1
|
Kanamaru H, Suzuki H. Therapeutic potential of stem cells in subarachnoid hemorrhage. Neural Regen Res 2025; 20:936-945. [PMID: 38989928 PMCID: PMC11438332 DOI: 10.4103/nrr.nrr-d-24-00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/27/2024] [Indexed: 07/12/2024] Open
Abstract
Aneurysm rupture can result in subarachnoid hemorrhage, a condition with potentially severe consequences, such as disability and death. In the acute stage, early brain injury manifests as intracranial pressure elevation, global cerebral ischemia, acute hydrocephalus, and direct blood-brain contact due to aneurysm rupture. This may subsequently cause delayed cerebral infarction, often with cerebral vasospasm, significantly affecting patient outcomes. Chronic complications such as brain volume loss and chronic hydrocephalus can further impact outcomes. Investigating the mechanisms of subarachnoid hemorrhage-induced brain injury is paramount for identifying effective treatments. Stem cell therapy, with its multipotent differentiation capacity and anti-inflammatory effects, has emerged as a promising approach for treating previously deemed incurable conditions. This review focuses on the potential application of stem cells in subarachnoid hemorrhage pathology and explores their role in neurogenesis and as a therapeutic intervention in preclinical and clinical subarachnoid hemorrhage studies.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | | |
Collapse
|
2
|
Yang H, Xiang Y, Wang J, Ke Z, Zhou W, Yin X, Zhang M, Chen Z. Modulating the blood-brain barrier in CNS disorders: A review of the therapeutic implications of secreted protein acidic and rich in cysteine (SPARC). Int J Biol Macromol 2024; 288:138747. [PMID: 39674451 DOI: 10.1016/j.ijbiomac.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), an essential stromal cell protein, plays a crucial role in angiogenesis and maintaining endothelial barrier function. This protein is expressed by diverse cell types, including endothelial cells, fibroblasts, and macrophages, with increased expression found in regions of tissues undergoing active remodeling, repair, and proliferation. The role of SPARC in non-neural tissues is of significant interest. In the central nervous system (CNS), SPARC is highly expressed in blood vessels during early development. It becomes down-regulated as the brain matures, a pattern consistent with its role in angiogenesis and blood-brain barrier (BBB) establishment. In this review, we explore the multifaceted roles of SPARC in regulating CNS disorders, particularly its action in angiogenesis, inflammatory responses, neural system development and repair, barrier establishment, maintenance of BBB function, and the pathogenesis of CNS disorders triggered by BBB dysfunction.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Yuanyuan Xiang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Jiaxuan Wang
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Zunliang Ke
- Department of Neurosurgery, Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Weixin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Xiaoping Yin
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Manqing Zhang
- School of Basic Medicine, Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Zhiying Chen
- Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
3
|
Qian Y, Chen B, Sun E, Lu X, Li Z, Wang R, Fang D. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Brain Damage Following Subarachnoid Hemorrhage via the Interaction of miR-140-5p and HDAC7. Mol Neurobiol 2024; 61:9136-9154. [PMID: 38592585 DOI: 10.1007/s12035-024-04118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Subarachnoid hemorrhage (SAH) triggers severe neuroinflammation and cognitive impairment, where microglial M1 polarization exacerbates the injury and M2 polarization mitigates damage. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), carrying microRNA (miR)-140-5p, offer therapeutic promise by targeting the cAMP/PKA/CREB pathway and modulating microglial responses, demonstrating a novel approach for addressing SAH-induced brain injury. This research explored the role of miR-140-5p delivered by MSC-EVs in mitigating brain damage following SAH. Serum from SAH patients and healthy individuals was analyzed for miR-140-5p and cAMP levels. The association between miR-140-5p levels, brain injury severity, and patient survival was examined, along with the target relationship between miR-140-5p and histone deacetylases 7 (HDAC7). MSC-EVs were characterized for their ability to cross the blood-brain barrier and modulate the HDAC7/AKAP12/cAMP/PKA/CREB axis, reducing M1 polarization and inflammation. The therapeutic effect of MSC-EV-miR-140-5p was demonstrated in an SAH mouse model, showing reduced neuronal apoptosis and improved neurological function. This study highlights the potential of MSC-EV-miR-140-5p in mitigating SAH-induced neuroinflammation and brain injury, providing a foundation for developing MSC-EV-based treatments for SAH.
Collapse
Affiliation(s)
- Yu Qian
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, P.R. China
| | - Bo Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, P.R. China
| | - Eryi Sun
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, P.R. China
| | - Xinyu Lu
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, P.R. China
| | - Zheng Li
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, P.R. China
| | - Runpei Wang
- Department of Neurosurgery, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212000, P.R. China
| | - Dazhao Fang
- Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, West Huanghe Road, Huaiyin District, Huai'an, Jiangsu Province, 223300, P.R. China.
| |
Collapse
|
4
|
Lauzier DC, Athiraman U. Role of microglia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:841-856. [PMID: 38415607 PMCID: PMC11318405 DOI: 10.1177/0271678x241237070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Subarachnoid hemorrhage is a devastating sequela of aneurysm rupture. Because it disproportionately affects younger patients, the population impact of hemorrhagic stroke from subarachnoid hemorrhage is substantial. Secondary brain injury is a significant contributor to morbidity after subarachnoid hemorrhage. Initial hemorrhage causes intracranial pressure elevations, disrupted cerebral perfusion pressure, global ischemia, and systemic dysfunction. These initial events are followed by two characterized timespans of secondary brain injury: the early brain injury period and the delayed cerebral ischemia period. The identification of varying microglial phenotypes across phases of secondary brain injury paired with the functions of microglia during each phase provides a basis for microglia serving a critical role in both promoting and attenuating subarachnoid hemorrhage-induced morbidity. The duality of microglial effects on outcomes following SAH is highlighted by the pleiotropic features of these cells. Here, we provide an overview of the key role of microglia in subarachnoid hemorrhage-induced secondary brain injury as both cytotoxic and restorative effectors. We first describe the ontogeny of microglial populations that respond to subarachnoid hemorrhage. We then correlate the phenotypic development of secondary brain injury after subarachnoid hemorrhage to microglial functions, synthesizing experimental data in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Abarca-Merlin DM, Martínez-Durán JA, Medina-Pérez JD, Rodríguez-Santos G, Alvarez-Arellano L. From Immunity to Neurogenesis: Toll-like Receptors as Versatile Regulators in the Nervous System. Int J Mol Sci 2024; 25:5711. [PMID: 38891900 PMCID: PMC11171594 DOI: 10.3390/ijms25115711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/21/2024] Open
Abstract
Toll-like receptors (TLRs) are among the main components of the innate immune system. They can detect conserved structures in microorganisms and molecules associated with stress and cellular damage. TLRs are expressed in resident immune cells and both neurons and glial cells of the nervous system. Increasing evidence is emerging on the participation of TLRs not only in the immune response but also in processes of the nervous system, such as neurogenesis and cognition. Below, we present a review of the literature that evaluates the expression and role of TLRs in processes such as neurodevelopment, behavior, cognition, infection, neuroinflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Daniela Melissa Abarca-Merlin
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. Abigail Martínez-Durán
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - J. David Medina-Pérez
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Guadalupe Rodríguez-Santos
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
| | - Lourdes Alvarez-Arellano
- Laboratorio de Investigación en Neurociencias, Hospital Infantil de México Federico Gómez, Av. Dr. Márquez 162. Colonia Doctores, Mexico City 06720, Mexico; (D.M.A.-M.)
- CONAHCYT-Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
6
|
Hu Q, Zhang R, Dong X, Yang D, Yu W, Du Q. Huperzine A ameliorates neurological deficits after spontaneous subarachnoid hemorrhage through endothelial cell pyroptosis inhibition. Acta Biochim Biophys Sin (Shanghai) 2024; 56:645-656. [PMID: 38529553 DOI: 10.3724/abbs.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH) is a kind of hemorrhagic stroke which causes neurological deficits in survivors. Huperzine A has a neuroprotective effect, but its role in SAH is unclear. Therefore, we explore the effect of Huperzine A on neurological deficits induced by SAH and the related mechanism. In this study, Evans blue assay, TUNEL staining, immunofluorescence, western blot analysis, and ELISA are conducted. We find that Huperzine A can improve neurological deficits and inhibit the apoptosis of nerve cells in SAH rats. Huperzine A treatment can improve the upregulation of brain water content, damage of blood-brain barrier, fibrinogen and matrix metalloprotein 9 expressions and the downregulation of ZO-1 and occludin expressions induced by SAH. Huperzine A inhibit the expressions of proteins involved in pyroptosis in endothelial cells in SAH rats. The increase in MDA content and decrease in SOD activity in SAH rats can be partly reversed by Huperzine A. The ROS inducer H 2O 2 can induce pyroptosis and inhibit the expressions of ZO-1 and occludin in endothelial cells, which can be blocked by Huperzine A. In addition, the increase in the entry of p65 into the nucleus in endothelial cells can be partly reversed by Huperzine A. Huperzine A may delay the damage of blood-brain barrier in SAH rats by inhibiting oxidative stress-mediated pyroptosis and tight junction protein expression downregulation through the NF-κB pathway. Overall, Huperzine A may have clinical value for treating SAH.
