1
|
Sun X, Xiao C, Wang X, Wu S, Yang Z, Sui B, Song Y. Role of post-translational modifications of Sp1 in cancer: state of the art. Front Cell Dev Biol 2024; 12:1412461. [PMID: 39228402 PMCID: PMC11368732 DOI: 10.3389/fcell.2024.1412461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
Specific protein 1 (Sp1) is central to regulating transcription factor activity and cell signaling pathways. Sp1 is highly associated with the poor prognosis of various cancers; it is considered a non-oncogene addiction gene. The function of Sp1 is complex and contributes to regulating extensive transcriptional activity, apart from maintaining basal transcription. Sp1 activity and stability are affected by post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, glycosylation, and SUMOylation. These modifications help to determine genetic programs that alter the Sp1 structure in different cells and increase or decrease its transcriptional activity and DNA binding stability in response to pathophysiological stimuli. Investigating the PTMs of Sp1 will contribute to a deeper understanding of the mechanism underlying the cell signaling pathway regulating Sp1 stability and the regulatory mechanism by which Sp1 affects cancer progression. Furthermore, it will facilitate the development of new drug targets and biomarkers, thereby elucidating considerable implications in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Chinese Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyang Wang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyu Wu
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhendong Yang
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Bowen Sui
- Department of Pneumology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Chen HC, Lin HY, Chiang YH, Yang WB, Wang CH, Yang PY, Hu SL, Hsu TI. Progesterone boosts abiraterone-driven target and NK cell therapies against glioblastoma. J Exp Clin Cancer Res 2024; 43:218. [PMID: 39103871 DOI: 10.1186/s13046-024-03144-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
INTRODUCTION Glioblastoma (GBM) poses a significant challenge in oncology, with median survival times barely extending beyond a year due to resistance to standard therapies like temozolomide (TMZ). This study introduces a novel therapeutic strategy combining progesterone (Prog) and abiraterone (Abi) aimed at enhancing GBM treatment efficacy by modulating the tumor microenvironment and augmenting NK cell-mediated immunity. METHODS We employed in vitro and in vivo GBM models to assess the effects of Prog and Abi on cell viability, proliferation, apoptosis, and the immune microenvironment. Techniques included cell viability assays, Glo-caspase 3/7 apoptosis assays, RNA-seq and qPCR for gene expression, Seahorse analysis for mitochondrial function, HPLC-MS for metabolomics analysis, and immune analysis by flow cytometry to quantify NK cell infiltration. RESULTS Prog significantly reduced the IC50 of Abi in TMZ-resistant GBM cell, suggesting the enhanced cytotoxicity. Treatment induced greater apoptosis than either agent alone, suppressed tumor growth, and prolonged survival in mouse models. Notably, there was an increase in CD3-/CD19-/CD56+/NK1.1+ NK cell infiltration in treated tumors, indicating a shift towards an anti-tumor immune microenvironment. The combination therapy also resulted in a reduction of MGMT expression and a suppression of mitochondrial respiration and glycolysis in GBM cells. CONCLUSION The combination of Prog and Abi represents a promising therapeutic approach for GBM, showing potential in suppressing tumor growth, extending survival, and modulating the immune microenvironment. These findings warrant further exploration into the clinical applicability of this strategy to improve outcomes for GBM patients.
Collapse
Affiliation(s)
- Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hong-Yi Lin
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chung-Han Wang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Pei-Yu Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Siou-Lian Hu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
3
|
Hsu TI, Chen YP, Zhang RL, Chen ZA, Wu CH, Chang WC, Mou CY, Chan HWH, Wu SH. Overcoming the Blood-Brain Tumor Barrier with Docetaxel-Loaded Mesoporous Silica Nanoparticles for Treatment of Temozolomide-Resistant Glioblastoma. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21722-21735. [PMID: 38629735 PMCID: PMC11071047 DOI: 10.1021/acsami.4c04289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024]
Abstract
While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.
Collapse
Affiliation(s)
- Tsung-I Hsu
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Yi-Ping Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Rong-Lin Zhang
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
| | - Zih-An Chen
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Hsun Wu
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
| | - Wen-Chang Chang
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Yuan Mou
- Nano
Targeting & Therapy Biopharma Inc., Taipei 110, Taiwan
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Si-Han Wu
- Graduate
Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Sharma R, Chiang YH, Chen HC, Lin HY, Yang WB, Nepali K, Lai MJ, Chen KY, Liou JP, Hsu TI. Dual inhibition of CYP17A1 and HDAC6 by abiraterone-installed hydroxamic acid overcomes temozolomide resistance in glioblastoma through inducing DNA damage and oxidative stress. Cancer Lett 2024; 586:216666. [PMID: 38311053 DOI: 10.1016/j.canlet.2024.216666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hong-Yi Lin
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Yang
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kai-Yun Chen
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei, Taiwan.
| |
Collapse
|
5
|
Sharma S, Wang SA, Yang WB, Lin HY, Lai MJ, Chen HC, Kao TY, Hsu FL, Nepali K, Hsu TI, Liou JP. First-in-Class Dual EZH2-HSP90 Inhibitor Eliciting Striking Antiglioblastoma Activity In Vitro and In Vivo. J Med Chem 2024; 67:2963-2985. [PMID: 38285511 PMCID: PMC10895674 DOI: 10.1021/acs.jmedchem.3c02053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.
Collapse
Affiliation(s)
- Sachin Sharma
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
| | - Shao-An Wang
- School
of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wen-Bin Yang
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
| | - Hong-Yi Lin
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Jung Lai
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
| | - Hsien-Chung Chen
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
- Department
of Neurosurgery, Shuang Ho Hospital, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Tzu-Yuan Kao
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
| | - Feng-Lin Hsu
- School
of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kunal Nepali
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-I Hsu
- TMU
Research Center of Neuroscience, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- Ph.D.
Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research
Institutes, Taipei 110, Taiwan
- International
Master Program in Medical Neuroscience, College of Medical Science
and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei 110 Taiwan
| | - Jing-Ping Liou
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center for Drug Discovery, Taipei
Medical University, Taipei 110, Taiwan
- TMU
Research Center of Cancer Translational Medicine, Taipei 110 Taiwan
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
6
|
Panada J, Klopava V, Kulahava T, Koran S, Faletrov Y, Frolova N, Fomina E, Shkumatov V. Differential induction of C6 glioma apoptosis and autophagy by 3β-hydroxysteroid-indolamine conjugates. Steroids 2023; 200:109326. [PMID: 37827441 DOI: 10.1016/j.steroids.2023.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
In a previous work, we reported the synthesis of four novel indole steroids and their effect on rat C6 glioma proliferation in vitro. The steroid derived from dehydroepiandrosterone and tryptamine (IS-1) was the most active (52 % inhibition at 10 µM), followed by one of the epimers derived from pregnenolone and tryptamine (IS-3, 36 % inhibition at 10 µM). By contrast, the steroid derived from estrone and tryptamine (IS-2) showed negligible activity at 10 µM. No necrosis, increase in intracellular calcium or ROS levels was observed. In this work, the effect of compounds on C6 glioma apoptosis and autophagy is examined by fluorimetry and fluorescent microscopy. The IS-3 epimers disrupt the mitochondrial membrane potential and induce apoptosis in vitro moderately whereas IS-1 and IS-2 do not. However, IS-1 produces a large increase in monodansylcadaverine-positive autophagic vesicles over 24 h. The antiproliferative effect of indole steroids is ameliorated by autophagy inhibitor hydroxychloroquine, suggesting an autophagy-dependent mechanism of cell death.
