1
|
Boscutti A, Asir B, Moura I, Fenoy A, Quevedo J, Soares JC. Deep brain stimulation of the medial forebrain bundle: Effects on anhedonia and behavioral activation in treatment-resistant depression. Brain Stimul 2024; 18:61-63. [PMID: 39672230 DOI: 10.1016/j.brs.2024.12.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Affiliation(s)
- Andrea Boscutti
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), United States.
| | - Bashar Asir
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), United States
| | - Isabela Moura
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), United States
| | - Albert Fenoy
- Department of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, United States
| | - João Quevedo
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), United States
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), United States
| |
Collapse
|
2
|
Palepu MSK, Bhalerao HA, Sonti R, Dandekar MP. Faecalibacterium prausnitzii, FOS and GOS loaded synbiotic reverses treatment-resistant depression in rats: Restoration of gut-brain crosstalk. Eur J Pharmacol 2024; 983:176960. [PMID: 39214274 DOI: 10.1016/j.ejphar.2024.176960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Alterations in commensal gut microbiota, such as butyrate-producing bacteria and its metabolites, have been linked to stress-related brain disorders, including depression. Herein, we investigated the effect of Faecalibacterium prausnitzii (ATCC-27766) administered along with fructooligosaccharides (FOS) and galactooligosaccharides (GOS) in a rat model of treatment-resistant depression (TRD). The behavioral changes related to anxiety-, anhedonia- and despair-like phenotypes were recorded employing elevated plus maze, sucrose-preference test, and forced-swim test, respectively. Rats exposed to unpredictable chronic mild-stress (UCMS) and adrenocorticotropic hormone (ACTH) injections exhibited a TRD-like phenotype. Six-week administration of F. prausnitzii and FOS + GOS ameliorated TRD-like conditions in rats. This synbiotic treatment also restored the decreased levels of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate in the fecal samples of TRD rats. Synbiotic-recipient TRD rats displayed an increased abundance of Lactobacillus helveticus, Lactobacillus hamsteri, and Ruminococcus flavefaciens. Moreover, more mucus-producing goblet cells were seen in the colon of synbiotic-treated rats, suggesting improved gut health. The synbiotic treatment effectively modulated neuroinflammation by reducing proinflammatory cytokines (IFN-γ, TNF-α, CRP, and IL-6). It normalized the altered levels of key neurotransmitters such as serotonin, gamma-aminobutyric acid, noradrenaline, and dopamine in the hippocampus and/or frontal cortex. The enhanced expression of brain-derived neurotrophic factor, tryptophan hydroxylase 1, and serotonin transporter-3 (SERT-3), and reduced levels of indoleamine 2,3-dioxygenase 1 (IDO-1) and kynurenine metabolite were observed in the synbiotic-treated group. We suggest that F. prausnitzii and FOS + GOS-loaded synbiotic may reverse the TRD-like symptoms in rats by positively impacting gut health, neuroinflammation, neurotransmitters, and gut microbial composition.
Collapse
Affiliation(s)
- Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Harshada Anil Bhalerao
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Rabelo TK, Campos ACP, Almeida Souza TH, Mahmud F, Popovic MR, Covolan L, Betta VHC, DaCosta L, Lipsman N, Diwan M, Hamani C. Deep brain stimulation mitigates memory deficits in a rodent model of traumatic brain injury. Brain Stimul 2024; 17:1186-1196. [PMID: 39419474 DOI: 10.1016/j.brs.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major life-threatening event. In addition to neurological deficits, it can lead to long-term impairments in attention and memory. Deep brain stimulation (DBS) is an established therapy for movement disorders that has been recently investigated for memory improvement in various disorders. In models of TBI, stimulation delivered to different brain targets has been administered to rodents long after the injury with the objective of treating motor deficits, coordination and memory impairment. OBJECTIVE To test the hypothesis that DBS administered soon after TBI may prevent the development of memory deficits and exert neuroprotective effects. METHODS Male rats were implanted with DBS electrodes in the anterior nucleus of the thalamus (ANT) one week prior to lateral fluid percussion injury (FPI). Immediately after TBI, animals received active or sham stimulation for 6 h. Four days later, they were assessed in a novel object/novel location recognition test (NOR/NLR) and a Barnes maze paradigm. After the experiments, hippocampal cells were counted. Separate groups of animals were sacrificed at different timepoints after TBI to measure cytokines and brain derived neurotrophic factor (BDNF). In a second set of experiments, TBI-exposed animals receiving active or sham stimulation were injected with the tropomyosin receptor kinase B (TrkB) antagonist ANA-12, followed by behavioural testing. RESULTS Rats exposed to TBI given DBS had an improvement in several variables of the Barnes maze, but no significant improvements in NOR/NLR compared to Sham DBS TBI animals or non-implanted controls. Animals receiving stimulation had a significant increase in BDNF levels, as well as in hippocampal cell counts in the hilus, CA3 and CA1 regions. DBS failed to normalize the increased levels of TNFα and the proinflammatory cytokine IL1β in the perilesional cortex and the hippocampus of the TBI-exposed animals. Pharmacological experiments revealed that ANA-12 administered alongside DBS did not counter the memory improvement observed in ANT stimulated animals. CONCLUSIONS DBS delivered immediately after TBI mitigated memory deficits, increased the expression of BDNF and the number of hippocampal cells in rats. Mechanisms for these effects were not related to an anti-inflammatory effect or mediated via TrkB receptors.
Collapse
Affiliation(s)
| | | | | | - Faiza Mahmud
- Sunnybrook Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering University of Toronto, ON, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering University of Toronto, ON, Canada; Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Luciene Covolan
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Victor H C Betta
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Leodante DaCosta
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
4
|
Dudhabhate BB, Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Deep brain stimulation targeted at lateral hypothalamus-medial forebrain bundle reverses depressive-like symptoms and related cognitive deficits in rat: Role of serotoninergic system. Neuroscience 2024; 556:96-113. [PMID: 39103042 DOI: 10.1016/j.neuroscience.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.
Collapse
Affiliation(s)
- Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Sanjay N Awathale
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424 001, Maharashtra, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
5
|
Wang F, Xin M, Li X, Li L, Wang C, Dai L, Zheng C, Cao K, Yang X, Ge Q, Li B, Wang T, Zhan S, Li D, Zhang X, Paerhati H, Zhou Y, Liu J, Sun B. Effects of deep brain stimulation on dopamine D2 receptor binding in patients with treatment-refractory depression. J Affect Disord 2024; 356:672-680. [PMID: 38657771 DOI: 10.1016/j.jad.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Mei Xin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xuefei Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Lianghua Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaojie Zheng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Kaiyi Cao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Xuefei Yang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Qi Ge
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Bolun Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxiao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Halimureti Paerhati
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Lin J, Xiao L, Nie X, Wang Z, Luo Y, Zhang L, Liu Y. Investigating the role of TGF-β and BDNF in cancer-related depression: a primary cross-sectional study. Support Care Cancer 2024; 32:365. [PMID: 38758235 DOI: 10.1007/s00520-024-08542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Cancer-related depression is a well-documented condition that significantly impacts long-term quality of life. Brain-derived neurotrophic factor (BDNF), a neurotrophin essential for neurogenesis and neuronal plasticity, has been implicated in various neuropsychological disorders including depression associated with cancer. Cytokines, on the other hand, play a crucial role in regulating depression, potentially by influencing BDNF expression. Transforming growth factor-β (TGF-β), a key immune regulator within the tumor microenvironment, has been found to elevate BDNF levels, establishing a link between peripheral immune responses and depression. The study aims to investigate the correlation of TGF-β and BDNF in cancer-related depression. METHODS This study involved a cohort of 153 gynecological patients, including 61 patients with gynecological cancer and 92 patients without cancer. Depression levels were assessed using the subscale of Hospital Anxiety and Depression Scale (HADS-D), and TGF-β and BDNF plasma levels were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS The study revealed elevated plasma TGF-β levels in patients with cancer (32.24 ± 22.93 ng/ml) compared to those without cancer (25.24 ± 19.72 ng/ml) (P = 0.046). Additionally, reduced levels of BDNF were observed in patients presenting depression symptoms (44.96 ± 41.06 pg/ml) compared to those without depression (133.5 ± 176.7 pg/ml) (P = 0.036). Importantly, a significant correlation between TGF-β and BDNF was found in patients without cancer but with depression (correlation coefficient = 0.893, **P < 0.01). Interestingly, cancer appeared to influence the association between TGF-β and BDNF in patients with depression, as evidenced by a significant difference in the correlation of TGF-β and BDNF between cancer and non-cancer groups (P = 0.041). CONCLUSIONS These findings underscore the active involvement of TGF-β and BDNF crosstalk in the context of cancer-related depression.