Collapse
Affiliation(s)
- Qiang Hu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Rong Zhang
- Medical Examination Center, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Dingbo Yang
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Wenhua Yu
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310000, China
- Department of Neurosurgery, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou First People's Hospital, Hangzhou 310000, China
| |
Collapse
|
7
|
Kawakita F, Nakano F, Kanamaru H, Asada R, Suzuki H. Anti-Apoptotic Effects of AMPA Receptor Antagonist Perampanel in Early Brain Injury After Subarachnoid Hemorrhage in Mice. Transl Stroke Res 2024; 15:462-475. [PMID: 36757633 DOI: 10.1007/s12975-023-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/12/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
This study was aimed to investigate if acute neuronal apoptosis is induced by activation of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate) receptors (AMPARs) and inhibited by a clinically available selective AMPAR antagonist and antiepileptic drug perampanel (PER) in subarachnoid hemorrhage (SAH), and if the mechanisms include upregulation of an inflammation-related matricellular protein periostin. Sham-operated and endovascular perforation SAH mice randomly received an administration of 3 mg/kg PER or the vehicle intraperitoneally. Post-SAH neurological impairments and increased caspase-dependent neuronal apoptosis were associated with activation of AMPAR subunits GluA1 and GluA2, and upregulation of periostin and proinflammatory cytokines interleukins-1β and -6, all of which were suppressed by PER. PER also inhibited post-SAH convulsion-unrelated increases in the total spectral power on video electroencephalogram (EEG) monitoring. Intracerebroventricularly injected recombinant periostin blocked PER's anti-apoptotic effects on neurons. An intracerebroventricular injection of a selective agonist for GluA1 and GluA2 aggravated neurological impairment, neuronal apoptosis as well as periostin upregulation, but did not increase the EEG total spectral power after SAH. A higher dosage (10 mg/kg) of PER had even more anti-apoptotic effects compared with 3 mg/kg PER. Thus, this study first showed that AMPAR activation causes post-SAH neuronal apoptosis at least partly via periostin upregulation. A clinically available AMPAR antagonist PER appears to be neuroprotective against post-SAH early brain injury through the anti-inflammatory and anti-apoptotic effects, independent of the antiepileptic action, and deserves further study.
Collapse
Affiliation(s)
- Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Mie , 514-8507, Tsu, Japan.
| |
Collapse
|
8
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun J, Chatterjee AR, Athiraman U, Dhar R, Zipfel GJ. Early Brain Injury After Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke 2023; 54:1426-1440. [PMID: 36866673 PMCID: PMC10243167 DOI: 10.1161/strokeaha.122.040072] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Aneurysmal subarachnoid hemorrhage is a devastating condition causing significant morbidity and mortality. While outcomes from subarachnoid hemorrhage have improved in recent years, there continues to be significant interest in identifying therapeutic targets for this disease. In particular, there has been a shift in emphasis toward secondary brain injury that develops in the first 72 hours after subarachnoid hemorrhage. This time period of interest is referred to as the early brain injury period and comprises processes including microcirculatory dysfunction, blood-brain-barrier breakdown, neuroinflammation, cerebral edema, oxidative cascades, and neuronal death. Advances in our understanding of the mechanisms defining the early brain injury period have been accompanied by improved imaging and nonimaging biomarkers for identifying early brain injury, leading to the recognition of an elevated clinical incidence of early brain injury compared with prior estimates. With the frequency, impact, and mechanisms of early brain injury better defined, there is a need to review the literature in this area to guide preclinical and clinical study.
Collapse
Affiliation(s)
- David C. Lauzier
- Department of Neurological Surgery, Washington University School of Medicine
| | - Keshav Jayaraman
- Department of Neurological Surgery, Washington University School of Medicine
| | - Jane Y. Yuan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Ananth K. Vellimana
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Joshua Osbun
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Arindam R. Chatterjee
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | | | - Rajat Dhar
- Department of Neurology, Washington University School of Medicine
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
| |
Collapse
|
10
|
Yahiya YI, Hadi NR, Abu Raghif A, AL Habooby NGS. Protective effect of IAXO-102 on renal ischemia-reperfusion injury in rats. J Med Life 2023; 16:623-630. [PMID: 37305825 PMCID: PMC10251395 DOI: 10.25122/jml-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/06/2023] [Indexed: 06/13/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a common cause of kidney damage, characterized by oxidative stress and inflammation. In this study, we investigated the potential protective effects of IAXO-102, a chemical compound, on experimentally induced IRI in male rats. The bilateral renal IRI model was used, with 24 adult male rats randomly divided into four groups (N=6): sham group (laparotomy without IRI induction), control group (laparotomy plus bilateral IRI for 30 minutes followed by 2 hours of reperfusion), vehicle group (same as control but pre-injected with the vehicle), and treatment group (similar to control but pre-injected with IAXO-102). We measured several biomarkers involved in IRI pathophysiology using enzyme-linked immunosorbent assay (ELISA), including High mobility group box1 (HMGB1), nuclear factor kappa b-p65 (NF-κB p65), interleukin beta-1 (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), 8-isoprostane, Bcl-2 associated X protein (BAX), heat shock protein 27 (HSP27), and Bcl-2. Statistical analysis was performed using one-way ANOVA and Tukey post hoc tests. Our results showed that IAXO-102 significantly improved kidney function, reduced histological alterations, and decreased the inflammatory response (IL-1, IL-6, and TNF) caused by IRI. IAXO-102 also decreased apoptosis by reducing pro-apoptotic Bax and increasing anti-apoptotic Bcl-2 without impacting HSP27. In conclusion, our findings suggest that IAXO-102 had a significant protective effect against IRI damage in the kidneys.
Collapse
Affiliation(s)
- Yahiya Ibrahim Yahiya
- Department of Pharmacology, Faculty of Pharmacy, University of Alkafeel, Najaf, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Ahmed Abu Raghif
- Deptartment of Pharmacology, College of Medicine, Al Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
11
|
Endothelial Toll-like receptor 4 is required for microglia activation in the murine retina after systemic lipopolysaccharide exposure. J Neuroinflammation 2023; 20:25. [PMID: 36739425 PMCID: PMC9899393 DOI: 10.1186/s12974-023-02712-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/30/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clustering of microglia around the vasculature has been reported in the retina and the brain after systemic administration of lipopolysaccharides (LPS) in mice. LPS acts via activation of Toll-like receptor 4 (TRL4), which is expressed in several cell types including microglia, monocytes and vascular endothelial cells. The purpose of this study was to investigate the effect of systemic LPS in the pigmented mouse retina and the involvement of endothelial TLR4 in LPS-induced retinal microglia activation. METHODS C57BL/6J, conditional knockout mice that lack Tlr4 expression selectively on endothelial cells (TekCre-posTlr4loxP/loxP) and TekCre-negTlr4loxP/loxP mice were used. The mice were injected with 1 mg/kg LPS via the tail vein once per day for a total of 4 days. Prior to initiation of LPS injections and approximately 5 h after the last injection, in vivo imaging using fluorescein angiography and spectral-domain optical coherence tomography was performed. Immunohistochemistry, flow cytometry, electroretinography and transmission electron microscopy were utilized to investigate the role of endothelial TLR4 in LPS-induced microglia activation and retinal function. RESULTS Activation of microglia, infiltration of monocyte-derived macrophages, impaired ribbon synapse organization and retinal dysfunction were observed after the LPS exposure in C57BL/6J and TekCre-negTlr4loxP/loxP mice. None of these effects were observed in the retinas of conditional Tlr4 knockout mice after the LPS challenge. CONCLUSIONS The findings of the present study suggest that systemic LPS exposure can have detrimental effects in the healthy retina and that TLR4 expressed on endothelial cells is essential for retinal microglia activation and retinal dysfunction upon systemic LPS challenge. This important finding provides new insights into the role of microglia-endothelial cell interaction in inflammatory retinal disease.