Collapse
Affiliation(s)
- Jan Panada
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Valeriya Klopava
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Tatsiana Kulahava
- Institute for Nuclear Problems of the Belarusian State University, 220006, 11 Babrujskaja str., Minsk, Belarus
| | - Siarhei Koran
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Yaroslav Faletrov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus
| | - Nina Frolova
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus
| | - Elena Fomina
- Republican Research and Practical Center for Epidemiology and Microbiology, 220114, 23 Filimonava str., Minsk, Belarus
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems of the Belarusian State University, 220006, 14 Lieninhradskaja str., Minsk, Belarus; Department of Chemistry, Belarusian State University, 220050, 4 Independence ave., Minsk, Belarus.
| |
Collapse
|
7
|
Kumari S, Gupta R, Ambasta RK, Kumar P. Emerging trends in post-translational modification: Shedding light on Glioblastoma multiforme. Biochim Biophys Acta Rev Cancer 2023; 1878:188999. [PMID: 37858622 DOI: 10.1016/j.bbcan.2023.188999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Recent multi-omics studies, including proteomics, transcriptomics, genomics, and metabolomics have revealed the critical role of post-translational modifications (PTMs) in the progression and pathogenesis of Glioblastoma multiforme (GBM). Further, PTMs alter the oncogenic signaling events and offer a novel avenue in GBM therapeutics research through PTM enzymes as potential biomarkers for drug targeting. In addition, PTMs are critical regulators of chromatin architecture, gene expression, and tumor microenvironment (TME), that play a crucial function in tumorigenesis. Moreover, the implementation of artificial intelligence and machine learning algorithms enhances GBM therapeutics research through the identification of novel PTM enzymes and residues. Herein, we briefly explain the mechanism of protein modifications in GBM etiology, and in altering the biologics of GBM cells through chromatin remodeling, modulation of the TME, and signaling pathways. In addition, we highlighted the importance of PTM enzymes as therapeutic biomarkers and the role of artificial intelligence and machine learning in protein PTM prediction.
Collapse
Affiliation(s)
- Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; School of Medicine, University of South Carolina, Columbia, SC, United States of America
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological, University, India.
| |
Collapse
|
8
|
Gan X, Liu Y, Wang X. Targeting androgen receptor in glioblastoma. Crit Rev Oncol Hematol 2023; 191:104142. [PMID: 37742885 DOI: 10.1016/j.critrevonc.2023.104142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023] Open
Abstract
Glioblastomas are primary brain tumors that originate from glial stem cells or progenitor cells. There is a large difference in the incidence of glioblastoma between males and females. Studies revealed that the gender differences in the tumor may be attributable to the androgen receptor signaling axis. The incidence rate of glioblastoma in men is higher than that in women. Aberrant activation of the androgen receptor signaling pathway, or interactions between the androgen receptor signaling axis and other signaling axes promote the development of glioblastoma. Therefore, targeting the androgen receptor holds promise as a therapeutic approach for glioblastoma. This review investigates the dynamics of drug research into the treatment of glioblastoma by targeting the androgen receptor. The first finding in line with expectations is that androgen receptor antagonists, represented by enzalutamide, have been studied and shown to have anti-glioblastoma effects. In addition, it was found that the combination of 5-alpha reductase inhibitors and androgen receptor antagonists resulted in better therapeutic outcomes than each of them alone. Similar results were obtained with the combination of an epidermal growth factor receptor inhibitor and an androgen receptor antagonist. In addition, four small molecule compounds have been shown to exert significant anti-glioblastoma effects by directly or indirectly targeting the androgen receptor. Expectantly, one of these small molecules, seviteronel, progressed to the phase II clinical trial stage. These findings suggest that targeting the androgen receptor for glioblastoma may be a promising therapeutic option.
Collapse
Affiliation(s)
- Xia Gan
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China
| | - Yonghong Liu
- Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| | - Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China; Guangxi key laboratory of marine drugs, Institute of marine drugs, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning 530200, China.
| |
Collapse
|
9
|
Kao TJ, Lin CL, Yang WB, Li HY, Hsu TI. Dysregulated lipid metabolism in TMZ-resistant glioblastoma: pathways, proteins, metabolites and therapeutic opportunities. Lipids Health Dis 2023; 22:114. [PMID: 37537607 PMCID: PMC10398973 DOI: 10.1186/s12944-023-01881-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | | | - Wen-Bin Yang
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan
| | - Hao-Yi Li
- Department of Biochemistry, Ludwig-Maximilians-University, Munich, 81377, Germany
- Gene Center, Ludwig-Maximilians-University, Munich, 81377, Germany
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, 110, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan.
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
10
|
Feng YH, Lim SW, Lin HY, Wang SA, Hsu SP, Kao TJ, Ko CY, Hsu TI. Allopregnanolone suppresses glioblastoma survival through decreasing DPYSL3 and S100A11 expression. J Steroid Biochem Mol Biol 2022; 219:106067. [PMID: 35114375 DOI: 10.1016/j.jsbmb.2022.106067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/15/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Allopregnanolone (allo) is a physiological regulator of neuronal activity that treats multiple neurological disorders. Allo penetrates the blood-brain barrier with very high efficiency, implying that allo can treat CNS-related diseases, including glioblastoma (GBM), which always recurs after standard therapy. Hence, this study aimed to determine whether allo has a therapeutic effect on GBM. We found that allo enhanced temozolomide (TMZ)-suppressed cell survival and proliferation of TMZ-resistant cells. In particular, allo enhanced TMZ-inhibited cell migration and TMZ-induced apoptosis. Additionally, allo strongly induced DNA damage characterized by γH2Ax. Furthermore, quantitative proteomic analysis, iTRAQ, showed that allo significantly decreased the levels of DPYSL3, S100A11, and S100A4, reflecting the poor prognosis of patients with GBM confirmed by differential gene expression and survival analysis. Moreover, single-cell RNA-Seq revealed that S100A11, expressed in malignant cells, oligodendrocytes, and macrophages, was significantly associated with immune cell infiltration. Furthermore, overexpression of DPYSL3 or S100A11 prevented allo-induced cell death. In conclusion, allo suppresses GBM cell survival by decreasing DPYSL3/S100A11 expression and inducing DNA damage.
Collapse
Affiliation(s)
| | - Sher-Wei Lim
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Department of Neurosurgery, Chi-Mei Medical Center, Tainan 722, Taiwan; Department of Nursing, Min-Hwei College of Health Care Management, Tainan 736, Taiwan
| | - Hong-Yi Lin
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Shao-An Wang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan.
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan.
| |
Collapse
|
11
|
Tsai YT, Lo WL, Chen PY, Ko CY, Chuang JY, Kao TJ, Yang WB, Chang KY, Hung CY, Kikkawa U, Chang WC, Hsu TI. Reprogramming of arachidonate metabolism confers temozolomide resistance to glioblastoma through enhancing mitochondrial activity in fatty acid oxidation. J Biomed Sci 2022; 29:21. [PMID: 35337344 PMCID: PMC8952270 DOI: 10.1186/s12929-022-00804-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 01/10/2023] Open
Abstract
Background Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. Methods RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. Results Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid β-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. Conclusion Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00804-3.