Collapse
Affiliation(s)
- Jingjing Lin
- School of Nursing, Southern Medical University, Guangzhou, China
- Health College, Zhejiang Industry Polytechnic College, Shaoxing, China
| | - Lin Xiao
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Xinchen Nie
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanyuan Luo
- School of Nursing, Southern Medical University, Guangzhou, China
| | - Lili Zhang
- School of Nursing, Southern Medical University, Guangzhou, China.
| | - Yawei Liu
- School of Nursing, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
8
|
Shen J, Bian N, Zhao L, Wei J. The role of T-lymphocytes in central nervous system diseases. Brain Res Bull 2024; 209:110904. [PMID: 38387531 DOI: 10.1016/j.brainresbull.2024.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
The central nervous system (CNS) has been considered an immunologically privileged site. In the past few decades, research on inflammation in CNS diseases has mostly focused on microglia, innate immune cells that respond rapidly to injury and infection to maintain CNS homeostasis. Discoveries of lymphatic vessels within the dura mater and peripheral immune cells in the meningeal layer indicate that the peripheral immune system can monitor and intervene in the CNS. This review summarizes recent advances in the involvement of T lymphocytes in multiple CNS diseases, including brain injury, neurodegenerative diseases, and psychiatric disorders. It emphasizes that a deep understanding of the pathogenesis of CNS diseases requires intimate knowledge of T lymphocytes. Aiming to promote a better understanding of the relationship between the immune system and CNS and facilitate the development of therapeutic strategies targeting T lymphocytes in neurological diseases.
Collapse
Affiliation(s)
- Jianing Shen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| | - Jingkuan Wei
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China.
| |
Collapse
|
9
|
Sultania A, Venkatesan S, Batra DR, Rajesh K, Vashishth R, Ravi S, Ahmad F. Potential biomarkers and therapeutic targets for obsessive compulsive disorder: Evidences from clinical studies. Biochem Med (Zagreb) 2024; 34:010503. [PMID: 38125619 PMCID: PMC10731732 DOI: 10.11613/bm.2024.010503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/09/2023] [Indexed: 12/23/2023] Open
Abstract
Obsessive compulsive disorder (OCD) is a prevalent behavioral disorder with a complex etiology. However, the underlying pathogenic molecular pathways and the associated risk factors are largely obscure. This has hindered both the identification of relevant prognostic biomarkers and the development of effective treatment strategies. Because of the diverse range of clinical manifestations, not all patients benefit from therapies currently practiced in the clinical setting. Nevertheless, several lines of evidence indicate that neurotrophic, neurotransmitter, and oxidative signaling are involved in the pathophysiology of OCD. Based upon evidences from clinical (and pre-clinical studies), the present review paper sets out to decipher the utilities of three parameters (i.e. brain-derived neurotrophic factor; BDNF, noradrenalin-synthesizing enzyme dopamine beta-hydroxylase; DBH; and oxidative damage marker malondialdehyde; MDA) as diagnostic peripheral biomarkers as well as bio-targets for therapeutic strategies. While the data indicates promising results, there is necessitation for future studies to further confirm and establish these. Further, based again on the available clinical data, we investigated the possibilities of exploiting the etiological links between disruptions in the sleep-wake cycle and insulin signaling, and OCD for the identification of potential anti-OCD ameliorative agents with the ability to elicit multimodal effects, including attenuation of the alterations in BDNF, noradrenergic and redox pathways. In this respect, agomelatine and metformin may represent particularly interesting candidates; however, further clinical studies are warranted to establish these as singular or complementary medications in OCD subjects.
Collapse
Affiliation(s)
- Aarushi Sultania
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shashank Venkatesan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dhruv Rishb Batra
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Keerthna Rajesh
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Rahul Vashishth
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sudesh Ravi
- Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
10
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Puk O, Jabłońska M, Sokal P. Immunomodulatory and endocrine effects of deep brain stimulation and spinal cord stimulation - A systematic review. Biomed Pharmacother 2023; 168:115732. [PMID: 37862972 DOI: 10.1016/j.biopha.2023.115732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
INTRODUCTION Deep Brain Stimulation (DBS) and Spinal Cord Stimulation (SCS) represent burgeoning treatments for diverse neurological disorders. This systematic review aims to consolidate findings on the immunological and endocrine effects of DBS and SCS, shedding light on the intricate mechanisms of neuromodulation. MATERIALS AND METHODS This systematic review, aligned with PRISMA protocols, synthesizes findings from 33 references-20 on DBS and 13 on SCS-to unravel the immunological and endocrine impacts of neuromodulation. RESULTS DBS interventions exhibited divergent effects on cytokines, with an increase in hepcidin levels and a variable impact on the IL-6/IL-10 ratio. While some studies reported elevated IL-6, animal studies consistently demonstrated a reduction in IL-1β and IL-6, with no significant changes in TNF-α and an increase in IL-10. Noteworthy hormonal changes included decreased corticosterone and ACTH concentrations and increased oxytocin levels following DBS of the hypothalamus. SCS mirrored similar effects on interleukins, indicating a reduction in IL-6 and IL-1β and an increase in IL-10 levels. Additionally, SCS led to reduced VEGF levels and elevated expression of neurotrophic factors such as BDNF and GDNF, particularly under burst stimulation. CONCLUSIONS Both DBS and SCS exert anti-inflammatory effects, manifesting as a decrease in pro-inflammatory cytokines alongside the stimulation of anti-inflammatory cytokine synthesis. These findings, observed in both animal and human models, imply that neurostimulation may modify the trajectory of neurological diseases by modulating local immune responses in an immunomodulatory and endocrine manner. This comprehensive exploration sets the stage for future research endeavors in this evolving domain.
Collapse
Affiliation(s)
- Oskar Puk
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland.
| | - Magdalena Jabłońska
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Paweł Sokal
- Department of Neurosurgery and Neurology, Jan Biziel University Hospital, Collegium Medicum Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
12
|
Sun N, Cui WQ, Min XM, Zhang GM, Liu JZ, Wu HY. A new perspective on hippocampal synaptic plasticity and post-stroke depression. Eur J Neurosci 2023; 58:2961-2984. [PMID: 37518943 DOI: 10.1111/ejn.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.
