrant expression of SNHG1 contributes to cell proliferation, metastasis, migration and invasion of cancer cells. CONCLUSION SNHG1 likely acts as a useful tumour biomarker for cancer diagnosis, prognosis and treatment.
Collapse
Affiliation(s)
- Khaing Zar Thin
- Department of Medical Laboratory Technology, University of Medical Technology, Yankin Hill Road, 19(th) Street, Patheingyi Township, Mandalay, Myanmar; Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jian Cheng Tu
- Department & Program of Clinical Laboratory Medicine, Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Sudheesh Raveendran
- Department of Radiology & Nuclear Medicine, Zhongnan Hospital of Wuhan University, Wuchang, Hubei province, Wuhan 430071, China.
| |
Collapse
|