Collapse
Affiliation(s)
- Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wei-Lun Lo
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.,Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei, 110, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Pin-Yuan Chen
- School of Medicine, Chang Gung University, Taoyuan City, 33302, Taiwan.,Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.,Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chiung-Yuan Ko
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Jian-Ying Chuang
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Tzu-Jen Kao
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan
| | - Wen-Bing Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110.,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Chia-Yang Hung
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan, 110. .,TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan.
| | - Tsung-I Hsu
- TMU Research Center of Neuroscience, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan. .,Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan. .,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 110, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei, 110, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan.
| |
Collapse
|
12
|
Wu AC, Yang WB, Chang KY, Lee JS, Liou JP, Su RY, Cheng SM, Hwang DY, Kikkawa U, Hsu TI, Wang CY, Chang WC, Chen PY, Chuang JY. HDAC6 involves in regulating the lncRNA-microRNA-mRNA network to promote the proliferation of glioblastoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:47. [PMID: 35109908 PMCID: PMC8809020 DOI: 10.1186/s13046-022-02257-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Background Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Although the histone deacetylase (HDAC)/transcription factor axis promotes growth in GBM, whether HDACs including HDAC6 are involved in modulating long non-coding RNAs (lncRNAs) to affect GBM malignancy remains obscure. Methods Integrative analysis of microarray and RNA-seq was performed to identify lncRNAs governed by HDAC6. Half-life measurement and RNA-protein pull-down assay combined with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis were conducted to identify RNA modulators. The effect of LINC00461 on GBM malignancy was evaluated using animal models and cell proliferation-related assays. Functional analysis of the LINC00461 downstream networks was performed comprehensively using ingenuity pathway analysis and public databases. Results We identified a lncRNA, LINC00461, which was substantially increased in stem-like/treatment-resistant GBM cells. LINC00461 was inversely correlated with the survival of mice-bearing GBM and it was stabilized by the interaction between HDAC6 and RNA-binding proteins (RBPs) such as carbon catabolite repression—negative on TATA-less (CCR4-NOT) core exoribonuclease subunit 6 and fused in sarcoma. Targeting LINC00461 using azaindolylsulfonamide, an HDAC6 inhibitor, decreased cell-division-related proteins via the lncRNA-microRNA (miRNA)-mRNA networks and caused cell-cycle arrest, thereby suppressing proliferation in parental and drug-resistant GBM cells and prolonging the survival of mice-bearing GBM. Conclusions This study sheds light on the role of LINC00461 in GBM malignancy and provides a novel therapeutic strategy for targeting the HDAC6/RBP/LINC00461 axis and its downstream effectors in patients with GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02257-w.
Collapse
Affiliation(s)
- An-Chih Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Bin Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Jung-Shun Lee
- Department of Neurosurgery, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ruei-Yuan Su
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Siao Muk Cheng
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Daw-Yang Hwang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.,TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yang Wang
- The Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, 222 Mai-jin Road, Keelung, 20401, Taiwan.
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan. .,TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan. .,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Vallabhaneni S, Liu J, Morel M, Wang J, DeMayo FJ, Long W. Conditional ERK3 overexpression cooperates with PTEN deletion to promote lung adenocarcinoma formation in mice. Mol Oncol 2021; 16:1184-1199. [PMID: 34719109 PMCID: PMC8895443 DOI: 10.1002/1878-0261.13132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/06/2021] [Accepted: 10/29/2021] [Indexed: 11/23/2022] Open
Abstract
ERK3, officially known as mitogen‐activated protein kinase 6 (MAPK6), is a poorly studied mitogen‐activated protein kinase (MAPK). Recent studies have revealed the upregulation of ERK3 expression in cancer and suggest an important role for ERK3 in promoting cancer cell growth and invasion in some cancers, in particular lung cancer. However, it is unknown whether ERK3 plays a role in spontaneous tumorigenesis in vivo. To determine the role of ERK3 in lung tumorigenesis, we created a conditional ERK3 transgenic mouse line in which ERK3 transgene expression is controlled by Cre recombinase. By crossing these transgenic mice with a mouse line harboring a lung tissue–specific Cre recombinase transgene driven by a club cell secretory protein gene promoter (CCSP‐iCre), we have found that conditional ERK3 overexpression cooperates with phosphatase and tensin homolog (PTEN) deletion to induce the formation of lung adenocarcinomas (LUADs). Mechanistically, ERK3 overexpression stimulates activating phosphorylations of erb‐b2 receptor tyrosine kinases 2 and 3 (ERBB2 and ERBB3) by upregulating Sp1 transcription factor (SP1)–mediated gene transcription of neuregulin 1 (NRG1), a potent ligand for ERBB2/ERBB3. Our study has revealed a bona fide tumor‐promoting role for ERK3 using genetically engineered mouse models. Together with previous findings showing the roles of ERK3 in cultured cells and in a xenograft lung tumor model, our findings corroborate that ERK3 acts as an oncoprotein in promoting LUAD development and progression.
Collapse
Affiliation(s)
- Sreeram Vallabhaneni
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jian Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, China.,Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Marion Morel
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jixin Wang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, 314400, China.,Hangzhou Cancer Institution, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park (RTP), NC, USA
| | - Weiwen Long
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
14
|
Yang WB, Wu AC, Hsu TI, Liou JP, Lo WL, Chang KY, Chen PY, Kikkawa U, Yang ST, Kao TJ, Chen RM, Chang WC, Ko CY, Chuang JY. Histone deacetylase 6 acts upstream of DNA damage response activation to support the survival of glioblastoma cells. Cell Death Dis 2021; 12:884. [PMID: 34584069 PMCID: PMC8479077 DOI: 10.1038/s41419-021-04182-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/29/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
DNA repair promotes the progression and recurrence of glioblastoma (GBM). However, there remain no effective therapies for targeting the DNA damage response and repair (DDR) pathway in the clinical setting. Thus, we aimed to conduct a comprehensive analysis of DDR genes in GBM specimens to understand the molecular mechanisms underlying treatment resistance. Herein, transcriptomic analysis of 177 well-defined DDR genes was performed with normal and GBM specimens (n = 137) from The Cancer Genome Atlas and further integrated with the expression profiling of histone deacetylase 6 (HDAC6) inhibition in temozolomide (TMZ)-resistant GBM cells and patient-derived tumor cells. The effects of HDAC6 inhibition on DDR signaling were examined both in vitro and intracranial mouse models. We found that the expression of DDR genes, involved in repair pathways for DNA double-strand breaks, was upregulated in highly malignant primary and recurrent brain tumors, and their expression was related to abnormal clinical features. However, a potent HDAC6 inhibitor, MPT0B291, attenuated the expression of these genes, including RAD51 and CHEK1, and was more effective in blocking homologous recombination repair in GBM cells. Interestingly, it resulted in lower cytotoxicity in primary glial cells than other HDAC6 inhibitors. MPT0B291 reduced the growth of both TMZ-sensitive and TMZ-resistant tumor cells and prolonged survival in mouse models of GBM. We verified that HDAC6 regulated DDR genes by affecting Sp1 expression, which abolished MPT0B291-induced DNA damage. Our findings uncover a regulatory network among HDAC6, Sp1, and DDR genes for drug resistance and survival of GBM cells. Furthermore, MPT0B291 may serve as a potential lead compound for GBM therapy.