Collapse
Affiliation(s)
- Ning Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Man Min
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia-Zheng Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
13
|
Calhoun CA, Lattouf C, Lewis V, Barrientos H, Donaldson ST. Chronic mild stress induces differential depression-like symptoms and c-Fos and 5HT1A protein levels in high-anxiety female Long Evans rats. Behav Brain Res 2023; 438:114202. [PMID: 36343695 PMCID: PMC9990717 DOI: 10.1016/j.bbr.2022.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Depression and anxiety disorders overlap in clinical populations, suggesting common mechanisms that may be further investigated in reliable animal models. We used filial 8 female Long-Evans rats bred for high (HAn; n = 19) and low anxiety (LAn)-like behavior (n = 21) to assess forced swim test mobility strategies and chronic mild stress (CMS)-induced depression-like symptoms. We measured (1) weight, (2) fur piloerection, (3) sweet food consumption, (4) grooming behavior, and (5) circulating estradiol (E2). One month after CMS terminated and following a terminal forced swim test, brains were processed for immunohistochemistry targeting c-Fos and serotonin 1 A receptor (5-HT1AR) protein in the paraventricular nucleus (PVN) of the hypothalamus. HAn female rats showed increased anxiety-like behavior (i.e., lower open to closed arm ratios, increased closed arm entries), more swimming (i.e., mobility), and less floating (i.e., immobility) behavior in the forced swim test. Overall, HAn females weighed less than their LAn counterparts. After chronic mild stress, HAn lines displayed even greater mobility and consumed fewer Froot Loops™. Fur and grooming analyses indicated no significant differences in mean counts across experimental groups. One month after CMS, cycling E2 concentrations (pg/ml) did not differ between HAn and LAn animals. Elevated c-Fos and 5-HT1AR expression were observed in the PVN, where HAn CMS rats expressed the most c-Fos and 5-HT1AR immunoreactivity. In summary, outbred HAn rats show robust anxiety-like behavior, exhibit more mobility in the forced swim test, and are more sensitive to chronic mild stress-induced grooming and decline in palatable food ingestion.
Collapse
Affiliation(s)
- Corey A Calhoun
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christine Lattouf
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| | - Victoria Lewis
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| | - Heidi Barrientos
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA
| | - S Tiffany Donaldson
- Developmental and Brain Sciences Program, Department of Psychology, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
14
|
Satti S, Palepu MSK, Singh AA, Jaiswal Y, Dash SP, Gajula SNR, Chaganti S, Samanthula G, Sonti R, Dandekar MP. Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 mediate via reshaping of microbiome gut-brain axis in rats. Neurochem Int 2023; 163:105483. [PMID: 36641109 DOI: 10.1016/j.neuint.2023.105483] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Due to the rising cases of treatment-refractory affective disorders, the discovery of newer therapeutic approaches is needed. In recent times, probiotics have garnered notable attention in managing stress-related disorders. Herein, we examined the effect of Bacillus coagulans Unique IS-2® probiotic on anxiety- and depression-like phenotypes employing maternal separation (MS) and chronic-unpredictable mild stress (CUMS) model in rats. METHODS Both male and female Sprague-Dawley rats were subjected to MS + CUMS. Probiotic treatment was provided for 6 weeks via drinking water. Anxiety- and depression-like phenotypes were assessed using sucrose-preference test (SPT), forced-swimming test (FST), elevated-plus maze test (EPM), and open-field test (OFT). Blood, brain, intestine, and fecal samples were obtained for biochemical and molecular studies. RESULTS Stress-exposed rats drank less sucrose solution, showed increased passivity, and explored less in open-arms in SPT, FST, and EPM, respectively. These stress-generated neurobehavioral aberrations were alleviated by 6-week of Bacillus coagulans Unique IS-2 treatment. The overall locomotor activity in OFT remained unchanged. The decreased levels of BDNF and serotonin and increased levels of C-reactive protein, TNF-α, IL-1β, and dopamine, in the hippocampus and/or frontal cortex of stress-exposed rats were reversed following probiotic treatment. Administration of probiotic also restored the systemic levels of L-tryptophan, L-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid, villi/crypt ratio, goblet-cell count, Firmicutes to Bacteroides ratio, and levels of acetate, propionate, and butyrate in fecal samples. These results indicate remodeling of the microbiome gut-brain axis in Bacillus coagulans Unique IS-2 recipient rats. However, protein levels of doublecortin, GFAP, and zona occludens in the hippocampus and occludin-immunoreactivity in the intestine remained unchanged. No prominent sex-specific changes were noted. CONCLUSION Anxiolytic- and antidepressant-like effects of Bacillus coagulans Unique IS-2 in MS + CUMS rat model may be mediated via reshaping the microbiome gut-brain axis.
Collapse
Affiliation(s)
- Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India
| | - Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research NIPER, Hyderabad, India.
| |
Collapse
|
15
|
Serotonin 5-HT 1B receptors mediate the antidepressant- and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation in a mouse model of social defeat. Psychopharmacology (Berl) 2022; 239:3875-3892. [PMID: 36282287 DOI: 10.1007/s00213-022-06259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) delivered to the ventromedial prefrontal cortex (vmPFC) induces antidepressant- and anxiolytic-like responses in various animal models. Electrophysiology and neurochemical studies suggest that these effects may be dependent, at least in part, on the serotonergic system. In rodents, vmPFC DBS reduces raphe cell firing and increases serotonin (5-HT) release and the expression of serotonergic receptors in different brain regions. METHODS We examined whether the behavioural responses of chronic vmPFC DBS are mediated by 5-HT1A or 5-HT1B receptors through a series of experiments. First, we delivered stimulation to mice undergoing chronic social defeat stress (CSDS), followed by a battery of behavioural tests. Second, we measured the expression of 5-HT1A and 5-HT1B receptors in different brain regions with western blot. Finally, we conducted pharmacological experiments to mitigate the behavioural effects of DBS using the 5-HT1A antagonist, WAY-100635, or the 5-HT1B antagonist, GR-127935. RESULTS We found that chronic DBS delivered to stressed animals reduced the latency to feed in the novelty suppressed feeding test (NSF) and immobility in the forced swim test (FST). Though no significant changes were observed in receptor expression, 5-HT1B levels in DBS-treated animals were found to be non-significantly increased in the vmPFC, hippocampus, and nucleus accumbens and reduced in the raphe compared to non-stimulated controls. Finally, while animals given vmPFC stimulation along with WAY-100635 still presented significant responses in the NSF and FST, these were mitigated following GR-127935 administration. CONCLUSIONS The antidepressant- and anxiolytic-like effects of DBS in rodents may be partially mediated by 5-HT1B receptors.
Collapse
|
16
|
FKN/NR Signaling Pathway Regulates Hippocampal Inflammatory Responses: the Survival of Hippocampal Neurons in Diabetic Rats with Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8980627. [PMID: 36072409 PMCID: PMC9444384 DOI: 10.1155/2022/8980627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Aim To investigate the mechanism via which FKN/CX3CR1 signaling abnormalities mediate N-methyl-D-aspartic acid receptor (NMDA) overexcitation-induced hippocampal neuronal injury in diabetic rats complicated with depression (DD). Methods Sixty rats were randomly divided into 5 groups. The depression-like behaviors of the rats were evaluated by open field test and Morris water maze. The pathological changes of hippocampus in DD rats were observed by HE staining. The blood levels of inflammatory factors (IL-1β, TNF-α, and IL-6) and neurotransmitters (D-serine and glutamic acid) were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of BDNF, A1 receptor (A1R), A2 receptor (A2R), A3 receptor (A3R), calmodulin dependent kinase II (CaMKII), CX3CR1, CX3CL1 (FKN), NR2A, and NR2B proteins were detected by immunohistochemistry and Western-blotting. Results Compared with the normal control group, blood glucose level increased significantly and body weight decreased in T2DM group and T2DMC group. In addition, the number of spontaneous activities significantly decreased and the capability of learning and memory was attenuated in T2DMC group and Chronic Stress group. The blood levels of IL-1β, TNF-α, IL-6, glutamate (Glu), and D-serine significantly increased in each model group. After intervention with CX3CR1 antibody, the expressions of BDNF, CaMK II, A1R, and A3R increased and those of A2R, CX3CR1, FKN, NR2A, and NR2B decreased. Conclusion In the diabetic state, the binding of FKN to CX3CR1 increases, which regulates a variety of adenosine receptors. When it exerts its effect on neurons, the overactivation of NR results in neuronal injury and causes depression.