Collapse
|
12
|
The Multiple Roles of Periostin in Non-Neoplastic Disease. Cells 2022; 12:cells12010050. [PMID: 36611844 PMCID: PMC9818388 DOI: 10.3390/cells12010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periostin, identified as a matricellular protein and an ECM protein, plays a central role in non-neoplastic diseases. Periostin and its variants have been considered to be normally involved in the progression of most non-neoplastic diseases, including brain injury, ocular diseases, chronic rhinosinusitis, allergic rhinitis, dental diseases, atopic dermatitis, scleroderma, eosinophilic esophagitis, asthma, cardiovascular diseases, lung diseases, liver diseases, chronic kidney diseases, inflammatory bowel disease, and osteoarthrosis. Periostin interacts with protein receptors and transduces signals primarily through the PI3K/Akt and FAK two channels as well as other pathways to elicit tissue remodeling, fibrosis, inflammation, wound healing, repair, angiogenesis, tissue regeneration, bone formation, barrier, and vascular calcification. This review comprehensively integrates the multiple roles of periostin and its variants in non-neoplastic diseases, proposes the utility of periostin as a biological biomarker, and provides potential drug-developing strategies for targeting periostin.
Collapse
|
13
|
Wang XY, Wu F, Zhan RY, Zhou HJ. Inflammatory role of microglia in brain injury caused by subarachnoid hemorrhage. Front Cell Neurosci 2022; 16:956185. [PMID: 36561497 PMCID: PMC9763450 DOI: 10.3389/fncel.2022.956185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Early brain injury is a series of pathophysiological changes and direct damage of brain tissue within 72 h after subarachnoid hemorrhage before cerebral vasospasm occurs. Early brain injury is a key factor affecting the prognosis of subarachnoid hemorrhage, and its possible pathological mechanisms include oxidative stress, cell apoptosis, autophagy, and immune inflammation. Microglia are important immune cells of the central nervous system. Microglia play a dual role in protection and injury. Microglia are involved in the occurrence of brain edema, the processes of neuronal apoptosis, and the blood-brain barrier disruption after subarachnoid hemorrhage (SAH) through the signaling pathways mediated by receptors such as Toll-like receptor 4 (TLR4), calcium-sensing receptor (CaSR), and triggering receptor expressed on myeloid cells-1 (TREM-1), which secrete pro-inflammatory cytokines such as interleukins and tumor necrosis factor α. Conversely, they exert their anti-inflammatory and protective effects by expressing substances such as neuroglobin and heme oxygenase-1. This article reviews the latest developments in single-cell transcriptomics for microglia in early brain injury after subarachnoid hemorrhage and its inflammatory role.
Collapse
|
14
|
Weng W, Cheng F, Zhang J. Specific signature biomarkers highlight the potential mechanisms of circulating neutrophils in aneurysmal subarachnoid hemorrhage. Front Pharmacol 2022; 13:1022564. [PMID: 36438795 PMCID: PMC9685413 DOI: 10.3389/fphar.2022.1022564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Background: Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating hemorrhagic stroke with high disability and mortality. Neuroinflammation and the immunological response after aSAH are complex pathophysiological processes that have not yet been fully elucidated. Therefore, attention should be paid to exploring the inflammation-related genes involved in the systemic response to the rupture of intracranial aneurysms. Methods: The datasets of gene transcriptomes were downloaded from the Gene Expression Omnibus database. We constructed a gene co-expression network to identify cluster genes associated with aSAH and screened out differentially expressed genes (DEGs). The common gene was subsequently applied to identify hub genes by protein-protein interaction analysis and screen signature genes by machine learning algorithms. CMap analysis was implemented to identify potential small-molecule compounds. Meanwhile, Cibersort and ssGSEA were used to evaluate the immune cell composition, and GSEA reveals signal biological pathways. Results: We identified 602 DEGs from the GSE36791. The neutrophil-related module associated with aSAH was screened by weighted gene co-expression network analysis (WGCNA) and functional enrichment analysis. Several small molecular compounds were predicted based on neutrophil-related genes. MAPK14, ITGAM, TLR4, and FCGR1A have been identified as crucial genes involved in the peripheral immune activation related to neutrophils. Six significant genes (CST7, HSP90AB1, PADI4, PLBD1, RAB32, and SLAMF6) were identified as signature biomarkers by performing the LASSO analysis and SVM algorithms. The constructed machine learning model appears to be robust by receiver-operating characteristic curve analysis. The immune feature analysis demonstrated that neutrophils were upregulated post-aSAH and PADI4 was positively correlated with neutrophils. The NETs pathway was significantly upregulated in aSAH. Conclusion: We identified core regulatory genes influencing the transcription profiles of circulating neutrophils after the rupture of intracranial aneurysms using bioinformatics analysis and machine learning algorithms. This study provides new insight into the mechanism of peripheral immune response and inflammation after aSAH.
Collapse
|
15
|
Heinz R, Schneider UC. TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage (SAH): Potential Targets for Future Anti-Inflammatory Therapies. Int J Mol Sci 2022; 23:ijms232012618. [PMID: 36293468 PMCID: PMC9603851 DOI: 10.3390/ijms232012618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
Subarachnoid hemorrhage is associated with severe neurological deficits for survivors. Among survivors of the initial bleeding, secondary brain injury leads to additional brain damage. Apart from cerebral vasospasm, secondary brain injury mainly results from cerebral inflammation taking place in the brain parenchyma after bleeding. The brain’s innate immune system is activated, which leads to disturbances in brain homeostasis, cleavage of inflammatory cytokines and, subsequently, neuronal cell death. The toll-like receptor (TLR)4 signaling pathway has been found to play an essential role in the pathophysiology of acute brain injuries such as subarachnoid hemorrhage (SAH). TLR4 is expressed on the cell surface of microglia, which are key players in the cellular immune responses of the brain. The participants in the signaling pathway, such as TLR4-pathway-like ligands, the receptor itself, and inflammatory cytokines, can act as biomarkers, serving as clues regarding the inflammatory status after SAH. Moreover, protein complexes such as the NLRP3 inflammasome or receptors such as TREM1 frame the TLR4 pathway and are indicative of inflammation. In this review, we focus on the activity of the TLR4 pathway and its contributors, which can act as biomarkers of neuroinflammation or even offer potential new treatment targets for secondary neuronal cell death after SAH.
Collapse
Affiliation(s)
- Rebecca Heinz
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| | - Ulf C. Schneider
- Experimental Neurosurgery, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
- Department of Neurosurgery, Cantonal Hospital of Lucerne, 6000 Lucerne, Switzerland
- Correspondence:
| |
Collapse
|
16
|
Natural Compounds for SIRT1-Mediated Oxidative Stress and Neuroinflammation in Stroke: A Potential Therapeutic Target in the Future. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1949718. [PMID: 36105479 PMCID: PMC9467755 DOI: 10.1155/2022/1949718] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/06/2022]
Abstract
Stroke is a fatal cerebral vascular disease with a high mortality rate and substantial economic and social costs. ROS production and neuroinflammation have been implicated in both hemorrhagic and ischemic stroke and have the most critical effects on subsequent brain injury. SIRT1, a member of the sirtuin family, plays a crucial role in modulating a wide range of physiological processes, including apoptosis, DNA repair, inflammatory response, and oxidative stress. Targeting SIRT1 to reduce ROS and neuroinflammation might represent an emerging therapeutic target for stroke. Therefore, we conducted the present review to summarize the mechanisms of SIRT1-mediated oxidative stress and neuroinflammation in stroke. In addition, we provide a comprehensive introduction to the effect of compounds and natural drugs on SIRT1 signaling related to oxidative stress and neuroinflammation in stroke. We believe that our work will be helpful to further understand the critical role of the SIRT1 signaling pathway and will provide novel therapeutic potential for stroke treatment.
Collapse
|
17
|
Qiu J, Guo L, Li W, Wang L, Tong L. Ghrelin inhibits early brain injury due to subarachnoid hemorrhage via the Tim-3-mediated HMGB1/NF-κB pathway. J Chem Neuroanat 2022; 124:102138. [PMID: 35863561 DOI: 10.1016/j.jchemneu.2022.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/09/2022] [Accepted: 07/17/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVE To explore the protective effect of Ghrelin on EBI caused by SAH through the HMGB1/NF-κB pathway mediated by Tim-3. METHODS Rats were divided into four groups (n = 6): Sham group (Sham), SAH+vehicle group (SAH), SAH + 0.02 μg/kg rhGhrelin group (rhGhrelin-L), SAH + 0.04 μg/kg rhGhrelin group (rhGhrelin-H). At 48 h after SAH, the behavioral impairment in rats was examined for using neurobehavioral scores. The pathological change in the temporal basal brain tissue was observed by HE, and the expression of GHSR-1α and Tim-3 in the temporal basal brain tissue was observed by Western blot. To further validate that rhGhrelin could inhibit SAH-induced EBI by the Tim-3-mediated HMGB1/NF-κB pathway, we treated rats with the AAV-Tim-3. The contents of the inflammatory factors IL-1β, TNF-α, IL-6 was determined by ELISA, apoptosis was detected by TUNEL, the neurons were visualized by Nissl staining, the expression of GHSR-1α,Tim-3, HMGB1, RAGE, NF-κB p65 was determined by Western blot. RESULTS Compared with the SAH group, rats treated with rhGhrelin had a significantly lower neurobehavioral score, significantly decreased inflammatory factors IL-1β, TNF-α, IL-6 expression, significantly decreased apoptosis index, and significantly decreased Tim-3, HMGB1, RAGE, NF-κB p65 expression(p < 0.01). The protective effect of rhGhrelin on the SAH-induced EBI was reversed by the AAV-Tim-3. CONCLUSION Ghrelin has beneficial effects against SAH-induced EBI by inhibiting the HMGB1/NF-κB pathway, which may be regulated by Tim-3.