Collapse
Affiliation(s)
- Wen-Bin Yang
- TMU Research Center of Neuroscience, Taipei Medical University, 11031, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan
| | - An-Chih Wu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Tsung-I Hsu
- TMU Research Center of Neuroscience, Taipei Medical University, 11031, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, 11031, Taipei, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 11031, Taipei, Taiwan
- TMU Research Center of Drug Discovery, Taipei Medical University, 11031, Taipei, Taiwan
| | - Wei-Lun Lo
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, 23561, New Taipei City, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, 70456, Tainan, Taiwan
| | - Pin-Yuan Chen
- Department of Neurosurgery, Keelung Chang Gung Memorial Hospital, 20401, Keelung, Taiwan
| | - Ushio Kikkawa
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Shung-Tai Yang
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, 23561, New Taipei City, Taiwan
| | - Tzu-Jen Kao
- TMU Research Center of Neuroscience, Taipei Medical University, 11031, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan
| | - Chiung-Yuan Ko
- TMU Research Center of Neuroscience, Taipei Medical University, 11031, Taipei, Taiwan.
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan.
| | - Jian-Ying Chuang
- TMU Research Center of Neuroscience, Taipei Medical University, 11031, Taipei, Taiwan.
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, 11031, Taipei, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, 11031, Taipei, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 80708, Kaohsiung, Taiwan.
| |
Collapse
|
15
|
Dang NN, Li XB, Zhang M, Han C, Fan XY, Huang SH. NLGN3 Upregulates Expression of ADAM10 to Promote the Cleavage of NLGN3 via Activating the LYN Pathway in Human Gliomas. Front Cell Dev Biol 2021; 9:662763. [PMID: 34485271 PMCID: PMC8415229 DOI: 10.3389/fcell.2021.662763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
The neuron derived synaptic adhesion molecular neuroligin-3 (NLGN3) plays an important role in glioma growth. While the role of autocrine NLGN3 in glioma has not been well-studied. The expression of NLGN3 in glioma was detected using immunohistochemistry. We further explored its function and regulatory mechanism in U251 and U87 cells with high expression of NLGN3. Knockdown of endogenous NLGN3 significantly reduced the proliferation, migration, and invasion of glioma cells and down-regulated the activity of the PI3K-AKT, ERK1/2, and LYN signaling pathways. In comparison, overexpression of NLGN3 yielded opposite results. Our results further demonstrate that LYN functions as a feedback mechanism to promote NLGN3 cleavage. This feedback regulation was achieved by upregulating the ADAM10 sheddase responsible for NLGN3 cleavage. Inhibition of ADAM10 suppressed the proliferation, migration, and invasion of glioma cells; oppositely, the expression of ADAM10 was correlated with a higher likelihood of lower grade glioma (LGG) in the brain. Our study demonstrates that glioma-derived NLGN3 promotes glioma progression by upregulating activity of LYN and ADAM10, which in turn promote NLGN3 cleavage to form a positive feedback loop. This pathway may open a potential therapeutic window for the treatment of human glioma.
Collapse
Affiliation(s)
- Ning-Ning Dang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao-Bing Li
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Mei Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chen Han
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao-Yong Fan
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Shu-Hong Huang
- Institute of Basic Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
16
|
Tomar MS, Kumar A, Srivastava C, Shrivastava A. Elucidating the mechanisms of Temozolomide resistance in gliomas and the strategies to overcome the resistance. Biochim Biophys Acta Rev Cancer 2021; 1876:188616. [PMID: 34419533 DOI: 10.1016/j.bbcan.2021.188616] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023]
Abstract
Temozolomide (TMZ) is a first-choice alkylating agent inducted as a gold standard therapy for glioblastoma multiforme (GBM) and astrocytoma. A majority of patients do not respond to TMZ during the course of their treatment. Activation of DNA repair pathways is the principal mechanism for this phenomenon that detaches TMZ-induced O-6-methylguanine adducts and restores genomic integrity. Current understanding in the domain of oncology adds several other novel mechanisms of resistance such as the involvement of miRNAs, drug efflux transporters, gap junction's activity, the advent of glioma stem cells as well as upregulation of cell survival autophagy. This review describes a multifaceted account of different mechanisms responsible for the intrinsic and acquired TMZ-resistance. Here, we summarize different strategies that intensify the TMZ effect such as MGMT inhibition, development of novel imidazotetrazine analog, and combination therapy; with an aim to incorporate a successful treatment and increased overall survival in GBM patients.
Collapse
Affiliation(s)
- Manendra Singh Tomar
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| | - Chhitij Srivastava
- Department of Neurosurgery, King George's Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Ashutosh Shrivastava
- Center for Advance Research, Faculty of Medicine, King George's Medical University, Lucknow 226003, Uttar Pradesh, India.
| |
Collapse
|
17
|
Lin HY, Liao KH, Ko CY, Chen GY, Hsu SP, Hung CY, Hsu TI. 17β-estradiol induces temozolomide resistance through NRF2-mediated redox homeostasis in glioblastoma. Free Radic Biol Med 2021; 172:430-440. [PMID: 34186205 DOI: 10.1016/j.freeradbiomed.2021.06.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most fatal cancer among brain tumors, and the standard treatment of GBM patients is surgical tumor resection followed by radiotherapy and temozolomide (TMZ) chemotherapy. However, tumors always recur due to the developing drug resistance. It has been shown that neurosteroids, including dehydroepiandrosterone and 17β-estradiol, are synthesized in TMZ-resistant GBM tumors. Therefore, we sought to explore the possible role of 17β-estradiol in the development of drug resistance in GBM. Bioinformatics analysis revealed that aromatase/cytochrome P450 19A1 expression was gradually increased in the development from normal, astrocytoma to GBM. The level of 17β-estradiol was significantly increased in TMZ-resistant cells characterized by ultra performance liquid chromatography-tandem mass spectrometry. Furthermore, 17β-estradiol attenuated TMZ-induced cell death and reduced reactive oxygen species production by mitochondria. In addition, 17β-estradiol attenuated oxidative stress by increasing the expression of superoxide dismutase 1/2, catalase, and nuclear factor erythroid 2-related factor (NRF) 2. We found that NRF2 expression was essential for the induction of drug resistance by 17β-estradiol through the reduction of oxidative stress in GBM.
Collapse
Affiliation(s)
- Hong-Yi Lin
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan
| | - Kuo-Hsing Liao
- Department of Neurosurgery, Wan Fang Hospital, Taipei Medical University, Taiwan; Division of Critical Medicine, Department of Emergency and Critical Medicine, Wan Fang Hospital, Taipei Medical University, Taiwan; Department of Neurotraumatology and Intensive Care, Taipei Neuroscience Institute, Taipei Medical University, Taiwan; Division of Neurosurgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Chiung-Yuan Ko
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Guan-Yuan Chen
- Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Yang Hung
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Tsung-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan; Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
18
|
Daswani B, Khan Y. Insights into the role of estrogens and androgens in glial tumorigenesis. J Carcinog 2021; 20:10. [PMID: 34526856 PMCID: PMC8411981 DOI: 10.4103/jcar.jcar_2_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/19/2021] [Accepted: 04/24/2021] [Indexed: 01/02/2023] Open
Abstract
Gliomas are more common in males than in females. Emerging evidence from several studies in vitro and in vivo have shown the role of estrogens and androgens in glial tumorigenesis. In recent times, studies have also shed light on the actions of estrogen receptors, alpha and beta, and androgen receptor. Here, we provide a comprehensive overview of the research hitherto on estrogens and androgens along with an emphasis on their receptors in glioma pathophysiology. Studies with conflicting results are discussed and future possibilities are put forward. A collective understanding of the studies on these steroid hormones in glioma may serve to create an amalgamated therapeutic approach; and thereby, augment the efforts in tackling this deadly disease.