Collapse
|
17
|
Miguel Telega L, Ashouri Vajari D, Stieglitz T, Coenen VA, Döbrössy MD. New Insights into In Vivo Dopamine Physiology and Neurostimulation: A Fiber Photometry Study Highlighting the Impact of Medial Forebrain Bundle Deep Brain Stimulation on the Nucleus Accumbens. Brain Sci 2022; 12:brainsci12081105. [PMID: 36009169 PMCID: PMC9406226 DOI: 10.3390/brainsci12081105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
New technologies, such as fiber photometry, can overcome long-standing methodological limitations and promote a better understanding of neuronal mechanisms. This study, for the first time, aimed at employing the newly available dopamine indicator (GRABDA2m) in combination with this novel imaging technique. Here, we present a detailed methodological roadmap leading to longitudinal repetitive transmitter release monitoring in in vivo freely moving animals and provide proof-of-concept data. This novel approach enables a fresh look at dopamine release patterns in the nucleus accumbens, following the medial forebrain bundle (mfb) DBS in a rodent model. Our results suggest reliable readouts of dopamine levels over at least 14 days of DBS-induced photometric measurements. We show that mfb-DBS can elicit an increased dopamine response during stimulation (5 s and 20 s DBS) compared to its baseline dopamine activity state, reaching its maximum peak amplitude in about 1 s and then recovering back after stimulation. The effect of different DBS pulse widths (PWs) also suggests a potential differential effect on this neurotransmitter response, but future studies would need to verify this. Using the described approach, we aim to gain insights into the differences between pathological and healthy models and to elucidate more exhaustively the mechanisms under which DBS exerts its therapeutic action.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Danesh Ashouri Vajari
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
| | - Thomas Stieglitz
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Faculty of Medicine, University of Freiburg, 79110 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
| | - Máté D. Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences (SIN), Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, University Freiburg Medical Center, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
- Center for Basics in Neuromodulation, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Correspondence:
| |
Collapse
|
18
|
In-house fabrication of bipolar electrode-cannula assembly for electrical stimulation and drug delivery at the same site in rat brain. J Pharmacol Toxicol Methods 2022; 118:107194. [PMID: 35779851 DOI: 10.1016/j.vascn.2022.107194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
Strategies drawn at understanding the functional attributes of specific neural circuits often necessitate electrical stimulation and pharmacological manipulation at the same anatomical site. We describe a simple, inexpensive and reliable method to fabricate a bipolar electrode-cannula assembly for delivery of electric pulses and administration of neuroactive agents at the same site in the rat brain. The assembly consisting of a guide cannula, dummy cannula, internal cannula and bipolar electrode was fabricated using syringe needles, wires and simple electronic components. To test the usefulness of the device, it was implanted on the skull of a rat specifically targeting the posterior ventral tegmental area (pVTA). The rat was conditioned to press the lever in intracranial self-stimulation (ICSS) protocol in an operant chamber. The number of lever presses in a 30 min task was monitored. Intra-pVTA administration with bicuculline (GABAA receptor antagonist) increased the lever press activity, while muscimol (GABAA receptor agonist) had opposite effect. The results confirm that the group of neurons responding to the electrical stimulation probably receive GABAergic inputs. The device is light in weight, costs less than a dollar and can be fabricated from readily available components. It can serve a useful purpose in electrically stimulating any given target in the brain - before, during or after pharmacological manipulation at the same locus and may find application in neuropharmacological and neurobehavioral studies.
Collapse
|
19
|
Dandekar MP, Palepu MSK, Satti S, Jaiswal Y, Singh AA, Dash SP, Gajula SNR, Sonti R. Multi-strain Probiotic Formulation Reverses Maternal Separation and Chronic Unpredictable Mild Stress-Generated Anxiety- and Depression-like Phenotypes by Modulating Gut Microbiome-Brain Activity in Rats. ACS Chem Neurosci 2022; 13:1948-1965. [PMID: 35735411 DOI: 10.1021/acschemneuro.2c00143] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Depression is a debilitating mental disorder that affects >322 million people worldwide. Despite the availability of several antidepressant agents, many patients remain treatment refractory. A growing literature study has indicated the role of gut microbiota in neuropsychiatric disorders. Herein, we examined the psychobiotic-like activity of multi-strain probiotic formulation in maternal separation (MS) and chronic unpredictable mild stress (CUMS) models of anxiety- and depression-like phenotypes in Sprague-Dawley rats. Early- and late-life stress was employed in both male and female rats by exposing them to MS and CUMS. The multi-strain probiotic formulation (Cognisol) containing Bacillus coagulans Unique IS-2, Lactobacillus plantarum UBLP-40, Lactobacillus rhamnosus UBLR-58, Bifidobacterium lactis UBBLa-70, Bifidobacterium breve UBBr-01, and Bifidobacterium infantis UBBI-01 at a total strength of 10 billion cfu along with l-glutamine was administered for 6 weeks via drinking water. Neurobehavioral assessment was done using the forced swim test (FST), sucrose preference test (SPT), elevated plus maze (EPM), and open field test (OFT). Animals were sacrificed after behavioral assessment, and blood, brain, and intestine samples were collected to analyze the levels of cytokines, metabolites, and neurotransmitters and histology. Animals exposed to stress showed increased passivity, consumed less sucrose solution, and minimally explored the open arms in the FST, SPT, and EPM, respectively. Administration of multi-strain probiotics along with l-glutamine for 6 weeks ameliorated the behavioral abnormalities. The locomotor activity of animals in the OFT and their body weight remained unchanged across the groups. Cognisol treatment reversed the decreased BDNF and serotonin levels and increased CRP, TNF-α, and dopamine levels in the hippocampus and/or frontal cortex. Administration of Cognisol also restored the plasma levels of l-tryptophan, l-kynurenine, kynurenic-acid, and 3-hydroxyanthranilic acid; the Firmicutes-to-Bacteroides ratio; the levels of acetate, propionate, and butyrate in fecal samples; the villi/crypt ratio; and the goblet cell count, which manifested in the restoration of intestinal functions. We suggest that the multi-strain probiotic and glutamine formulation (Cognisol) ameliorated the MS + UCMS-generated anxiety- and depression-like phenotypes by reshaping the gut microbiome-brain activity in both sexes.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Mani Surya Kumar Palepu
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srilakshmi Satti
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Yash Jaiswal
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Aditya A Singh
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Surya Prakash Dash
- Department of Biological Sciences, Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
20
|
Gardner W, Fuchs F, Durieux L, Bourgin P, Coenen VA, Döbrössy M, Lecourtier L. Slow Wave Sleep Deficits in the Flinders Sensitive Line Rodent Model of Depression: Effects of Medial Forebrain Bundle Deep-Brain Stimulation. Neuroscience 2022; 498:31-49. [PMID: 35750113 DOI: 10.1016/j.neuroscience.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
Major Depressive Disorder (MDD) is an affective disorder typically accompanied by sleep disturbances. Deep brain stimulation (DBS) of the medial forebrain bundle (MFB) is an emerging intervention for treatment-resistant depression, but its effect on sleep has not been closely examined. Here we aimed to characterise sleep deficits in the Flinders sensitive line, an established rodent model of depression, and investigate the consequences of MFB stimulation on sleep-related phenotypes. Rats were implanted with bilateral stimulation electrodes in the MFB, surface electrodes to record electrocorticography and electromyography for sleep scoring and electrodes within the prelimbic cortex, nucleus accumbens (NAc) and dorsal hippocampus. Recordings of sleep and oscillatory activity were conducted prior to and following twenty-four hours of MFB stimulation. Behavioural anti-depressant effects were monitored using the forced swim test. Previously unreported abnormalities in the Flinders sensitive line rats were observed during slow wave sleep, including decreased circadian amplitude of its rhythm, a reduction in slow wave activity and elevated gamma band oscillations. Previously established rapid eye movement sleep deficits were replicated. MFB stimulation had anti-depressant effects on behavioural phenotype, but did not significantly impact sleep architecture; it suppressed elevated gamma activity during slow wave sleep in the electrocorticogram and prelimbic cortex signals. Diverse abnormalities in Flinders sensitive line rats emphasise slow wave sleep as a state of dysfunction in affective disorders. MFB stimulation is able to affect behaviour and sleep physiology without influencing sleep architecture. Gamma modulation may represent a component of antidepressant mechanism.
