1
|
Custer SK, Gilson T, Astroski JW, Nanguneri SR, Iurillo AM, Androphy EJ. COPI coatomer subunit α-COP interacts with the RNA binding protein Nucleolin via a C-terminal dilysine motif. Hum Mol Genet 2023; 32:3263-3275. [PMID: 37658769 PMCID: PMC10656708 DOI: 10.1093/hmg/ddad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not β-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.
Collapse
Affiliation(s)
- Sara K Custer
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Timra Gilson
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Jacob W Astroski
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Siddarth R Nanguneri
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Alyssa M Iurillo
- Indiana University School of Medicine, 340 West 10 St, Indianapolis, IN 46202, United States
| | - Elliot J Androphy
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| |
Collapse
|
2
|
Matschke V, Kürten K, Gude AC, Christian Epplen A, Stein J, Theiss C. Dysregulated expression and distribution of Kif5α in neurites of wobbler motor neurons. Neural Regen Res 2023. [PMID: 35799535 PMCID: PMC9241431 DOI: 10.4103/1673-5374.343883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Impaired axonal transport has been observed in patients with amyotrophic lateral sclerosis (ALS) and in animal models, suggesting that transport proteins likely play a critical role in the pathological mechanism of ALS. Dysregulation of Kinesin-family-member 5α (Kif5α), a neuron-specific isoform of heavy chain kinesin family, has been described in several neurological disorders, in humans and animal models, including ALS. In this study, we determined Kif5α expression by gene sequencing, quantitative reverse transcription-polymerase chain reaction, and western blot assay in the cervical spinal cord of wobbler mice and immunofluorescence staining in dissociated cultures of the ventral horn. Further, we observed the distribution of Kif5α and mitochondria along motor neuronal branches by confocal imaging. Our results showed that Kif5α expression was greatly dysregulated in wobbler mice, which resulted in altered distribution of Kif5α along motor neuronal branches with an abnormal mitochondrial distribution. Thus, our results indicate that dysregulation of Kif5 and therefore abnormal transport in motor neuronal branches in this ALS model could be causative for several pathological findings at the cellular level, like misallocation of cytoskeletal proteins or organelles like mitochondria.
Collapse
|
3
|
Wilson C, Moyano AL, Cáceres A. Perspectives on Mechanisms Supporting Neuronal Polarity From Small Animals to Humans. Front Cell Dev Biol 2022; 10:878142. [PMID: 35517494 PMCID: PMC9062071 DOI: 10.3389/fcell.2022.878142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Axon-dendrite formation is a crucial milestone in the life history of neurons. During this process, historically referred as “the establishment of polarity,” newborn neurons undergo biochemical, morphological and functional transformations to generate the axonal and dendritic domains, which are the basis of neuronal wiring and connectivity. Since the implementation of primary cultures of rat hippocampal neurons by Gary Banker and Max Cowan in 1977, the community of neurobiologists has made significant achievements in decoding signals that trigger axo-dendritic specification. External and internal cues able to switch on/off signaling pathways controlling gene expression, protein stability, the assembly of the polarity complex (i.e., PAR3-PAR6-aPKC), cytoskeleton remodeling and vesicle trafficking contribute to shape the morphology of neurons. Currently, the culture of hippocampal neurons coexists with alternative model systems to study neuronal polarization in several species, from single-cell to whole-organisms. For instance, in vivo approaches using C. elegans and D. melanogaster, as well as in situ imaging in rodents, have refined our knowledge by incorporating new variables in the polarity equation, such as the influence of the tissue, glia-neuron interactions and three-dimensional development. Nowadays, we have the unique opportunity of studying neurons differentiated from human induced pluripotent stem cells (hiPSCs), and test hypotheses previously originated in small animals and propose new ones perhaps specific for humans. Thus, this article will attempt to review critical mechanisms controlling polarization compiled over decades, highlighting points to be considered in new experimental systems, such as hiPSC neurons and human brain organoids.
Collapse
|
4
|
Heras-Romero Y, Morales-Guadarrama A, Santana-Martínez R, Ponce I, Rincón-Heredia R, Poot-Hernández AC, Martínez-Moreno A, Urrieta E, Bernal-Vicente BN, Campero-Romero AN, Moreno-Castilla P, Greig NH, Escobar ML, Concha L, Tovar-Y-Romo LB. Improved post-stroke spontaneous recovery by astrocytic extracellular vesicles. Mol Ther 2022; 30:798-815. [PMID: 34563674 PMCID: PMC8821969 DOI: 10.1016/j.ymthe.2021.09.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 02/04/2023] Open
Abstract
Spontaneous recovery after a stroke accounts for a significant part of the neurological recovery in patients. However limited, the spontaneous recovery is mechanistically driven by axonal restorative processes for which several molecular cues have been previously described. We report the acceleration of spontaneous recovery in a preclinical model of ischemia/reperfusion in rats via a single intracerebroventricular administration of extracellular vesicles released from primary cortical astrocytes. We used magnetic resonance imaging and confocal and multiphoton microscopy to correlate the structural remodeling of the corpus callosum and striatocortical circuits with neurological performance during 21 days. We also evaluated the functionality of the corpus callosum by repetitive recordings of compound action potentials to show that the recovery facilitated by astrocytic extracellular vesicles was both anatomical and functional. Our data provide compelling evidence that astrocytes can hasten the basal recovery that naturally occurs post-stroke through the release of cellular mediators contained in extracellular vesicles.