Collapse
Affiliation(s)
- Bhavna Daswani
- Department of Life Sciences, Sophia College (Autonomous), Mumbai, Maharashtra, India
| | - Yasmin Khan
- Department of Life Sciences, Sophia College (Autonomous), Mumbai, Maharashtra, India
| |
Collapse
|
19
|
Ozkan E, Bakar-Ates F. Ferroptosis: A Trusted Ally in Combating Drug Resistance in Cancer. Curr Med Chem 2021; 29:41-55. [PMID: 34375173 DOI: 10.2174/0929867328666210810115812] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
Ferroptosis, which is an iron-dependent, non-apoptotic cell death mechanism, has recently been proposed as a novel approach in cancer treatment. Bearing distinctive features and its exclusive mechanism have put forward the potential therapeutic benefit of triggering this newly discovered form of cell death. Numerous studies have indicated that apoptotic pathways are often deactivated in resistant cells, leading to a failure in therapy. Hence, alternative strategies to promote cell death are required. Mounting evidence suggests that drug-resistant cancer cells are particularly sensitive to ferroptosis. Given that cancer cells consume a higher amount of iron than healthy ones, ferroptosis not only stands as an excellent alternative to trigger cell death and reverse drug-resistance, but also provides selectivity in therapy. This review focuses specifically on overcoming drug-resistance in cancer through activating ferroptotic pathways and brings together the relevant chemotherapeutics-based and nanotherapeutics-based studies to offer a perspective for researchers regarding the potential use of this mechanism in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Erva Ozkan
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| | - Filiz Bakar-Ates
- Ankara University, Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey
| |
Collapse
|
20
|
Tsai CY, Ko HJ, Chiou SJ, Lai YL, Hou CC, Javaria T, Huang ZY, Cheng TS, Hsu TI, Chuang JY, Kwan AL, Chuang TH, Huang CYF, Loh JK, Hong YR. NBM-BMX, an HDAC8 Inhibitor, Overcomes Temozolomide Resistance in Glioblastoma Multiforme by Downregulating the β-Catenin/c-Myc/SOX2 Pathway and Upregulating p53-Mediated MGMT Inhibition. Int J Mol Sci 2021; 22:ijms22115907. [PMID: 34072831 PMCID: PMC8199487 DOI: 10.3390/ijms22115907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
Although histone deacetylase 8 (HDAC8) plays a role in glioblastoma multiforme (GBM), whether its inhibition facilitates the treatment of temozolomide (TMZ)-resistant GBM (GBM-R) remains unclear. By assessing the gene expression profiles from short hairpin RNA of HDAC8 in the new version of Connectivity Map (CLUE) and cells treated by NBM-BMX (BMX)-, an HDAC8 inhibitor, data analysis reveals that the Wnt signaling pathway and apoptosis might be the underlying mechanisms in BMX-elicited treatment. This study evaluated the efficacy of cotreatment with BMX and TMZ in GBM-R cells. We observed that cotreatment with BMX and TMZ could overcome resistance in GBM-R cells and inhibit cell viability, markedly inhibit cell proliferation, and then induce cell cycle arrest and apoptosis. In addition, the expression level of β-catenin was reversed by proteasome inhibitor via the β-catenin/ GSK3β signaling pathway to reduce the expression level of c-Myc and cyclin D1 in GBM-R cells. BMX and TMZ cotreatment also upregulated WT-p53 mediated MGMT inhibition, thereby triggering the activation of caspase-3 and eventually leading to apoptosis in GBM-R cells. Moreover, BMX and TMZ attenuated the expression of CD133, CD44, and SOX2 in GBM-R cells. In conclusion, BMX overcomes TMZ resistance by enhancing TMZ-mediated cytotoxic effect by downregulating the β-catenin/c-Myc/SOX2 signaling pathway and upregulating WT-p53 mediated MGMT inhibition. These findings indicate a promising drug combination for precision personal treating of TMZ-resistant WT-p53 GBM cells.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shean-Jaw Chiou
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yu-Ling Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chia-Chung Hou
- New Drug Research & Development Center, NatureWise Biotech & Medicals Corporation, Taipei 112, Taiwan;
| | - Tehseen Javaria
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.J.); (T.-S.C.)
| | - Zi-Yi Huang
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Tai-Shan Cheng
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.J.); (T.-S.C.)
| | - Tsung-I Hsu
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan; (T.-I.H.); (J.-Y.C.)
| | - Jian-Ying Chuang
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 115, Taiwan; (T.-I.H.); (J.-Y.C.)
| | - Aij-Lie Kwan
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
| | - Tsung-Hsien Chuang
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Immunology Research Center, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chi-Ying F. Huang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (T.J.); (T.-S.C.)
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Correspondence: (C.-Y.F.H.); (J.-K.L.); (Y.-R.H.); Tel.: +886-7-312-1101-5386 (Y.-R.H.); Fax: +886-7-321-8309 (Y.-R.H.)
| | - Joon-Khim Loh
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Correspondence: (C.-Y.F.H.); (J.-K.L.); (Y.-R.H.); Tel.: +886-7-312-1101-5386 (Y.-R.H.); Fax: +886-7-321-8309 (Y.-R.H.)
| | - Yi-Ren Hong
- Ph.D. Program in Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan; (C.-Y.T.); (A.-L.K.); (T.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-J.K.); (Y.-L.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (C.-Y.F.H.); (J.-K.L.); (Y.-R.H.); Tel.: +886-7-312-1101-5386 (Y.-R.H.); Fax: +886-7-321-8309 (Y.-R.H.)
| |
Collapse
|
21
|
Xiong J, Guo G, Guo L, Wang Z, Chen Z, Nan Y, Cao Y, Li R, Yang X, Dong J, Jin X, Yang W, Huang Q. Amlexanox Enhances Temozolomide-Induced Antitumor Effects in Human Glioblastoma Cells by Inhibiting IKBKE and the Akt-mTOR Signaling Pathway. ACS OMEGA 2021; 6:4289-4299. [PMID: 33644550 PMCID: PMC7906592 DOI: 10.1021/acsomega.0c05399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/04/2021] [Indexed: 05/05/2023]
Abstract
Temozolomide (TMZ), as the first-line chemotherapeutic agent for the treatment of glioblastoma multiforme (GBM), often fails to improve the prognosis of GBM patients due to the quick development of resistance. The need for more effective management of GBM is urgent. The aim of this study is to evaluate the efficacy of combined therapy with TMZ and amlexanox, a selective inhibitor of IKBKE, for GBM. We found that the combined treatment resulted in significant induction of cellular apoptosis and the inhibition of cell viability, migration, and invasion in primary glioma cells and in the human glioma cell line, U87 MG. As expected, TMZ enhanced the expression of p-AMPK and amlexanox led to the reduction of IKBKE, with no impact on p-AMPK. Furthermore, we demonstrated that compared to other groups treated with each component alone, TMZ combined with amlexanox effectively reversed the TMZ-induced activation of Akt and inhibited the phosphorylation of mTOR. In addition, the combination treatment also clearly reduced in vivo tumor volume and prolonged median survival time in the xenograft mouse model. These results suggest that amlexanox sensitized the primary glioma cells and U87 MG cells to TMZ at least partially through the suppression of IKBKE activation and the attenuation of TMZ-induced Akt activation. Overall, combined treatment with TMZ and amlexanox may provide a promising possibility for improving the prognosis of glioblastoma patients in clinical practice.