Collapse
Affiliation(s)
- Wilf Gardner
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Faculty of Biology, Albert-Ludwigs-Universität-Freiburg, Freiburg, Germany; Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France
| | - Fanny Fuchs
- Inovarion, Paris, France; Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Strasbourg France
| | - Laura Durieux
- Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France
| | - Patrice Bourgin
- Institut des Neurosciences Cellulaires et Intégratives, University of Strasbourg, Strasbourg France; Centre des troubles du sommeil - CIRCSom, Strasbourg University Hospitals, Strasbourg, France
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Freiburg University, Freiburg, Germany
| | - Máté Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital of Freiburg University and Medical Faculty of Freiburg University, Germany; Faculty of Biology, Albert-Ludwigs-Universität-Freiburg, Freiburg, Germany; Dept of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Germany.
| | - Lucas Lecourtier
- Laboratoire de Neurosciences Cognitives et Adaptatives, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
21
|
Kumar G, Asthana P, Yung WH, Kwan KM, Tin C, Ma CHE. Deep Brain Stimulation of the Interposed Nucleus Reverses Motor Deficits and Stimulates Production of Anti-inflammatory Cytokines in Ataxia Mice. Mol Neurobiol 2022; 59:4578-4592. [PMID: 35581519 DOI: 10.1007/s12035-022-02872-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022]
Abstract
Cerebellum is one of the major targets of autoimmunity and cerebellar damage that leads to ataxia characterized by the loss of fine motor coordination and balance, with no treatment available. Deep brain stimulation (DBS) could be a promising treatment for ataxia but has not been extensively investigated. Here, our study aims to investigate the use of interposed nucleus of deep cerebellar nuclei (IN-DCN) for ataxia. We first characterized ataxia-related motor symptom of a Purkinje cell (PC)-specific LIM homeobox (Lhx)1 and Lhx5 conditional double knockout mice by motor coordination tests, and spontaneous electromyogram (EMG) recording. To validate IN-DCN as a target for DBS, in vivo local field potential (LFP) multielectrode array recording of IN-DCN revealed abnormal LFP amplitude surges in PCs. By synchronizing the EMG and IN-DCN recordings (neurospike and LFP) with high-speed video recordings, ataxia mice showed poorly coordinated movements associated with low EMG amplitude and aberrant IN-DCN neural firing. To optimize IN-DCN-DBS for ataxia, we tested DBS parameters from low (30 Hz) to high stimulation frequency (130 or 150 Hz), and systematically varied pulse width values (60 or 80 µs) to maximize motor symptom control in ataxia mice. The optimal IN-DCN-DBS parameter reversed motor deficits in ataxia mice as detected by animal behavioral tests and EMG recording. Mechanistically, cytokine array analysis revealed that anti-inflammatory cytokines such as interleukin (IL)-13 and IL-4 were upregulated after IN-DCN-DBS, which play key roles in neural excitability. As such, we show that IN-DCN-DBS is a promising treatment for ataxia and possibly other movement disorders alike.
Collapse
Affiliation(s)
- Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| | - Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| | - Wing Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Kin Ming Kwan
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Hong Kong, SAR, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China.
| |
Collapse
|
22
|
Kunugi H, Tikhonova M. Recent advances in understanding depressive disorder: Possible relevance to brain stimulation therapies. PROGRESS IN BRAIN RESEARCH 2022; 270:123-147. [PMID: 35396024 DOI: 10.1016/bs.pbr.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent research has provided novel insights into the major depressive disorder (MDD) and identified certain biomarkers of this disease. There are four main mechanisms playing a key role in the related pathophysiology, namely (1) monoamine systems dysfunction, (2) stress response, (3) neuroinflammation, and (4) neurotrophic factors alteration. Robust evidence on the decreased homovanillic acid in the cerebrospinal fluid (CSF) of patients with MDD supports a rationale for therapeutic stimulation of the medial forebrain bundle activating the dopamine reward system. Both activation and suppression of the hypothalamic-pituitary-adrenal (HPA) axis in MDD and related conditions indicate usefulness of its evaluation for the disease subtyping. Elevated proinflammatory cytokines (specifically, interleukin-6) in CSF imply the role of neuroinflammation resulting in activation of the tryptophan-kynurenine pathway. Finally, neuroplasticity and trophic effects of the brain-derived neurotrophic factor (BDNF) may be related to both structural abnormalities of the brain in MDD and the underlying mechanisms of various therapies. In addition, the gut-brain interaction is pivotal, since lack of beneficial microbes confer the risk of MDD through negative effects on the dopamine system, HPA axis, and vagal nerve. All these factors may be highly relevant to treatment of MDD with contemporary brain stimulation therapies.
Collapse
Affiliation(s)
- Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan.
| | - Maria Tikhonova
- Laboratory of the Experimental Models of Neurodegenerative Processes, Department of Experimental Neuroscience, Scientific Research Institute of Neurosciences and Medicine (SRINM), Novosibirsk, Russian Federation
| |
Collapse
|
23
|
Baysak E, Guden DS, Aricioglu F, Halaris A. C-reactive protein as a potential biomarker in psychiatric practice: Are we there yet? World J Biol Psychiatry 2022; 23:243-256. [PMID: 34323645 DOI: 10.1080/15622975.2021.1961502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Serum or plasma levels of C-reactive protein (CRP) and high-sensitivity CRP (hsCRP) are widely used clinical markers of inflammation in other branches of medicine, whereas its clinical use in psychiatry has been limited to research studies. We aimed to assess the possibility of using CRP/hsCRP in psychiatric practice. This is a review and evaluation of various lines of evidence supporting the concept of CRP as a biomarker for psychiatric disorders in certain conditions. METHODS We searched the literature for studies which assessed CRP/hsCRP levels in various psychiatric disorders. RESULTS The accumulating evidence from large studies and meta-analyses allows us to understand the role of CRP in major psychiatric disorders and increase our understanding of specific symptoms and subtypes of disorders. CRP may be considered a 'psychiatric biomarker' which can alert clinicians about neuroinflammation, adverse effects of medications, cardiometabolic status, co-morbidities, and may also predict clinical outcomes and guide optimal treatment.selection. CONCLUSION Although the underlying pathophysiological role of CRP and hsCRP is still elusive and the association between CRP and psychiatric disorders is inconsistent, CRP holds promise to become a psychiatric biomarker.