Collapse
Affiliation(s)
- Yessica Heras-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Axayacatl Morales-Guadarrama
- Departmento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, Mexico; National Center for Medical Imaging and Instrumentation Research, Mexico City, Mexico
| | - Ricardo Santana-Martínez
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Isaac Ponce
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Augusto César Poot-Hernández
- Bioinformatics Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Araceli Martínez-Moreno
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Esteban Urrieta
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berenice N Bernal-Vicente
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Aura N Campero-Romero
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Perla Moreno-Castilla
- Laboratory of Neurocognitive Aging, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nigel H Greig
- Drug Design & Development Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martha L Escobar
- Divisíon de Investigación y Estudios de Posgrado, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Concha
- Department of Behavioral and Cognitive Neurobiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Luis B Tovar-Y-Romo
- Department of Molecular Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
5
|
Li C, Wang C, Zhang Y, Alsrouji OK, Chebl AB, Ding G, Jiang Q, Mayer SA, Lu M, Kole MK, Marin HL, Zhang L, Chopp M, Zhang ZG. Cerebral endothelial cell-derived small extracellular vesicles enhance neurovascular function and neurological recovery in rat acute ischemic stroke models of mechanical thrombectomy and embolic stroke treatment with tPA. J Cereb Blood Flow Metab 2021; 41:2090-2104. [PMID: 33557693 PMCID: PMC8327102 DOI: 10.1177/0271678x21992980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Treatment of patients with cerebral large vessel occlusion with thrombectomy and tissue plasminogen activator (tPA) leads to incomplete reperfusion. Using rat models of embolic and transient middle cerebral artery occlusion (eMCAO and tMCAO), we investigated the effect on stroke outcomes of small extracellular vesicles (sEVs) derived from rat cerebral endothelial cells (CEC-sEVs) in combination with tPA (CEC-sEVs/tPA) as a treatment of eMCAO and tMCAO in rat. The effect of sEVs derived from clots acquired from patients who had undergone mechanical thrombectomy on healthy human CEC permeability was also evaluated. CEC-sEVs/tPA administered 4 h after eMCAO reduced infarct volume by ∼36%, increased recanalization of the occluded MCA, enhanced cerebral blood flow (CBF), and reduced blood-brain barrier (BBB) leakage. Treatment with CEC-sEVs given upon reperfusion after 2 h tMCAO significantly reduced infarct volume by ∼43%, and neurological outcomes were improved in both CEC-sEVs treated models. CEC-sEVs/tPA reduced a network of microRNAs (miRs) and proteins that mediate thrombosis, coagulation, and inflammation. Patient-clot derived sEVs increased CEC permeability, which was reduced by CEC-sEVs. CEC-sEV mediated suppression of a network of pro-thrombotic, -coagulant, and -inflammatory miRs and proteins likely contribute to therapeutic effects. Thus, CEC-sEVs have a therapeutic effect on acute ischemic stroke by reducing neurovascular damage.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Chunyang Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Owais K Alsrouji
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Alex B Chebl
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Stephan A Mayer
- Departments of Neurology and Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, MI, USA
| | - Max K Kole
- Department of Neurological Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Horia L Marin
- Clinical Professor of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
6
|
Wilson C, Cáceres A. New insights on epigenetic mechanisms supporting axonal development: histone marks and miRNAs. FEBS J 2020; 288:6353-6364. [PMID: 33332753 DOI: 10.1111/febs.15673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/21/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022]
Abstract
Mechanisms supporting axon growth and the establishment of neuronal polarity have remained largely disconnected from their genetic and epigenetic fundamentals. Recently, post-transcriptional modifications of histones involved in chromatin folding and transcription, and microRNAs controlling translation have emerged as regulators of axonal specification, growth, and guidance. In this article, we review novel evidence supporting the concept that epigenetic mechanisms work at both transcriptional and post-transcriptional levels to shape axons. We also discuss the role of splicing on axonal growth, as one of the most (if not the most) powerful post-transcriptional mechanism to diversify genetic information. Overall, we think exploring the gap between epigenetics and axonal growth raises new questions and perspectives to the development of axons in physiological and pathological contexts.