Collapse
Affiliation(s)
- Jinbiao Xiong
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Gaochao Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Lianmei Guo
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zengguang Wang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Zhijuan Chen
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yang Nan
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Yiyao Cao
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
| | - Ruilong Li
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Xuejun Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
| | - Jun Dong
- Department
of Neurosurgery, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, China
| | - Xun Jin
- Tianjin
Medical University Cancer Institute and Hospital, Tianjin 300052, China
- National
Clinical Research Center for Cancer, Tianjin 300052, China
- Key
Laboratory of Cancer Prevention and Therapy, Tianjin 300052, China
- Tianjin’s
Clinical Research Center for Cancer, Tianjin 300052, China
| | - Weidong Yang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- . Tel: (+86)13820763396
| | - Qiang Huang
- Department
of Neurosurgery, Tianjin Medical University
General Hospital, Tianjin 300052, China
- Key
Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central
Nervous System, Ministry of Education and
Tianjin City, Tianjin 300052, China
- Tianjin
Key Laboratory of Injuries, Variations and
Regeneration of Nervous System, Tianjin 300052, China
- . Tel: (+86)13820689221
| |
Collapse
|
22
|
Panada J, Klopava V, Kulahava T, Frolova N, Faletrov Y, Shkumatov V. New 3β-hydroxysteroid-indolamine conjugates: Design, synthesis and inhibition of C6 glioma cell proliferation. Steroids 2020; 164:108728. [PMID: 32931809 DOI: 10.1016/j.steroids.2020.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Four novel indole steroids based on dehydroepiandrosterone (IS-1), estrone (IS-2) and pregnenolone (IS-3) were obtained and studied for their ability to inhibit C6 glioma proliferation. A reduction in cell proliferation by 52 ± 13% was observed for IS-1 at 10 μM, whereas IS-3 and abiraterone acetate at 10 μM caused a 36 ± 8% decrease. Surprisingly, the cellular effects reported for abiraterone, namely, cytochrome P450 CYP17A1 inhibition and endoplasmic reticulum stress were not detected for IS-1. However, both abiraterone and IS-1 significantly increased glutathione levels. Docking studies predicted good affinity of IS-1 to liver X receptors and regulatory protein Keap1, which are proposed to be involved in the compounds' antiproliferative activity.
Collapse
Affiliation(s)
- Jan Panada
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Chemistry Faculty of Belarusian State University, Minsk, Belarus
| | - Valeriya Klopava
- Department of Biophysics, Physics Faculty of Belarusian State University, Minsk, Belarus
| | - Tatsiana Kulahava
- Department of Biophysics, Physics Faculty of Belarusian State University, Minsk, Belarus; Institute for Nuclear Problems of the Belarusian State University, Minsk, Belarus
| | - Nina Frolova
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus
| | - Yaroslav Faletrov
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Chemistry Faculty of Belarusian State University, Minsk, Belarus
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk, Belarus; Chemistry Faculty of Belarusian State University, Minsk, Belarus.
| |
Collapse
|
23
|
Astrocytoma: A Hormone-Sensitive Tumor? Int J Mol Sci 2020; 21:ijms21239114. [PMID: 33266110 PMCID: PMC7730176 DOI: 10.3390/ijms21239114] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytomas and, in particular, their most severe form, glioblastoma, are the most aggressive primary brain tumors and those with the poorest vital prognosis. Standard treatment only slightly improves patient survival. Therefore, new therapies are needed. Very few risk factors have been clearly identified but many epidemiological studies have reported a higher incidence in men than women with a sex ratio of 1:4. Based on these observations, it has been proposed that the neurosteroids and especially the estrogens found in higher concentrations in women's brains could, in part, explain this difference. Estrogens can bind to nuclear or membrane receptors and potentially stimulate many different interconnected signaling pathways. The study of these receptors is even more complex since many isoforms are produced from each estrogen receptor encoding gene through alternative promoter usage or splicing, with each of them potentially having a specific role in the cell. The purpose of this review is to discuss recent data supporting the involvement of steroids during gliomagenesis and to focus on the potential neuroprotective role as well as the mechanisms of action of estrogens in gliomas.
Collapse
|
24
|
Werner CK, Nna UJ, Sun H, Wilder-Romans K, Dresser J, Kothari AU, Zhou W, Yao Y, Rao A, Stallard S, Koschmann C, Bor T, Debinski W, Hegedus AM, Morgan MA, Venneti S, Baskin-Bey E, Spratt DE, Colman H, Sarkaria JN, Chinnaiyan AM, Eisner JR, Speers C, Lawrence TS, Strowd RE, Wahl DR. Expression of the Androgen Receptor Governs Radiation Resistance in a Subset of Glioblastomas Vulnerable to Antiandrogen Therapy. Mol Cancer Ther 2020; 19:2163-2174. [PMID: 32796101 PMCID: PMC7842184 DOI: 10.1158/1535-7163.mct-20-0095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022]
Abstract
New approaches are needed to overcome intrinsic therapy resistance in glioblastoma (GBM). Because GBMs exhibit sexual dimorphism and are reported to express steroid hormone receptors, we reasoned that signaling through the androgen receptor (AR) could mediate therapy resistance in GBM, much as it does in AR-positive prostate and breast cancers. We found that nearly half of GBM cell lines, patient-derived xenografts (PDX), and human tumors expressed AR at the transcript and protein level-with expression levels overlapping those of primary prostate cancer. Analysis of gene expression datasets also revealed that AR expression is higher in GBM patient samples than normal brain tissue. Multiple clinical-grade antiandrogens slowed the growth of and radiosensitized AR-positive GBM cell lines and PDXs in vitro and in vivo Antiandrogens blocked the ability of AR-positive GBM PDXs to engage adaptive transcriptional programs following radiation and slowed the repair of radiation-induced DNA damage. These results suggest that combining blood-brain barrier permeable antiandrogens with radiation may have promise for patients with AR-positive GBMs.