Collapse
Affiliation(s)
- Erensu Baysak
- Department of Psychiatry, Marmara University School of Medicine, Istanbul, Turkey
| | - Demet Sinem Guden
- Department of Basic and Clinical Pharmacology, Istinye University Faculty of Medicine, Istanbul, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, Marmara University School of Pharmacy, Istanbul, Turkey
| | - Angelos Halaris
- Department of Psychiatry and Behavioral Neurosciences, Loyola University Chicago, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| |
Collapse
|
24
|
Sun Z, Jia L, Shi D, He Y, Ren Y, Yang J, Ma X. Deep brain stimulation improved depressive-like behaviors and hippocampal synapse deficits by activating the BDNF/mTOR signaling pathway. Behav Brain Res 2022; 419:113709. [PMID: 34890598 DOI: 10.1016/j.bbr.2021.113709] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Our previous study demonstrated that acute deep brain stimulation (DBS) in the ventromedial prefrontal cortex (vmPFC) remarkably improved the depressive-like behaviors in a rat model of chronic unpredictable mild stress (CUS rats). However, the mechanisms by which chronic DBS altered depressive-like behaviors and reversed cognitive impairment have not been clarified. Recent work has shown that deficits in brain-derived neurotrophic factor (BDNF) and its downstream proteins, including mammalian target of rapamycin (mTOR), might be involved in the pathogenesis of depression. Therefore, we hypothesized that the antidepressant-like and cognitive improvement effects of DBS were achieved by activating the BDNF/mTOR pathway. CUS rats received vmPFC DBS at 20 Hz for 1 h once a day for 28 days. After four weeks of stimulation, the rats were assessed for the presence of depressive-like behaviors and euthanized to detect BDNF/mTOR signaling using immunoblots. DBS at the vmPFC significantly ameliorated depressive-like behaviors and spatial learning and memory deficits in the CUS rats. Furthermore, DBS restored the reduced synaptic density in the hippocampus induced by CUS and increased the expression or activity of BDNF, Akt, and mTOR in the hippocampus. Thus, the antidepressant-like effects and cognitive improvement produced by vmPFC DBS might be mediated through increased activity of the BDNF/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lina Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Dandan Shi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Yuen J, Rusheen AE, Price JB, Barath AS, Shin H, Kouzani AZ, Berk M, Blaha CD, Lee KH, Oh Y. Biomarkers for Deep Brain Stimulation in Animal Models of Depression. Neuromodulation 2022; 25:161-170. [PMID: 35125135 PMCID: PMC8655028 DOI: 10.1111/ner.13483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Despite recent advances in depression treatment, many patients still do not respond to serial conventional therapies and are considered "treatment resistant." Deep brain stimulation (DBS) has therapeutic potential in this context. This comprehensive review of recent studies of DBS for depression in animal models identifies potential biomarkers for improving therapeutic efficacy and predictability of conventional DBS to aid future development of closed-loop control of DBS systems. MATERIALS AND METHODS A systematic search was performed in Pubmed, EMBASE, and Cochrane Review using relevant keywords. Overall, 56 animal studies satisfied the inclusion criteria. RESULTS Outcomes were divided into biochemical/physiological, electrophysiological, and behavioral categories. Promising biomarkers include biochemical assays (in particular, microdialysis and electrochemical measurements), which provide real-time results in awake animals. Electrophysiological tests, showing changes at both the target site and downstream structures, also revealed characteristic changes at several anatomic targets (such as the medial prefrontal cortex and locus coeruleus). However, the substantial range of models and DBS targets limits the ability to draw generalizable conclusions in animal behavioral models. CONCLUSIONS Overall, DBS is a promising therapeutic modality for treatment-resistant depression. Different outcomes have been used to assess its efficacy in animal studies. From the review, electrophysiological and biochemical markers appear to offer the greatest potential as biomarkers for depression. However, to develop closed-loop DBS for depression, additional preclinical and clinical studies with a focus on identifying reliable, safe, and effective biomarkers are warranted.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Medical Scientist Training Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
26
|
Elemery M, Kiss S, Dome P, Pogany L, Faludi G, Lazary J. Change of Circulating Vascular Endothelial Growth Factor Level and Reduction of Anhedonia Are Associated in Patients With Major Depressive Disorder Treated With Repetitive Transcranial Magnetic Stimulation. Front Psychiatry 2022; 13:806731. [PMID: 35711587 PMCID: PMC9193814 DOI: 10.3389/fpsyt.2022.806731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/27/2022] [Indexed: 12/27/2022] Open
Abstract
AIM Vascular endothelial growth factor (VEGF) has been implicated in mediating the effect of antidepressant therapies as it plays a significant role in the neurogenesis. Anhedonia, an endophenotype of major depressive disorder (MDD), is related to the dorsolateral prefrontal cortex, the major focus of brain stimulation in MDD. The aim of our study was to analyze the change of serum VEGF level after rTMS treatment in association with anhedonia. MATERIALS AND METHODS A dataset of 17 patients with TRD who were treated with antidepressants and bilateral rTMS for 2 × 5 days was analyzed. Depression was measured by the Montgomery-Asberg Depression Scale (MADRS) and anhedonia by the Snaith-Hamilton Pleasure Scale (SHAPS) for monitoring the symptom changes. The serum VEGF levels and symptoms were assessed on the first (V1), on the 14th (V2), and on the 28th day (V3). The level of VEGF was measured by ELISA assay. RESULTS There was no significant association between MADRS scores and serum VEGF levels at any timepoint. The decrease in the SHAPS score was significantly associated with the increase in VEGF level between V1 and V2 (p = 0.001). The VEGF levels were significantly higher in non-responders than in responders (p = 0.04). The baseline VEGF level has been proven as a significant predictor of treatment response (p = 0.045). CONCLUSION Our results suggest that serum VEGF can be sensitive to the changes of anhedonia during rTMS treatment. Considering that the most widely used depression scales are not applicable for the assessment of anhedonia, measurement of anhedonia in rTMS treatment studies of patients with TRD can be suggested as more appropriate data on distinct pathogenic pathways and specific biomarkers of the disorder.
Collapse
Affiliation(s)
- Monika Elemery
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Szilvia Kiss
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Peter Dome
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary.,Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Laszlo Pogany
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Gabor Faludi
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Judit Lazary
- János Szentágothai Neuroscience Doctoral School, Semmelweis University, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| |
Collapse
|
27
|
Deep brain stimulation of the "medial forebrain bundle": a strategy to modulate the reward system and manage treatment-resistant depression. Mol Psychiatry 2022; 27:574-592. [PMID: 33903731 DOI: 10.1038/s41380-021-01100-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/21/2021] [Accepted: 04/01/2021] [Indexed: 02/02/2023]
Abstract
The medial forebrain bundle-a white matter pathway projecting from the ventral tegmental area-is a structure that has been under a lot of scrutinies recently due to its implications in the modulation of certain affective disorders such as major depression. In the following, we will discuss major depression in the context of being a disorder dependent on multiple relevant networks, the pathological performance of which is responsible for the manifestation of various symptoms of the disease which extend into emotional, motivational, physiological, and also cognitive domains of daily living. We will focus on the reward system, an evolutionarily conserved pathway whose underperformance leads to anhedonia and lack of motivation, which are key traits in depression. In the field of deep brain stimulation (DBS), different "hypothesis-driven" targets have been chosen as the subject of clinical trials on efficacy in the treatment-resistant depressed patient. The "medial forebrain bundle" is one such target for DBS, and has had remarkably rapid success in alleviating depressive symptoms, improving anhedonia and motivation. We will review what we have learned from pre-clinical animal studies on defining this white matter tract, its connectivity, and the complex molecular (i.e., neurotransmitter) mechanisms by which its modulation exerts its effects. Imaging studies in the form of tractographic depictions have elucidated its presence in the human brain. Such has led to ongoing clinical trials of DBS targeting this pathway to assess efficacy, which is promising yet still lack in sufficient numbers. Ultimately, one must confirm the mechanism of action and validate proof of antidepressant effect in order to have such treatment become mainstream, to promote widespread improvement in the quality of life of suffering patients.