Collapse
Affiliation(s)
- Jiaoxue Qiu
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lei Guo
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Wenna Li
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lingling Wang
- Department of Neurology, Yantaishan Hospital, Yantai, Shandong Province, China
| | - Lin Tong
- Department of Neurology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, China.
| |
Collapse
|
18
|
Okada T, Suzuki H, Travis ZD, Altay O, Tang J, Zhang JH. SPARC Aggravates Blood-Brain Barrier Disruption via Integrin αV β3/MAPKs/MMP-9 Signaling Pathway after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9739977. [PMID: 34804372 PMCID: PMC8601826 DOI: 10.1155/2021/9739977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/18/2021] [Indexed: 01/17/2023]
Abstract
Blood-brain barrier (BBB) disruption is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the BBB disruption property of secreted protein acidic and rich in cysteine (SPARC) after SAH. A total of 197 rats underwent endovascular perforation to induce SAH or sham operation. Small interfering ribonucleic acid (siRNA) for SPARC or scrambled siRNA was administered intracerebroventricularly to rats 48 h before SAH. Anti-SPARC monoclonal antibody (mAb) 236 for functional blocking or normal mouse immunoglobulin G (IgG) was administered intracerebroventricularly 1 h after SAH. Selective integrin αVβ3 inhibitor cyclo(-RGDfK) or phosphate-buffered saline was administered intranasally 1 h before SAH, along with recombinant SPARC treatment. Neurobehavior, SAH severity, brain edema, immunohistochemical staining, and Western blot were evaluated. The expression of SPARC and integrin αVβ3 was upregulated after SAH in the endothelial cells. SPARC siRNA and anti-SPARC mAb 236 prevented neuroimpairments and brain edema through protection of BBB as measured by IgG extravasation 24 and 72 h after SAH. Recombinant SPARC aggravated neuroimpairments and cyclo(-RGDfK) suppressed the harmful neurological effects via inhibition of activated c-Jun N-terminal kinase, p38, and matrix metalloproteinase-9 followed by retention of endothelial junction proteins. SPARC may induce post-SAH BBB disruption via integrin αVβ3 signaling pathway.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Kuwana City Medical Center, 3-11 Kotobuki-cho, Kuwana, Mie 511-0061, Japan
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D. Travis
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Earth and Biological Sciences, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Orhan Altay
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| | - John H. Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Anesthesiology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
- Department of Neurosurgery, Loma Linda University, Risley Hall, Room 219, 11041 Campus St., Loma Linda, CA 92354, USA
| |
Collapse
|
19
|
Kanamaru H, Kawakita F, Nishikawa H, Nakano F, Asada R, Suzuki H. Clarithromycin Ameliorates Early Brain Injury After Subarachnoid Hemorrhage via Suppressing Periostin-Related Pathways in Mice. Neurotherapeutics 2021; 18:1880-1890. [PMID: 33829412 PMCID: PMC8609016 DOI: 10.1007/s13311-021-01050-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) remains a life-threatening disease, and early brain injury (EBI) is an important cause of poor outcomes. The authors have reported that periostin, a matricellular protein, is one of key factors of post-SAH EBI. Clarithromycin (CAM) is a worldwide antibiotic that can inhibit periostin expression. This study aimed to investigate whether CAM suppressed EBI after experimental SAH, focusing on blood-brain barrier (BBB) disruption, an important pathology of EBI. C57BL/6 male adult mice underwent endovascular perforation SAH modeling (n = 139) or sham operation (n = 30). Different dosages (25, 50, or 100 mg/kg) of CAM or the vehicle (n = 16, 52, 13, and 58, respectively) were randomly administered by an intramuscular injection 5 min after SAH induction. Post-SAH 50 mg/kg CAM treatment most effectively improved neurological scores and brain water content at 24 and 48 h and reduced immunoglobulin G extravasation at 24 h compared with vehicle-treated SAH mice (p < 0.01). Western blotting showed that post-SAH BBB disruption was associated with increased expressions of periostin, phosphorylated signal transducer and activator of transcription 1 and 3, matrix metalloproteinase-9, and the consequent degradation of zonula occludens-1, which were suppressed by 50 mg/kg CAM treatment (p < 0.05, respectively, versus vehicle-treated SAH mice). Periostin and its related molecules were upregulated in capillary endothelial cells and neurons after SAH. An intracerebroventricular injection of recombinant periostin blocked the neuroprotective effects of CAM in SAH mice (n = 6, respectively; p < 0.05). In conclusion, this study first demonstrated that CAM improved post-SAH EBI in terms of BBB disruption at least partly via the suppression of periostin-related pathways.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
20
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
21
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
22
|
Sun XG, Zhang MM, Liu SY, Chu XH, Xue GQ, Zhang BC, Zhu JB, Godje Godje IS, Zhu LJ, Hu HY, Hai-Wang, Shen YJ, Wang GQ. Role of TREM-1 in the development of early brain injury after subarachnoid hemorrhage. Exp Neurol 2021; 341:113692. [PMID: 33727099 DOI: 10.1016/j.expneurol.2021.113692] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) was found to be induced in the context of subarachnoid hemorrhage (SAH) before. This study further investigates its role in the development of SAH-induced early brain injury (EBI). Firstly, rats were randomly divided into Sham and SAH groups for analysis of temporal patterns and cellular localization of TREM-1. Secondly, TREM-1 intervention was administrated to produce Sham, vehicle, antagonist and agonist groups, for analyzing TREM-1, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and NF-κB expressions at 24 h post-modeling, and EBI assessment at 24 h and 72 h. Thirdly, TLR4 inhibitor (TAK-242) was exploited to produce Sham, Sham+TAK-242, SAH, and SAH + TAK-242 groups to analyze the effects of TLR4 inhibition on TREM-1 induction and EBI evaluation at 72 h. Fourthly, the relationship of soluble TREM-1 (sTREM-1) levels in cerebrospinal fluid of SAH patients with Hunt-Hess grades were explored. The results showed that TREM-1 increased in the brain after experimental SAH (eSAH) early at 6 h and peaked at 48 h, which was found to be located in microglia and endothelial cells. TREM-1 inhibition attenuated EBI associated with TLR4/MyD88/NF-κB suppression, while enhancement had the opposite effects. Contrarily, TLR4 inhibition prevented TREM-1 induction and ameliorated EBI. In addition, sTREM-1 levels in SAH patients positively correlated with Hunt-Hess grades. Overall, the present study provides new evidence that TREM-1 increases dynamically in the brain after eSAH and it is located in microglia and endothelial cells, which may aggravate EBI by interacting with TLR4 pathway. And sTREM-1 in patients might act as a monitoring biomarker of EBI, providing new insights for future studies.