Collapse
Affiliation(s)
- Christian K Werner
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Uchechi J Nna
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Hanshi Sun
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Kari Wilder-Romans
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Joseph Dresser
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ayesha U Kothari
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yangyang Yao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Arvind Rao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Stefanie Stallard
- Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Tarik Bor
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Alexander M Hegedus
- Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan
| | - Meredith A Morgan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Sriram Venneti
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Daniel E Spratt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Howard Colman
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Joel R Eisner
- Innocrin Pharmaceuticals, Inc., Durham, North Carolina
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Roy E Strowd
- Department of Neurology and Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
25
|
Li Q, Ren B, Gui Q, Zhao J, Wu M, Shen M, Li D, Li D, Chen K, Tao M, Liang R. Blocking MAPK/ERK pathway sensitizes hepatocellular carcinoma cells to temozolomide via downregulating MGMT expression. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1305. [PMID: 33209885 PMCID: PMC7661899 DOI: 10.21037/atm-20-5478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is the fourth most common malignant tumor in China. Temozolomide (TMZ) is a common chemotherapy drug which can effectively kill HCC cells in vitro. However, it is possible that HCC cells possess intrinsic resistance to TMZ. A key mechanism of TMZ resistance is the overexpression of O6-methylguanine-DNA methyltransferase (MGMT). Studies have shown that MAPK may be related to MGMT expression, U0126 is a highly selective inhibitor of MEK1 and MEK2, which were crucial molecule in cascade of mitogen-activated protein kinase/extracellular signal regulated kinase (MAPK/ERK) pathway. Sorafenib was another widely applicated target drug in HCC which could inhibit multiple kinases including MAPK/ERK. This research was aimed to investigate the efficacy of MAPK/ERK inhibitor U0126 and sorafenib combine with TMZ in the treatment of HCC. Methods In HCC cells, MAPK/ERK signaling pathway was blocked by U0126 and sorafenib. The effect of blocking MAPK/ERK signaling pathway on TMZ-induced cytotoxicity was evaluated by MTT assay, flow cytometry and TUNEL assay. DNA damage protein and the expression of MGMT were detected by Western-blot. After the downregulation of MAPK/ERK signaling pathway, MGMT mRNA expression and the protein expression of MGMT were quantified by quantitative real-time polymerase chain reaction (RT-qPCR) and immunofluorescence assay, respectively. HepG2 cells were transfected with an MGMT over expression plasmid. After transfection, the effect of U0126 on TMZ-induced cytotoxicity was evaluated by MTT and Western-Blot in MGMT OE cells. The influence of Sorafenib on TMZ-induced cytotoxicity to HCC cells was also detected by MTT assay. Results U0126 can enhance the chemosensitivity of HCC cells to TMZ. At the same time, we also found that U0126 increases the damage to DNA caused by TMZ in HepG2 cells. Moreover, the results from RT-qPCR and Western blot showed that U0126 downregulated MGMT mRNA and MGMT protein expression via blocking MAPK/ERK pathway. Furthermore, after transfection with an MGMT expression plasmid, overexpression of MGMT restored U0126-induced chemosensitivity to TMZ in HCC cells. Sorafenib can also increase the chemosensitivity of HCC cells to TMZ. Conclusions Our studies suggest great clinical potential for the utilization of combined U0126 and TMZ in patients with advanced HCC.
Collapse
Affiliation(s)
- Qiang Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, China
| | - Bingjie Ren
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Gui
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Chemotherapy, Jiangxi Cancer Hospital, Nanchang, China
| | - Jing Zhao
- Department of Radiation Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mengyao Wu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Shen
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dapeng Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Daoming Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Chen
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rongrui Liang
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou, China.,Division of Neurosurgery, City of Hope Beckman Research Institute, Duarte, CA, USA
| |
Collapse
|
26
|
Lin H, Zuo D, He J, Ji T, Wang J, Jiang T. Long Noncoding RNA WEE2-AS1 Plays an Oncogenic Role in Glioblastoma by Functioning as a Molecular Sponge for MicroRNA-520f-3p. Oncol Res 2020; 28:591-603. [PMID: 32838835 PMCID: PMC7962937 DOI: 10.3727/096504020x15982623243955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The long noncoding RNA WEE2 antisense RNA 1 (WEE2-AS1) plays an oncogenic role in hepatocellular carcinoma and triple negative breast cancer progression. In this study, we investigated the expression and roles of WEE2-AS1 in glioblastoma (GBM). Furthermore, the molecular mechanisms behind the oncogenic actions of WEE2-AS1 in GBM cells were explored in detail. WEE2-AS1 expression was detected using quantitative real-time polymerase chain reaction. The roles of WEE2-AS1 in GBM cells were evaluated by the cell counting kit-8 assay, flow cytometric analysis, Transwell cell migration and invasion assays, and tumor xenograft experiments. WEE2-AS1 expression was evidently enhanced in GBM tissues and cell lines compared with their normal counterparts. An increased level of WEE2-AS1 was correlated with the average tumor diameter, Karnofsky Performance Scale score, and shorter overall survival among GBM patients. Functionally, depleted WEE2-AS1 attenuated GBM cell proliferation, migration, and invasion in vitro, promoted cell apoptosis, and impaired tumor growth in vivo. Mechanistically, WEE2-AS1 functioned as a molecular sponge for microRNA-520f-3p (miR-520f-3p) and consequently increased specificity protein 1 (SP1) expression in GBM cells. A series of recovery experiments revealed that the inhibition of miR-520f-3p and upregulation of SP1 could partially abrogate the influences of WEE2-AS1 downregulation on GBM cells. In conclusion, WEE2-AS1 can adsorb miR-520f-3p to increase endogenous SP1 expression, thereby facilitating the malignancy of GBM. Therefore, targeting the WEE2-AS1–miR-520f-3p–SP1 pathway might be a promising therapy for the management of GBM in the future.
Collapse
Affiliation(s)
- Hengzhou Lin
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Dahui Zuo
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Jiabin He
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Tao Ji
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Jianzhong Wang
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| | - Taipeng Jiang
- Department of Neurosurgery, Shenzhen Second Peoples Hospital, the First Affiliated Hospital of Shenzhen University, Health Science CenterShenzhenP.R. China
| |
Collapse
|
27
|
Lo WL, Hsu TI, Yang WB, Kao TJ, Wu MH, Huang YN, Yeh SH, Chuang JY. Betulinic Acid-Mediated Tuning of PERK/CHOP Signaling by Sp1 Inhibition as a Novel Therapeutic Strategy for Glioblastoma. Cancers (Basel) 2020; 12:cancers12040981. [PMID: 32326583 PMCID: PMC7226172 DOI: 10.3390/cancers12040981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Patients with glioblastoma are at high risk of local recurrences after initial treatment with standard therapy, and recurrent tumor cells appear to be resistant to first-line drug temozolomide. Thus, finding an effective second-line agent for treating primary and recurrent glioblastomas is critical. Betulinic acid (BA), a natural product of plant origin, can cross the blood-brain barrier. Here, we investigated the antitumor effects of BA on typical glioblastoma cell lines and primary glioblastoma cells from patients, as well as corresponding temozolomide-resistant cells. Our findings verified that BA significantly reduced growth in all examined cells. Furthermore, gene-expression array analysis showed that the unfolded-protein response was significantly affected by BA. Moreover, BA treatment increased activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) apoptotic pathway, and reduced specificity protein 1 (Sp1) expression. However, Sp1 overexpression reversed the observed cell-growth inhibition and PERK/CHOP signaling activation induced by BA. Because temozolomide-resistant cells exhibited significantly increased Sp1 expression, we concluded that Sp1-mediated PERK/CHOP signaling inhibition protects glioblastoma against cancer therapies; hence, BA treatment targeting this pathway can be considered as an effective therapeutic strategy to overcome such chemoresistance and tumor relapse.