Collapse
Affiliation(s)
- Carlos Wilson
- Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina.,Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-UNC), Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC), Argentina
| | - Alfredo Cáceres
- Centro de Investigación en Medicina Traslacional "Severo R Amuchástegui" (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Córdoba, Argentina
| |
Collapse
|
7
|
Li L, Miao M, Chen J, Liu Z, Li W, Qiu Y, Xu S, Wang Q. Role of Ten eleven translocation-2 (Tet2) in modulating neuronal morphology and cognition in a mouse model of Alzheimer's disease. J Neurochem 2020; 157:993-1012. [PMID: 33165916 DOI: 10.1111/jnc.15234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Abnormal expression of Ten eleven translocation-2 (Tet2) contributes to the pathogenesis of Alzheimer's disease (AD). However, to date, the role of Tet2 in modulating neuronal morphology upon amyloid-β (Aβ)-induced neurotoxicity has not been shown in a mouse model of AD. Here, we have developed a model of injured mouse hippocampal neurons induced by Aβ42 oligomers in vitro. We also investigated the role of Tet2 in injured neurons using recombinant plasmids-induced Tet2 inhibition or over-expression. We found that the reduced expression of Tet2 exacerbated neuronal damage, whereas the increased expression of Tet2 was sufficient to protect neurons against Aβ42 toxicity. Our results indicate that the brains of aged APPswe/PSEN1 double-transgenic (2 × Tg-AD) mice exhibit an increase in Aβ plaque accumulation and a decrease in Tet2 expression. As a result, we have also explored the underlying mechanisms of Tet2 in cognition and amyloid load in 2 × Tg-AD mice via adeno-associated virus-mediated Tet2 knockdown or over-expression. Recombinant adeno-associated virus was microinjected into bilateral dentate gyrus regions of the hippocampus of the mice. Knocking down Tet2 in young 2 × Tg-AD mice resulted in the same extent of cognitive dysfunction as aged 2 × Tg-AD mice. Importantly, in middle-aged 2 × Tg-AD mice, knocking down Tet2 accelerated the accumulation of Aβ plaques, whereas over-expressing Tet2 alleviated amyloid burden and memory loss. Furthermore, our hippocampal RNA-seq data, from young 2 × Tg-AD mice, were enriched with aberrantly expressed lncRNAs and miRNAs that are modulated by Tet2. Tet2-modulated lncRNAs (Malat1, Meg3, Sox2ot, Gm15477, Snhg1) and miRNAs (miR-764, miR-211, and miR-34a) may play a role in neuron formation. Overall, these results indicate that Tet2 may be a potential therapeutic target for repairing neuronal damage and cognitive impairment in AD.
Collapse
Affiliation(s)
- Liping Li
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China
| | - Miao Miao
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China
| | - Jiarui Chen
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, PR China
| | - Zhitao Liu
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, PR China
| | - Wanyi Li
- Faculty of Physical Education, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yisha Qiu
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China
| | - Shujun Xu
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China.,Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, Zhejiang, PR China
| |
Collapse
|
8
|
Prodromidou K, Vlachos IS, Gaitanou M, Kouroupi G, Hatzigeorgiou AG, Matsas R. MicroRNA-934 is a novel primate-specific small non-coding RNA with neurogenic function during early development. eLife 2020; 9:e50561. [PMID: 32459171 PMCID: PMC7295570 DOI: 10.7554/elife.50561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Integrating differential RNA and miRNA expression during neuronal lineage induction of human embryonic stem cells we identified miR-934, a primate-specific miRNA that displays a stage-specific expression pattern during progenitor expansion and early neuron generation. We demonstrate the biological relevance of this finding by comparison with data from early to mid-gestation human cortical tissue. Further we find that miR-934 directly controls progenitor to neuroblast transition and impacts on neurite growth of newborn neurons. In agreement, miR-934 targets are involved in progenitor proliferation and neuronal differentiation whilst miR-934 inhibition results in profound global transcriptome changes associated with neurogenesis, axonogenesis, neuronal migration and neurotransmission. Interestingly, miR-934 inhibition affects the expression of genes associated with the subplate zone, a transient compartment most prominent in primates that emerges during early corticogenesis. Our data suggest that mir-934 is a novel regulator of early human neurogenesis with potential implications for a species-specific evolutionary role in brain function.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Ioannis S Vlachos
- Department of Pathology, Beth Israel Deaconess Medical CenterBostonUnited States
- DIANA-Lab, Hellenic Pasteur InstituteAthensGreece
- Harvard Medical SchoolBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Maria Gaitanou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | - Georgia Kouroupi
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| | | | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur InstituteAthensGreece
| |
Collapse
|
9
|
Niego A, Benítez-Burraco A. Williams Syndrome, Human Self-Domestication, and Language Evolution. Front Psychol 2019; 10:521. [PMID: 30936846 PMCID: PMC6431629 DOI: 10.3389/fpsyg.2019.00521] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/22/2019] [Indexed: 01/06/2023] Open
Abstract
Language evolution resulted from changes in our biology, behavior, and culture. One source of these changes might be human self-domestication. Williams syndrome (WS) is a clinical condition with a clearly defined genetic basis which results in a distinctive behavioral and cognitive profile, including enhanced sociability. In this paper we show evidence that the WS phenotype can be satisfactorily construed as a hyper-domesticated human phenotype, plausibly resulting from the effect of the WS hemideletion on selected candidates for domestication and neural crest (NC) function. Specifically, we show that genes involved in animal domestication and NC development and function are significantly dysregulated in the blood of subjects with WS. We also discuss the consequences of this link between domestication and WS for our current understanding of language evolution.
Collapse
Affiliation(s)
- Amy Niego
- Ph.D. Program, Faculty of Humanities, University of Huelva, Huelva, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|