Collapse
Affiliation(s)
- Xin-Gang Sun
- Department of Neurology, the Second Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China.
| | - Mi-Mi Zhang
- Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Shao-Yu Liu
- Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Xue-Hong Chu
- Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Guo-Qiang Xue
- Department of Neurosurgery, Yuncheng Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi 044000, People's Republic of China
| | - Bao-Chen Zhang
- Department of Neurosurgery, Yuncheng Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi 044000, People's Republic of China
| | - Jia-Bao Zhu
- Department of Neurosurgery, Yuncheng Hospital Affiliated to Shanxi Medical University, Yuncheng, Shanxi 044000, People's Republic of China
| | | | - Li-Juan Zhu
- Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Hui-Yu Hu
- Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Hai-Wang
- Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Ying-Jie Shen
- Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| | - Gai-Qing Wang
- Department of Neurology, the Second Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030000, People's Republic of China
| |
Collapse
|
23
|
Emerging Role of Microglia-Mediated Neuroinflammation in Epilepsy after Subarachnoid Hemorrhage. Mol Neurobiol 2021; 58:2780-2791. [PMID: 33501625 DOI: 10.1007/s12035-021-02288-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Epilepsy is a common and serious complication of subarachnoid hemorrhage (SAH), giving rise to increased morbidity and mortality. It's difficult to identify patients at high risk of epilepsy and the application of anti-epileptic drugs (AEDs) following SAH is a controversial topic. Therefore, it's pressingly needed to gain a better understanding of the risk factors, underlying mechanisms and the optimization of therapeutic strategies for epilepsy after SAH. Neuroinflammation, characterized by microglial activation and the release of inflammatory cytokines, has drawn growing attention due to its influence on patients with epilepsy after SAH. In this review, we discuss the risk factors for epilepsy after SAH and emphasize the critical role of microglia. Then we discuss how various molecules arising from pathophysiological changes after SAH activate specific receptors such as TLR4, NLRP3, RAGE, P2X7R and initiate the downstream inflammatory pathways. Additionally, we focus on the significant responses implicated in epilepsy including neuronal excitotoxicity, the disruption of blood-brain barrier (BBB) and the change of immune responses. As the application of AEDs for seizure prophylaxis after SAH remains controversial, the regulation of neuroinflammation targeting the key pathological molecules could be a promising therapeutic method. While neuroinflammation appears to contribute to epilepsy after SAH, more comprehensive experiments on their relationships are needed.
Collapse
|
24
|
Hollidge BS, Cohen CA, Akuoku Frimpong J, Badger CV, Dye JM, Schmaljohn CS. Toll-like receptor 4 mediates blood-brain barrier permeability and disease in C3H mice during Venezuelan equine encephalitis virus infection. Virulence 2021; 12:430-443. [PMID: 33487119 PMCID: PMC7849679 DOI: 10.1080/21505594.2020.1870834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an encephalitic alphavirus that can cause debilitating, acute febrile illness and potentially result in encephalitis. Currently, there are no FDA-licensed vaccines or specific therapeutics for VEEV. Previous studies have demonstrated that VEEV infection results in increased blood-brain barrier (BBB) permeability that is mediated by matrix metalloproteinases (MMPs). Furthermore, after subarachnoid hemorrhage in mice, MMP-9 is upregulated in the brain and mediates BBB permeability in a toll-like receptor 4 (TLR4)-dependent manner. Here, we demonstrate that disease in C3H mice during VEEV TC-83 infection is dependent on TLR4 because intranasal infection of C3H/HeN (TLR4WT) mice with VEEV TC-83 resulted in mortality as opposed to survival of TLR4-defective C3H/HeJ (TLR4mut) mice. In addition, BBB permeability was induced to a lesser extent in TLR4mut mice compared with TLR4WT mice during VEEV TC-83 infection as determined by sodium fluorescein and fluorescently-conjugated dextran extravasation. Moreover, MMP-9, MMP-2, ICAM-1, CCL2 and IFN-γ were all induced to significantly lower levels in the brains of infected TLR4mut mice compared with infected TLR4WT mice despite the absence of significantly different viral titers or immune cell populations in the brains of infected TLR4WT and TLR4mut mice. These data demonstrate the critical role of TLR4 in mediating BBB permeability and disease in C3H mice during VEEV TC-83 infection, which suggests that TLR4 is a potential target for the development of therapeutics for VEEV.
Collapse
Affiliation(s)
- Bradley S Hollidge
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA.,REGENXBIO, Inc ., Rockville, Maryland, USA
| | - Courtney A Cohen
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA
| | - Justice Akuoku Frimpong
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA.,Immunodiagnostics Department, Biological Defense Research Directorate, Naval Medical Research Center , Fort Detrick, Maryland, USA
| | - Catherine V Badger
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA
| | - John M Dye
- Virology Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA
| | - Connie S Schmaljohn
- Headquarters Division, United States Army Medical Research Institute of Infectious Diseases , Fort Detrick, Maryland, USA.,Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institute of Health , Fort Detrick, Maryland, USA
| |
Collapse
|
25
|
Okada T, Suzuki H. The Role of Tenascin-C in Tissue Injury and Repair After Stroke. Front Immunol 2021; 11:607587. [PMID: 33552066 PMCID: PMC7859104 DOI: 10.3389/fimmu.2020.607587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke is still one of the most common causes for mortality and morbidity worldwide. Following acute stroke onset, biochemical and cellular changes induce further brain injury such as neuroinflammation, cell death, and blood-brain barrier disruption. Matricellular proteins are non-structural proteins induced by many stimuli and tissue damage including stroke induction, while its levels are generally low in a normal physiological condition in adult tissues. Currently, a matricellular protein tenascin-C (TNC) is considered to be an important inducer to promote neuroinflammatory cascades and the resultant pathology in stroke. TNC is upregulated in cerebral arteries and brain tissues including astrocytes, neurons, and brain capillary endothelial cells following subarachnoid hemorrhage (SAH). TNC may be involved in blood-brain barrier disruption, neuronal apoptosis, and cerebral vasospasm via the activation of mitogen-activated protein kinases and nuclear factor-kappa B following SAH. In addition, post-SAH TNC levels in cerebrospinal fluid predicted the development of delayed cerebral ischemia and angiographic vasospasm in clinical settings. On the other hand, TNC is reported to promote fibrosis and exert repair effects for an experimental aneurysm via macrophages-induced migration and proliferation of smooth muscle cells. The authors review TNC-induced inflammatory signal cascades and the relationships with other matricellular proteins in stroke-related pathology.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Neurosurgery, Kuwana City Medical Center, Kuwana, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
26
|
Pyroptosis by caspase-11 inflammasome-Gasdermin D pathway in autoimmune diseases. Pharmacol Res 2021; 165:105408. [PMID: 33412278 DOI: 10.1016/j.phrs.2020.105408] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 02/08/2023]
Abstract
Inflammasomes are a group of supramolecular complexes primarily comprise a sensor, adaptor protein and an effector. Among them, canonical inflammasomes are assembled by one specific pattern recognition receptor, the adaptor protein apoptosis-associated speck-like protein containing a CARD and procaspase-1. Murine caspase-11 and its human ortholog caspase-4/5 are identified as cytosolic sensors which directly responds to LPS. Once gaining access to cytosol, LPS further trigger inflammasome activation in noncanonical way. Downstream pore-forming Gasdermin D is a pyroptosis executioner. Emerging evidence announced in recent years demonstrate the vital role played by caspase-11 non-canonical inflammasome in a range of autoimmune diseases. Pharmacological ablation of caspase-11 and its related effector results in potent therapeutic effects. Though recent advances have highlighted the potential of caspase-11 as a drug target, the understanding of caspase-11 molecular activation and regulation mechanism remains to be limited and thus hampered the discovery and progression of novel inhibitors. Here in this timeline review, we explored how caspase-11 get involved in the pathogenesis of autoimmune diseases, we also collected the reported small-molecular caspase-11 inhibitors. Moreover, the clinical implications and therapeutic potential of caspase-11 inhibitors are discussed. Targeting non-canonical inflammasomes is a promising strategy for autoimmune diseases treatment, while information about the toxicity and physiological disposition of the promising caspase-11 inhibitors need to be supplemented before they can be translated from bench to bedside.