Collapse
Affiliation(s)
- Wei-Lun Lo
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, New Taipei 23561, Taiwan;
| | - Tsung-I Hsu
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Bin Yang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
| | - Tzu-Jen Kao
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Hsiao Wu
- Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, New Taipei 23561, Taiwan;
| | - Yung-Ning Huang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; (W.-L.L.); (T.-I.H.); (W.-B.Y.); (T.-J.K.); (Y.-N.H.)
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 7623)
| |
Collapse
|
28
|
Chen TC, Chuang JY, Ko CY, Kao TJ, Yang PY, Yu CH, Liu MS, Hu SL, Tsai YT, Chan H, Chang WC, Hsu TI. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol 2019; 30:101413. [PMID: 31896509 PMCID: PMC6940696 DOI: 10.1016/j.redox.2019.101413] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is the main obstacle in the improvement of chemotherapeutic efficacy in glioblastoma. Previously, we showed that dehydroepiandrosterone (DHEA), one kind of androgen/neurosteroid, potentiates glioblastoma to acquire resistance through attenuating DNA damage. Androgen receptor (AR) activated by DHEA or other types of androgen was reported to promote drug resistance in prostate cancer. However, in DHEA-enriched microenvironment, the role of AR in acquiring resistance of glioblastoma remains unknown. In this study, we found that AR expression is significantly correlated with poor prognosis, and AR obviously induced the resistance to temozolomide (TMZ) treatment. Herein, we observed that ALZ003, a curcumin analog, induces FBXL2-mediated AR ubiquitination, leading to degradation. Importantly, ALZ003 significantly inhibited the survival of TMZ-sensitive and -resistant glioblastoma in vitro and in vivo. The accumulation of reactive oxygen species (ROS), lipid peroxidation and suppression of glutathione peroxidase (GPX) 4, which are characteristics of ferroptosis, were observed in glioblastoma cell after treatment of ALZ003. Furthermore, overexpression of AR prevented ferroptosis in the presence of GPX4. To evaluate the therapeutic effect in vivo, we transplanted TMZ-sensitive or -resistant U87MG cells into mouse brain followed by intravenous administration with ALZ003. In addition to inhibiting the growth of glioblastoma, ALZ003 significantly extended the survival period of transplanted mice, and significantly decreased AR expression in the tumor area. Taken together, AR potentiates TMZ resistance for glioblastoma, and ALZ003-mediated AR ubiquitination might open a new insight into therapeutic strategy for TMZ resistant glioblastoma.
Collapse
Affiliation(s)
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taiwan
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Pei-Yu Yang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hui Yu
- Allianz Pharmascience Limited, Taipei, Taiwan
| | - Ming-Sheng Liu
- National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | - Siou-Lian Hu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hardy Chan
- Allianz Pharmascience Limited, Taipei, Taiwan
| | - Wen-Chang Chang
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taiwan.
| |
Collapse
|
29
|
ANGPTL4 Induces TMZ Resistance of Glioblastoma by Promoting Cancer Stemness Enrichment via the EGFR/AKT/4E-BP1 Cascade. Int J Mol Sci 2019; 20:ijms20225625. [PMID: 31717924 PMCID: PMC6888274 DOI: 10.3390/ijms20225625] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor, with strong invasiveness and a high tolerance to chemotherapy. Despite the current standard treatment combining temozolomide (TMZ) and radiotherapy, glioblastoma can be incurable due to drug resistance. The existence of glioma stem-like cells (GSCs) is considered the major reason for drug resistance. However, the mechanism of GSC enrichment remains unclear. Herein, we found that the expression and secretion of angiopoietin-like 4 protein (ANGPTL4) were clearly increased in GSCs. The overexpression of ANGPTL4 induced GSC enrichment that was characterized by polycomb complex protein BMI-1 and SRY (sex determining region Y)-box 2 (SOX2) expression, resulting in TMZ resistance in GBM. Furthermore, epidermal growth factor receptor (EGFR) phosphorylation induced 4E-BP1 phosphorylation that was required for ANGPTL4-induced GSC enrichment. In particular, ANGPTL4 induced 4E-BP1 phosphorylation by activating phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal–regulated kinase (ERK) cascades for inducing stemness. To elucidate the mechanism contributing to ANGPTL4 upregulation in GSCs, chromatin immunoprecipitation coupled with sequencing (ChIP-Seq) revealed that specificity protein 4 (Sp4) was associated with the promoter region, −979 to −606, and the luciferase reporter assay revealed that Sp4 positively regulated activity of the ANGPTL4 promoter. Moreover, both ANGPTL4 and Sp4 were highly expressed in GBM and resulted in a poor prognosis. Taken together, Sp4-mediated ANGPTL4 upregulation induces GSC enrichment through the EGFR/AKT/4E-BP1 cascade.
Collapse
|
30
|
Lin HY, Ko CY, Kao TJ, Yang WB, Tsai YT, Chuang JY, Hu SL, Yang PY, Lo WL, Hsu TI. CYP17A1 Maintains the Survival of Glioblastomas by Regulating SAR1-Mediated Endoplasmic Reticulum Health and Redox Homeostasis. Cancers (Basel) 2019; 11:cancers11091378. [PMID: 31527549 PMCID: PMC6770831 DOI: 10.3390/cancers11091378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P450 (CYP) 17A1 is an important steroidogenic enzyme harboring 17α-hydroxylase and performing 17,20 lyase activities in multiple steps of steroid hormone synthesis, including dehydroepiandrosterone (DHEA) biosynthesis. Previously, we showed that CYP17A1-mediated DHEA production clearly protects glioblastomas from temozolomide-induced apoptosis, leading to drug resistance. Herein, we attempt to clarify whether the inhibition of CYP17A1 has a tumor-suppressive effect, and to determine the steroidogenesis-independent functions of CYP17A1 in glioblastomas. Abiraterone, an inhibitor of CYP17A1, significantly inhibits the proliferation of A172, T98G, and PT#3 (the primary glioblastoma cells) by inducing apoptosis. In parallel, abiraterone potently suppresses tumor growth in mouse models through transplantation of PT#3 cells to the back or to the brain. Based on evidence that abiraterone induces endoplasmic reticulum (ER) stress, followed by the accumulation of reactive oxygen species (ROS), CYP17A1 is important for ER health and redox homeostasis. To confirm our hypothesis, we showed that CYP17A1 overexpression prevents the initiation of ER stress and attenuates ROS production by regulating SAR1a/b expression. Abiraterone dissociates SAR1a/b from ER-localized CYP17A1, and induces SAR1a/b ubiquitination, leading to degradation. Furthermore, SAR1 overexpression rescues abiraterone-induced apoptosis and impairs redox homeostasis. In addition to steroid hormone synthesis, CYP17A1 associates with SAR1a/b to regulate protein processing and maintain ER health in glioblastomas.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
| | - Chiung-Yuan Ko
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Tzu-Jen Kao
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Bin Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Ting Tsai
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jian-Ying Chuang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Siou-Lian Hu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Pei-Yu Yang
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Lun Lo
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- Division of Neurosurgery, Taipei Medical University-Shuang-Ho Hospital, New Taipei City 23561, Taiwan.
| | - Tsung-I Hsu
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, 11031 Taipei, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan.
- TMU Research Center of Neuroscience, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|