Collapse
|
28
|
Nascimento F, Diaz AP, Sanches M, Fenoy AJ, Soares JC, Quevedo J. Concomitant deep brain stimulation and vagus nerve stimulation for treatment-resistant depression: a case report. BRAZILIAN JOURNAL OF PSYCHIATRY 2021; 43:679-680. [PMID: 34878002 PMCID: PMC8639022 DOI: 10.1590/1516-4446-2021-0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022]
Affiliation(s)
- Flavio Nascimento
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Alexandre Paim Diaz
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Marsal Sanches
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Jair C Soares
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Joao Quevedo
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
29
|
Dandekar MP, Diaz AP, Rahman Z, Silva RH, Nahas Z, Aaronson S, Selvaraj S, Fenoy AJ, Sanches M, Soares JC, Riva-Posse P, Quevedo J. A narrative review on invasive brain stimulation for treatment-resistant depression. ACTA ACUST UNITED AC 2021; 44:317-330. [PMID: 34468549 PMCID: PMC9169472 DOI: 10.1590/1516-4446-2021-1874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/22/2021] [Indexed: 12/20/2022]
Abstract
While most patients with depression respond to pharmacotherapy and psychotherapy, about one-third will present treatment resistance to these interventions. For patients with treatment-resistant depression (TRD), invasive neurostimulation therapies such as vagus nerve stimulation, deep brain stimulation, and epidural cortical stimulation may be considered. We performed a narrative review of the published literature to identify papers discussing clinical studies with invasive neurostimulation therapies for TRD. After a database search and title and abstract screening, relevant English-language articles were analyzed. Vagus nerve stimulation, approved by the U.S. Food and Drug Administration as a TRD treatment, may take several months to show therapeutic benefits, and the average response rate varies from 15.2-83%. Deep brain stimulation studies have shown encouraging results, including rapid response rates (> 30%), despite conflicting findings from randomized controlled trials. Several brain regions, such as the subcallosal-cingulate gyrus, nucleus accumbens, ventral capsule/ventral striatum, anterior limb of the internal capsule, medial-forebrain bundle, lateral habenula, inferior-thalamic peduncle, and the bed-nucleus of the stria terminalis have been identified as key targets for TRD management. Epidural cortical stimulation, an invasive intervention with few reported cases, showed positive results (40-60% response), although more extensive trials are needed to confirm its potential in patients with TRD.
Collapse
Affiliation(s)
- Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Alexandre P Diaz
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Ritele H Silva
- Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil
| | - Ziad Nahas
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Scott Aaronson
- Clinical Research Programs, Sheppard Pratt Health System, Baltimore, MD, USA
| | - Sudhakar Selvaraj
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Albert J Fenoy
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Deep Brain Stimulation Program, Department of Neurosurgery, McGovern Medical School, UTHealth, Houston, TX, USA
| | - Marsal Sanches
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Patricio Riva-Posse
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Joao Quevedo
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.,Laboratório de Psiquiatria Translacional, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, SC, Brazil.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, UTHealth, Houston, TX, USA
| |
Collapse
|
30
|
Kubelt C, Molkewehrum H, Lucius R, Synowitz M, Held-Feindt J, Helmers AK. Influence of Simulated Deep Brain Stimulation on the Expression of Inflammatory Mediators by Human Central Nervous System Cells In Vitro. Neuromolecular Med 2021; 24:169-182. [PMID: 34216357 PMCID: PMC9117383 DOI: 10.1007/s12017-021-08674-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
Deep brain stimulation (DBS) seems to modulate inflammatory processes. Whether this modulation leads to an induction or suppression of inflammatory mediators is still controversially discussed. Most studies of the influence of electrical stimulation on inflammation were conducted in rodent models with direct current stimulation and/or long impulses, both of which differ from the pattern in DBS. This makes comparisons with the clinical condition difficult. We established an in-vitro model that simulated clinical stimulation patterns to investigate the influence of electrical stimulation on proliferation and survival of human astroglial cells, microglia, and differentiated neurons. We also examined its influence on the expression of the inflammatory mediators C-X-C motif chemokine (CXCL)12, CXCL16, CC-chemokin-ligand-2 (CCL)2, CCL20, and interleukin (IL)-1β and IL-6 by these cells using quantitative polymerase chain reaction. In addition, protein expression was assessed by immunofluorescence double staining. In our model, electrical stimulation did not affect proliferation or survival of the examined cell lines. There was a significant upregulation of CXCL12 in the astrocyte cell line SVGA, and of IL-1β in differentiated SH-SY5Y neuronal cells at both messenger RNA and protein levels. Our model allowed a valid examination of chemokines and cytokines associated with inflammation in human brain cells. With it, we detected the induction of inflammatory mediators by electrical stimulation in astrocytes and neurons.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Henri Molkewehrum
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ralph Lucius
- Department of Anatomy, University of Kiel, 24118, Kiel, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany
| | - Ann-Kristin Helmers
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, Arnold-Heller-Str. 3, House D, 24105, Kiel, Germany.
| |
Collapse
|
31
|
Zhang Y, Zhang X, Liu N, Ren S, Xia C, Yang X, Lou Y, Wang H, Zhang N, Yan X, Zhang Z, Zhang Y, Wang Z, Chen N. Comparative Proteomic Characterization of Ventral Hippocampus in Susceptible and Resilient Rats Subjected to Chronic Unpredictable Stress. Front Neurosci 2021; 15:675430. [PMID: 34220431 PMCID: PMC8249003 DOI: 10.3389/fnins.2021.675430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic stress is an essential factor leading to depression. However, there exist individual differences in people exposed to the same stressful stimuli. Some people display negative psychology and behavior, while others are normal. Given the importance of individual difference, finding differentially expressed proteins in stress-resistant and stress-susceptible groups has great significance for the study of pathogenesis and treatment of depression. In this study, stress-susceptible rats and stress-resilient rats were first distinguished by sucrose preference test. These stress-susceptible rats also displayed depression-like behaviors in forced swimming test and open field test. Then, we employed label-free quantitative proteomics to analyze proteins in the ventral hippocampus. There were 4,848 proteins totally identified. Based on statistical analysis, we found 276 differentially expressed proteins. Bioinformatics analysis revealed that the biological processes of these differential proteins were related to mitochondrion organization, protein localization, coenzyme metabolic process, cerebral cortex tangential migration, vesicle-mediated transport, and so on. The KEGG pathways were mainly involved in metabolic pathways, axon guidance, autophagy, and tight junction. Furthermore, we ultimately found 20 stress-susceptible proteins and two stress-resilient proteins. These stress-related proteins could not only be potential biomarkers for depression diagnosis but also contribute to finding new therapeutic targets and providing personalized medicine.
Collapse
Affiliation(s)
- Yani Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Clinical Pharmacology and Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoling Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nuo Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyu Ren
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Congyuan Xia
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxia Lou
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiqin Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ningning Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Yan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenzhen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naihong Chen
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy Medical Sciences and Peking Union Medical College, Beijing, China.,Institute of Clinical Pharmacology and Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
32
|
Wijeratne T, Sales C. Understanding Why Post-Stroke Depression May Be the Norm Rather Than the Exception: The Anatomical and Neuroinflammatory Correlates of Post-Stroke Depression. J Clin Med 2021; 10:jcm10081674. [PMID: 33919670 PMCID: PMC8069768 DOI: 10.3390/jcm10081674] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic Stroke precedes depression. Post-stroke depression (PSD) is a major driver for poor recovery, negative quality of life, poor rehabilitation outcomes and poor functional ability. In this systematic review, we analysed the inflammatory basis of post-stroke depression, which involves bioenergetic failure, deranged iron homeostasis (calcium influx, Na influx, potassium efflux etc), excitotoxicity, acidotoxicity, disruption of the blood brain barrier, cytokine-mediated cytotoxicity, reactive oxygen mediated toxicity, activation of cyclooxygenase pathway and generation of toxic products. This process subsequently results in cell death, maladapted, persistent neuro-inflammation and deranged neuronal networks in mood-related brain regions. Furthermore, an in-depth review likewise reveals that anatomic structures related to post-stroke depression may be localized to complex circuitries involving the cortical and subcortical regions.