Collapse
|
27
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
28
|
Suzuki H, Kanamaru H, Kawakita F, Asada R, Fujimoto M, Shiba M. Cerebrovascular pathophysiology of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Histol Histopathol 2020; 36:143-158. [PMID: 32996580 DOI: 10.14670/hh-18-253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a serious cerebrovascular disease. Even if SAH patients survive the initial insults, delayed cerebral ischemia (DCI) may occur at 4 days or later post-SAH. DCI is characteristics of SAH, and is considered to develop by blood breakdown products and inflammatory reactions, or secondary to early brain injury, acute pathophysiological events that occur in the brain within the first 72 hours of aneurysmal SAH. The pathology underlying DCI may involve large artery vasospasm and/or microcirculatory disturbances by microvasospasm, microthrombosis, dysfunction of venous outflow and compression of microvasculature by vasogenic or cytotoxic tissue edema. Recent clinical evidence has shown that large artery vasospasm is not the only cause of DCI, and that both large artery vasospasm-dependent and -independent cerebral infarction causes poor outcome. Animal studies suggest that mechanisms of vasospasm may differ between large artery and arterioles or capillaries, and that many kinds of cells in the vascular wall and brain parenchyma may be involved in the pathogenesis of microcirculatory disturbances. The impairment of the paravascular and glymphatic systems also may play important roles in the development of DCI. As pathological mediators for DCI, glutamate and several matricellular proteins have been investigated in addition to inflammatory molecules. Glutamate is involved in excitotoxicity contributing to cortical spreading ischemia and epileptic activity-related events. Microvascular dysfunction is an attractive mechanism to explain the cause of poor outcomes independently of large cerebral artery vasospasm, but needs more studies to clarify the pathophysiologies or mechanisms and to develop a novel therapeutic strategy.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Reona Asada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
29
|
Federico S, Pozzetti L, Papa A, Carullo G, Gemma S, Butini S, Campiani G, Relitti N. Modulation of the Innate Immune Response by Targeting Toll-like Receptors: A Perspective on Their Agonists and Antagonists. J Med Chem 2020; 63:13466-13513. [PMID: 32845153 DOI: 10.1021/acs.jmedchem.0c01049] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are a class of proteins that recognize pathogen-associated molecular patterns (PAMPs) and damaged-associated molecular patterns (DAMPs), and they are involved in the regulation of innate immune system. These transmembrane receptors, localized at the cellular or endosomal membrane, trigger inflammatory processes through either myeloid differentiation primary response 88 (MyD88) or TIR-domain-containing adapter-inducing interferon-β (TRIF) signaling pathways. In the last decades, extensive research has been performed on TLR modulators and their therapeutic implication under several pathological conditions, spanning from infections to cancer, from metabolic disorders to neurodegeneration and autoimmune diseases. This Perspective will highlight the recent discoveries in this field, emphasizing the role of TLRs in different diseases and the therapeutic effect of their natural and synthetic modulators, and it will discuss insights for the future exploitation of TLR modulators in human health.
Collapse
Affiliation(s)
- Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alessandro Papa
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy, Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
30
|
Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol 2020; 11:1210. [PMID: 32765484 PMCID: PMC7381287 DOI: 10.3389/fimmu.2020.01210] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Toll-Like Receptor 4 (TLR4) is one of the receptors of innate immunity. It is activated by Pathogen- and Damage-Associated Molecular Patterns (PAMPs and DAMPs) and triggers pro-inflammatory responses that belong to the repertoire of innate immune responses, consequently protecting against infectious challenges and boosting adaptive immunity. Mild TLR4 stimulation by non-toxic molecules resembling its natural agonist (lipid A) provided efficient vaccine adjuvants. The non-toxic TLR4 agonist monophosphoryl lipid A (MPLA) has been approved for clinical use. This suggests the development of other TLR4 agonists as adjuvants or drugs for cancer immunotherapy. TLR4 excessive activation by a Gram-negative bacteria lipopolysaccharide (LPS) leads to sepsis, while TLR4 stimulation by DAMPs is a common mechanism in several inflammatory and autoimmune diseases. TLR4 inhibition by small molecules and antibodies could therefore provide access to innovative therapeutics targeting sepsis as well as acute and chronic inflammations. The potential use of TLR4 antagonists as anti-inflammatory drugs with unique selectivity and a new mechanism of action compared to corticosteroids or other non-steroid anti-inflammatory drugs fueled the search for compounds of natural or synthetic origin able to block or inhibit TLR4 activation and signaling. The wide spectrum of clinical settings to which TLR4 inhibitors can be applied include autoimmune diseases (rheumatoid arthritis, inflammatory bowel diseases), vascular inflammation, neuroinflammations, and neurodegenerative diseases. The last advances (from 2017) in TLR4 activation or inhibition by small molecules (molecular weight <2 kDa) are reviewed here. Studies on pre-clinical validation of new chemical entities (drug hits) on cellular or animal models as well as new clinical studies on previously developed TLR4 modulators are reported. Innovative TLR4 modulators discovered by computer-assisted drug design and an artificial intelligence approach are described. Some "old" TLR4 agonists or antagonists such as MPLA or Eritoran are under study for repositioning in different pharmacological contexts. The mechanism of action of the molecules and the level of TLR4 involvement in their biological activity are critically discussed.
Collapse
Affiliation(s)
- Alessio Romerio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
31
|
Zhang XH, Peng L, Zhang J, Dong YP, Wang CJ, Liu C, Xia DY, Zhang XS. Berberine Ameliorates Subarachnoid Hemorrhage Injury via Induction of Sirtuin 1 and Inhibiting HMGB1/Nf-κB Pathway. Front Pharmacol 2020; 11:1073. [PMID: 32754040 PMCID: PMC7366844 DOI: 10.3389/fphar.2020.01073] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Excessive cerebral inflammation plays a key role in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Berberine, an isoquinoline alkaloid isolated from Chinese herb Coptis chinensis, possesses anti-inflammatory, and neuroprotective effects. Here we evaluated the beneficial effects of berberine against SAH-induced inflammatory response and the subsequent brain injury. Our data showed that berberine treatment significantly inhibited microglia activation and proinflammatory cytokines release. Concomitant with suppressed cerebral inflammation, berberine mitigated the subsequent brain injury as demonstrated by improved neurological behavior, reduced brain edema, and decreased neural apoptosis. Moreover, berberine significantly inhibited high mobile group box 1 (HMGB1)/nuclear factor-κB (Nf-κB)-dependent pathway and enhanced sirtuin 1 (SIRT1) expression after SAH. Treatment with ex527, a selective SIRT1 inhibitor, reversed berberine-induced SIRT1 activation and inhibitory effects on HMGB1/Nf-κB activation. In addition, ex527 pretreatment abated the anti-inflammatory and neuroprotective effects of berberine on SAH. Taken together, these findings suggest that berberine provides beneficial effects against SAH-triggered cerebral inflammation by inhibiting HMGB1/Nf-κB pathway, which may be modulated by SIRT1 activation.
Collapse
Affiliation(s)
- Xiang-Hua Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lei Peng
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi-Peng Dong
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cheng-Jun Wang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cang Liu
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Da-Yong Xia
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xiang-Sheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Delayed recanalization after MCAO ameliorates ischemic stroke by inhibiting apoptosis via HGF/c-Met/STAT3/Bcl-2 pathway in rats. Exp Neurol 2020; 330:113359. [PMID: 32428505 DOI: 10.1016/j.expneurol.2020.113359] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 01/28/2023]
Abstract
The activation of tyrosine kinase receptor c-Met by hepatocyte growth factor (HGF) showed an anti-apoptotic effect in numerous disease models. This study aimed to investigate the neuroprotective mechanism of the HGF/c-Met axis-mediated anti-apoptosis underlying the delayed recanalization in a rat model of middle cerebral artery occlusion (MCAO). Permanent MCAO model (pMCAO) was induced by intravascular filament insertion. Recanalization was induced by withdrawing the filament at 3 days after MCAO (rMCAO). HGF levels in the blood serum and brain tissue expressions of HGF, c-Met, phosphorylated-STAT3 (p-STAT3), STAT3, Bcl-2, Bax, cleaved caspase-3(CC3) were assessed using ELISA and western blot, respectively. To study the mechanism, HGF small interfering ribonucleic acid (siRNA) and c-Met inhibitor, su11274, were administered intracerebroventricularly (i.c.v.) or intranasally, respectively. The concentration of HGF in the serum was increased significantly after MCAO. Brain expression of HGF was increased after MCAO and peaked at 3 days after recanalization. HGF and c-Met were both co-localized with neurons. Compared to rats received permanent MCAO, delayed recanalization after MCAO decreased the infarction volume, inhibited neuronal apoptosis, and improved neurobehavioral function, increased expressions of p-STAT3 and its downstream Bcl-2. Mechanistic studies indicated that HGF siRNA and su11274 reversed the neuroprotection including anti-apoptotic effects provided by delayed recanalization. In conclusion, the delayed recanalization after MCAO increased the expression of HGF in the brain, and reduced the infarction and neuronal apoptosis after MCAO, partly via the activation of the HGF/c-Met/STAT3/Bcl-2 signaling pathway. The delayed recanalization may serve as a therapeutic alternative for a subset of ischemic stroke patients.
Collapse
|
33
|
Ashayeri Ahmadabad R, Khaleghi Ghadiri M, Gorji A. The role of Toll-like receptor signaling pathways in cerebrovascular disorders: the impact of spreading depolarization. J Neuroinflammation 2020; 17:108. [PMID: 32264928 PMCID: PMC7140571 DOI: 10.1186/s12974-020-01785-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
Cerebral vascular diseases (CVDs) are a group of disorders that affect the blood supply to the brain and lead to the reduction of oxygen and glucose supply to the neurons and the supporting cells. Spreading depolarization (SD), a propagating wave of neuroglial depolarization, occurs in different CVDs. A growing amount of evidence suggests that the inflammatory responses following hypoxic-ischemic insults and after SD plays a double-edged role in brain tissue injury and clinical outcome; a beneficial effect in the acute phase and a destructive role in the late phase. Toll-like receptors (TLRs) play a crucial role in the activation of inflammatory cascades and subsequent neuroprotective or harmful effects after CVDs and SD. Here, we review current data regarding the pathophysiological role of TLR signaling pathways in different CVDs and discuss the role of SD in the potentiation of the inflammatory cascade in CVDs through the modulation of TLRs.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Department of Neurology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
- Neuroscience research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Biochem Soc Trans 2020; 47:1651-1660. [PMID: 31845742 DOI: 10.1042/bst20190081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.
Collapse
|
35
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
36
|
Wang Q, Luo Q, Zhao YH, Chen X. Toll-like receptor-4 pathway as a possible molecular mechanism for brain injuries after subarachnoid hemorrhage. Int J Neurosci 2020; 130:953-964. [PMID: 31903827 DOI: 10.1080/00207454.2019.1709845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) is known as an acute catastrophic neurological disease that continues to be a serious and significant health problem worldwide. The mechanisms contributing to brain injury after SAH remain unclear despite decades of study focusing on early brain injury (EBI) and delayed brain injury (DBI). Neuroinflammation is a well-recognized consequence of SAH and may be responsible for EBI, cerebral vasospasm, and DBI. Toll-like receptors (TLRs) play a crucial role in the inflammatory response by recognizing damage-associated molecular patterns derived from the SAH. TLR4 is the most studied Toll-like receptor and is widely expressed in the central nervous system (CNS). It can be activated by the extravasated blood components in myeloid differentiation primary response-88/Toll/interleukin-1 receptor-domain-containing adapter-inducing interferon-β (MyD88/TRIF)-dependent pathway after SAH. Transcription factors, such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF), that regulate the expression of proinflammatory cytokine genes are initiated by the activation of TLR4, which cause the brain damage after SAH. TLR4 may therefore be a useful therapeutic target for overcoming EBI and DBI in post-SAH neuroinflammation, thereby improving SAH outcome. In the present review, we summarized recent findings from basic and clinical studies of SAH, with a primary focus on the biological characteristics and functions of TLR4 and discussed the mechanisms associated with TLR4 signaling pathway in EBI and DBI following SAH.
Collapse
Affiliation(s)
- Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Qi Luo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yu-Hao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
37
|
Li Y, Wu P, Bihl JC, Shi H. Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Curr Neuropharmacol 2020; 18:1168-1179. [PMID: 31903882 PMCID: PMC7770641 DOI: 10.2174/1570159x18666200106154203] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of hemorrhagic stroke with significant morbidity and mortality. Aneurysmal bleeding causes elevated intracranial pressure, decreased cerebral blood flow, global cerebral ischemia, brain edema, blood component extravasation, and accumulation of breakdown products. These post-SAH injuries can disrupt the integrity and function of the blood-brain barrier (BBB), and brain tissues are directly exposed to the neurotoxic blood contents and immune cells, which leads to secondary brain injuries including inflammation and oxidative stress, and other cascades. Though the exact mechanisms are not fully clarified, multiple interconnected and/or independent signaling pathways have been reported to be involved in BBB disruption after SAH. In addition, alleviation of BBB disruption through various pathways or chemicals has a neuroprotective effect on SAH. Hence, BBB permeability plays an important role in the pathological course and outcomes of SAH. This review discusses the recent understandings of the underlying mechanisms and potential therapeutic targets in BBB disruption after SAH, emphasizing the dysfunction of tight junctions and endothelial cells in the development of BBB disruption. The emerging molecular targets, including toll-like receptor 4, netrin-1, lipocalin-2, tropomyosin-related kinase receptor B, and receptor tyrosine kinase ErbB4, are also summarized in detail. Finally, we discussed the emerging treatments for BBB disruption after SAH and put forward our perspectives on future research.
Collapse
Affiliation(s)
| | | | - Ji C. Bihl
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| | - Huaizhang Shi
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| |
Collapse
|
38
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|
39
|
Wu L, Zeng S, Cao Y, Huang Z, Liu S, Peng H, Zhi C, Ma S, Hu K, Yuan Z. Inhibition of HDAC4 Attenuated JNK/c-Jun-Dependent Neuronal Apoptosis and Early Brain Injury Following Subarachnoid Hemorrhage by Transcriptionally Suppressing MKK7. Front Cell Neurosci 2019; 13:468. [PMID: 31708743 PMCID: PMC6823346 DOI: 10.3389/fncel.2019.00468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
The c-Jun N-terminal kinase (JNK)/c-Jun cascade-dependent neuronal apoptosis has been identified as a central element for early brain injury (EBI) following subarachnoid hemorrhage (SAH), but the molecular mechanisms underlying this process are still thoroughly undefined to date. In this study, we found that pan-histone deacetylase (HDAC) inhibition by TSA, SAHA, VPA, and M344 led to a remarkable decrease in the phosphorylation of JNK and c-Jun, concomitant with a significant abrogation of apoptosis caused by potassium deprivation in cultured cerebellar granule neurons (CGNs). Further investigation showed that these effects resulted from HDAC inhibition-induced transcriptional suppression of MKK7, a well-known upstream kinase of JNK. Using small interference RNAs (siRNAs) to silence the respective HDAC members, HDAC4 was screened to be required for MKK7 transcription and JNK/c-Jun activation. LMK235, a specific HDAC4 inhibitor, dose-dependently suppressed MKK7 transcription and JNK/c-Jun activity. Functionally, HDAC4 inhibition via knockdown or LMK235 significantly rescued CGN apoptosis induced by potassium deprivation. Moreover, administration of LMK235 remarkably ameliorated the EBI process in SAH rats, associated with an obvious reduction in MKK7 transcription, JNK/c-Jun activity, and neuronal apoptosis. Collectively, the findings provide new insights into the molecular mechanism of neuronal apoptosis regarding HDAC4 in the selective regulation of MKK7 transcription and JNK/c-Jun activity. HDAC4 inhibition could be a potential alternative to prevent MKK7/JNK/c-Jun axis-mediated nervous disorders, including SAH-caused EBI.
Collapse
Affiliation(s)
- Liqiang Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Shulian Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Yali Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Ziyan Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Sisi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
| | - Huaidong Peng
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Zhi
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanshan Ma
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Kunhua Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Institute of Neuroscience of Guangzhou Medical University, Guangzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
40
|
Geraghty JR, Davis JL, Testai FD. Neuroinflammation and Microvascular Dysfunction After Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocrit Care 2019; 31:373-389. [PMID: 31012056 PMCID: PMC6759381 DOI: 10.1007/s12028-019-00710-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aneurysmal subarachnoid hemorrhage has a high mortality rate and, for those who survive this devastating injury, can lead to lifelong impairment. Clinical trials have demonstrated that cerebral vasospasm of larger extraparenchymal vessels is not the sole contributor to neurological outcome. Recently, the focus of intense investigation has turned to mechanisms of early brain injury that may play a larger role in outcome, including neuroinflammation and microvascular dysfunction. Extravasated blood after aneurysm rupture results in a robust inflammatory response characterized by activation of microglia, upregulation of cellular adhesion molecules, recruitment of peripheral immune cells, as well as impaired neurovascular coupling, disruption of the blood-brain barrier, and imbalances in endogenous vasodilators and vasoconstrictors. Each of these phenomena is either directly or indirectly associated with neuronal death and brain injury. Here, we review recent studies investigating these various mechanisms in experimental models of subarachnoid hemorrhage with special emphasis on neuroinflammation and its effect on microvascular dysfunction. We discuss the various therapeutic targets that have risen from these mechanistic studies and suggest the utility of a multi-targeted approach to preventing delayed injury and improving outcome after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Joseph R Geraghty
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA.
- Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.
| | - Joseph L Davis
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois at Chicago, 912 S. Wood St. Suite 174N, Chicago, IL, 60612, USA
| |
Collapse
|
41
|
Nishikawa H, Liu L, Nakano F, Kawakita F, Kanamaru H, Nakatsuka Y, Okada T, Suzuki H. Modified Citrus Pectin Prevents Blood-Brain Barrier Disruption in Mouse Subarachnoid Hemorrhage by Inhibiting Galectin-3. Stroke 2019; 49:2743-2751. [PMID: 30355205 DOI: 10.1161/strokeaha.118.021757] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background and Purpose- Plasma levels of galectin-3-a matricellular protein-are increased after aneurysmal subarachnoid hemorrhage (SAH), but the functional significance remains undetermined. This study was conducted to evaluate whether modified citrus pectin (MCP; galectin-3 inhibitor) prevents post-SAH early brain injury, focusing on blood-brain barrier disruption. Methods- C57BL/6 male adult mice (n=251) underwent sham or filament perforation SAH modeling, followed by a random intracerebroventricular injection of vehicle or drug at 30 minutes post-modeling. First, vehicle-treated and 0.8, 4, 16, or 32 µg MCP-treated mice were assessed by neuroscore and brain water content at 24 and 48 hours post-modeling. Second, Evans blue extravasation, Western blotting, coimmunoprecipitation and immunostaining were performed in vehicle-treated or 4 µg MCP-treated mice at 24 hours post-modeling. Third, vehicle or R-galectin-3 (recombinant galectin-3) was administered to SAH mice simultaneously with vehicle or MCP, and neuroscore and Evans blue extravasation were evaluated at 24 hours post-modeling. Fourth, vehicle or R-galectin-3 was administered to MCP-treated SAH mice at 24 hours, and neuroscore and IgG immunostaining were evaluated at 48 hours post-SAH. Results- Among tested dosages, 4 µg MCP showed the best neuroprotective effects as to preventing neurological impairments and brain edema at 24 to 48 hours post-SAH. Four micrograms MCP attenuated post-SAH blood-brain barrier disruption and galectin-3 upregulation in brain capillary endothelial cells, associated with inactivation of ERK (extracellular signal-related kinase) 1/2, STAT (signal transducer and activator of transcription)-3, and MMP (matrix metalloproteinase)-9, and the consequent preservation of a tight junction protein ZO-1 (zonula occludens-1). Coimmunoprecipitation assay demonstrated physical interactions between galectin-3 and TLR (Toll-like receptor) 4. R-galectin-3 blocked the neuroprotective effects of MCP. Conclusions- MCP prevents post-SAH blood-brain barrier disruption possibly by inhibiting galectin-3, of which the mechanisms may include binding to TLR4 and activating ERK1/2, STAT-3, and MMP-9. This study suggests galectin-3 to be a novel therapeutic target against post-SAH early brain injury.
Collapse
Affiliation(s)
- Hirofumi Nishikawa
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- From the Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
42
|
Suzuki H. Inflammation: a Good Research Target to Improve Outcomes of Poor-Grade Subarachnoid Hemorrhage. Transl Stroke Res 2019; 10:597-600. [PMID: 31214920 DOI: 10.1007/s12975-019-00713-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
43
|
Okada T, Enkhjargal B, Travis ZD, Ocak U, Tang J, Suzuki H, Zhang JH. FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Mol Neurobiol 2019; 56:8203-8219. [PMID: 31203572 DOI: 10.1007/s12035-019-01668-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Neuronal apoptosis is a common and critical pathology following subarachnoid hemorrhage (SAH). We investigated the anti-apoptotic property of fibroblast growth factor (FGF)-2 after SAH in rats. A total of 289 rats underwent endovascular perforation to induce SAH or sham operation. Three dosages (3, 9, or 27 μg) of recombinant FGF-2 (rFGF-2) or vehicle was administered intranasally to rats 30 min after SAH induction. The pan-FGF receptor (FGFR) inhibitor PD173074 or vehicle was administered intracerebroventricularly (i.c.v.) 1 h before modeling, in addition to rFGF-2 treatment. Small interfering ribonucleic acid (siRNA) for FGFR1 and FGFR3 or scrambled siRNA was administered i.c.v. 48 h before SAH induction in addition to rFGF-2 treatment. Anti-FGF-2 neutralizing antibody or normal mouse immunoglobulin G (IgG) was administered i.c.v. 1 h before SAH model. Neurobehavioral tests, SAH severity, brain water content, immunofluorescence, Fluoro-Jade C, TUNEL staining, and western blot were evaluated. The expression of FGF-2, FGFR1, and FGFR3 increased after SAH. FGFR1 and FGFR3 were expressed in the neurons. Nine micrograms of FGF-2 alleviated neurological impairments, brain edema, and neuronal apoptosis following SAH. A rFGF-2 treatment improved motor skill learning and spatial memory and increased the number of surviving neurons postinjury to 28 days after SAH. PD173074 abolished the anti-apoptotic effects of rFGF-2 via suppression of the expression of PI3k, phosphorylated Akt (p-Akt), and Bcl-2 leading to enhancement of the expression of Bax. FGFR3 siRNA worsened neurobehavioral function and suppressed the expression of PI3k, p-Akt, and Bcl-2 rather than FGFR1 siRNA in SAH rats treated with rFGF-2. Anti-FGF-2 neutralizing antibody suppressed the expression of PI3k and p-Akt after SAH. FGF-2 may be a promising therapy to reduce post-SAH neuronal apoptosis via activation of the FGFR3/PI3k/Akt signaling pathway.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Budbazar Enkhjargal
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Umut Ocak
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
- Department of Anesthesiology, Loma Linda University, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA, 92354, USA.
| |
Collapse
|
44
|
Kanamaru H, Kawakita F, Nakano F, Miura Y, Shiba M, Yasuda R, Toma N, Suzuki H. Plasma Periostin and Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage. Neurotherapeutics 2019; 16:480-490. [PMID: 30635868 PMCID: PMC6554464 DOI: 10.1007/s13311-018-00707-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Delayed cerebral ischemia (DCI) is a serious complication of aneurysmal subarachnoid hemorrhage (SAH). Matricellular protein periostin (POSTN) has been found to be upregulated and linked with early brain injury after experimental SAH. The aim of the present study was to investigate the relationship between plasma POSTN levels and various clinical factors including serum levels of C-reactive protein (CRP), an inflammatory marker, in 109 consecutive SAH patients whose POSTN levels were measured at days 1-12 after aneurysmal obliteration. DCI developed in 16 patients associated with higher incidence of angiographic vasospasm, cerebral infarction, and 90-day worse outcomes. POSTN levels peaked at days 4-6 before DCI development. Cerebrospinal fluid (CSF) drainage was associated with reduced POSTN levels, but did not influence CRP levels. There was no correlation between POSTN levels and other treatments or CRP levels. To predict DCI development, receiver-operating characteristic curves indicated that the most reasonable cutoff POSTN levels were obtained at days 1-3 in patients without CSF drainage (80.5 ng/ml; specificity, 77.6%; sensitivity, 85.7%). Multivariate analyses using variables obtained by day 3 revealed that POSTN level was an independent predictor of DCI. POSTN levels over the cutoff value were associated with higher incidence of DCI, but not angiographic vasospasm. This study shows for the first time that CSF drainage may reduce plasma POSTN levels, and that POSTN levels may increase prior to the development of DCI with and without vasospasm irrespective of systemic inflammatory reactions in clinical settings. These findings suggest POSTN as a new therapeutic molecular target against post-SAH DCI.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoichi Miura
- Center for Vessels and Heart, Mie University Hospital, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ryuta Yasuda
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Naoki Toma
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
45
|
The Structure of the Periostin Gene, Its Transcriptional Control and Alternative Splicing, and Protein Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1132:7-20. [PMID: 31037620 DOI: 10.1007/978-981-13-6657-4_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although many studies have described the role of periostin in various diseases, the functions of periostin derived from alternative splicing and proteinase cleavage at its C-terminus remain unknown. Further experiments investigating the periostin structures that are relevant to diseases are essential for an in-depth understanding of their functions, which would accelerate their clinical applications by establishing new approaches for curing intractable diseases. Furthermore, this understanding would enhance our knowledge of novel functions of periostin related to stemness and response to mechanical stress .
Collapse
|
46
|
Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res 2019; 14:1138-1143. [PMID: 30804237 PMCID: PMC6425837 DOI: 10.4103/1673-5374.251190] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage remains serious hemorrhagic stroke with high morbidities and mortalities. Aneurysm rupture causes arterial bleeding-induced mechanical brain tissue injuries and elevated intracranial pressure, followed by global cerebral ischemia. Post-subarachnoid hemorrhage ischemia, tissue injuries as well as extravasated blood components and the breakdown products activate microglia, astrocytes and Toll-like receptor 4, and disrupt blood-brain barrier associated with the induction of many inflammatory and other cascades. Once blood-brain barrier is disrupted, brain tissues are directly exposed to harmful blood contents and immune cells, which aggravate brain injuries furthermore. Blood-brain barrier disruption after subarachnoid hemorrhage may be developed by a variety of mechanisms including endothelial cell apoptosis and disruption of tight junction proteins. Many molecules and pathways have been reported to disrupt the blood-brain barrier after subarachnoid hemorrhage, but the exact mechanisms remain unclear. Multiple independent and/or interconnected signaling pathways may be involved in blood-brain barrier disruption after subarachnoid hemorrhage. This review provides recent understandings of the mechanisms and the potential therapeutic targets of blood-brain barrier disruption after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|