Collapse
Affiliation(s)
- Tissa Wijeratne
- School of Psychology and Public Health, La Trobe University, Melbourne 3000, Australia
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
- Department of Medicine, Faculty of Medicine, University of Rajarata, Saliyapura, Anuradhapura 50000, Sri Lanka
- Correspondence:
| | - Carmela Sales
- Department of Neurology, Western Health & University Melbourne, AIMSS, Level Three, WHCRE, Sunshine Hospital, St Albans 3021, Australia;
| |
Collapse
|
33
|
Kaur M, Sanches M. Experimental Therapeutics in Treatment-Resistant Major Depressive Disorder. J Exp Pharmacol 2021; 13:181-196. [PMID: 33658867 PMCID: PMC7917305 DOI: 10.2147/jep.s259302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Treatment-Resistant Depression (TRD) patients remain a challenging sub-division of patients with Major Depressive Disorder (MDD) in day to day clinical practice. As with any diagnostic condition, comprehensive evaluation, exclusion of other psychiatric conditions, assessment of co-morbid medical and psychiatric illnesses and psychosocial stressors are the keys to appropriate diagnosis and subsequent management. There are various management options available for the treatment of MDD, however, about 30% of the patients fail to achieve full remission of symptoms despite multiple trials and belong to this sub-category of MDD. This article brings forth discussion of other non-conventional medication and non-medication treatment alternatives that merit exploration of their efficacy in TRD. Many of the proposed novel medications and other treatment modalities such as Deep Brain Stimulation, exercise, yoga are already used for other medical and psychiatric disorders and have some evidence suggesting their potential benefits in TRD in conjunction with conventional medications or even as monotherapy. Nevertheless, more research is needed in this direction to establish effectiveness.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Behavioral Medicine, Cone Health, Greensboro, NC, USA
| | - Marsal Sanches
- UT Health Center of Excellence on Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, McGovern Medical School, Houston, TX, USA
| |
Collapse
|
34
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Brain stimulation rewarding experience attenuates neonatal clomipramine-induced adulthood anxiety by reversal of pathological changes in the amygdala. Prog Neuropsychopharmacol Biol Psychiatry 2020; 103:110000. [PMID: 32512130 DOI: 10.1016/j.pnpbp.2020.110000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/04/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD) is associated with enhanced anxiety and reduced reward processing leading to impaired cognitive flexibility. These pathological changes during depression are accompanied by dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its impaired regulation by the amygdala. Notably, the electrical stimulation of brain reward areas produces an antidepressant effect in both MDD patients and animal models of depression. However, the effects of chronic electrical self-stimulation of lateral hypothalamus - medial forebrain bundle (LH-MFB) on depression-associated anxiety and accompanying changes in plasma corticosterone levels, structural, and neurochemical alterations in the amygdala are unknown. Here, we used the neonatal clomipramine (CLI) model of depression. During adulthood, neonatal CLI and vehicle administered rats were subjected to bilateral electrode implantation at LH-MFB and trained to receive intracranial self-stimulation (ICSS) for 14 days. Rats were then tested for anhedonic and anxiety-like behaviors, followed by estimation of plasma corticosterone levels, assessment of amygdalar volumes and neuronal/glial numbers, levels of monoamines and their metabolites in the amygdala. We found that chronic ICSS of LH-MFB reverses CLI-induced anhedonia and anxiety. Interestingly, amelioration of CLI-induced enhanced anhedonia and anxiety in ICSS rats was associated with partial reversal of enhanced plasma corticosterone levels, hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. We suggest that beneficial effects of ICSS on CLI-induced anxiety at least in part mediated by the restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that brain stimulation rewarding experience might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru 560 029, India.
| |
Collapse
|
35
|
Döbrössy MD, Ramanathan C, Ashouri Vajari D, Tong Y, Schlaepfer T, Coenen VA. Neuromodulation in Psychiatric disorders: Experimental and Clinical evidence for reward and motivation network Deep Brain Stimulation: Focus on the medial forebrain bundle. Eur J Neurosci 2020; 53:89-113. [PMID: 32931064 DOI: 10.1111/ejn.14975] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/24/2020] [Accepted: 08/27/2020] [Indexed: 12/28/2022]
Abstract
Deep brain stimulation (DBS) in psychiatric illnesses has been clinically tested over the past 20 years. The clinical application of DBS to the superolateral branch of the medial forebrain bundle in treatment-resistant depressed patients-one of several targets under investigation-has shown to be promising in a number of uncontrolled open label trials. However, there are remain numerous questions that need to be investigated to understand and optimize the clinical use of DBS in depression, including, for example, the relationship between the symptoms, the biological substrates/projections and the stimulation itself. In the context of precision and customized medicine, the current paper focuses on clinical and experimental research of medial forebrain bundle DBS in depression or in animal models of depression, demonstrating how clinical and scientific progress can work in tandem to test the therapeutic value and investigate the mechanisms of this experimental treatment. As one of the hypotheses is that depression engenders changes in the reward and motivational networks, the review looks at how stimulation of the medial forebrain bundle impacts the dopaminergic system.
Collapse
Affiliation(s)
- Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany
| | - Chockalingam Ramanathan
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Danesh Ashouri Vajari
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Yixin Tong
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| | - Thomas Schlaepfer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Interventional Biological Psychiatry, University Hospital Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.,Center for Basics in Neuromodulation, Freiburg University, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Perrin AJ, Pariante CM. Endocrine and immune effects of non-convulsive neurostimulation in depression: A systematic review. Brain Behav Immun 2020; 87:910-920. [PMID: 32126288 DOI: 10.1016/j.bbi.2020.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Non-convulsive neurostimulation is a rapidly-developing alternative to traditional treatment approaches in depression. Modalities such as repetitive Transcranial Magnetic Stimulation (rTMS), transcranial Direct Current Stimulation (tDCS), Vagal Nerve Stimulation (VNS) and Deep Brain Stimulation (DBS) are now recognized as potential treatments. How non-convulsive neurostimulation interventions impact the neurohormonal and neuroimmune changes that accompany depression remains relatively unknown. If this type of intervention can drive endocrine, immune, as well symptom changes in depression, non-convulsive neurostimulation may represent a viable, multi-faceted treatment approach in depression. We were therefore interested to understand the state of the literature in this developing area. METHODS A systematic review of all studies that examined the impact of non-convulsive neurostimulation interventions on the hypothalamic-pituitary-adrenal (HPA) axis and immune function in the form of cytokine production in depression. RESULTS We identified 15 human studies, 9 that examined rTMS, 2 that examined tDCS, 2 that examined VNS and 2 that examined electroacupuncture. 11 animal studies were also identified, 3 that examined rTMS, 2 that examined DBS and 6 that examined electroacupuncture. All types of non-convulsive neurostimulation were able to revert the increases in cortisol, ACTH and other components of the HPA axis that are seen in depressed patients, as well as to modulate the levels of key cytokines known to be up-regulated in depression, such as IL-1β, IL-6 and TNF-α. Changes in the HPA axis and levels of cytokines in response to non-convulsive neurostimulation often did not correlate with change in depressive symptoms. Most studies were not controlled trials and thus, significant methodologic variability existed. Furthermore, many human studies lacked a sham stimulation comparator arm. We were unable to conduct relevant meta-analyses due to the design heterogeneities, heterogeneity in the reported outcome measures and the limited number of studies retrieved. Animal studies generally supported the findings of those in human, but again, significant variability in methodology and study design were evident. CONCLUSIONS Non-convulsive neurostimulation interventions show promise in their ability to alter the endocrine and immune disturbances that accompany depression. Further research, which includes blinded, sham-controlled comparator designs is required.
Collapse
Affiliation(s)
- Andrew J Perrin
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 9RT, United Kingdom; Clinician Investigator Program and Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver V5Z 3X7, Canada.
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, SE5 9RT, United Kingdom
| |
Collapse
|
37
|
Wu C, Lu J, Lu S, Huang M, Xu Y. Increased ratio of mature BDNF to precursor-BDNF in patients with major depressive disorder with severe anhedonia. J Psychiatr Res 2020; 126:92-97. [PMID: 32428748 DOI: 10.1016/j.jpsychires.2020.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Although studies have shown that severe anhedonia in patients with major depressive disorder (MDD) is associated with poor treatment outcomes, the biological mechanism of this feature is unclear. The aim of this study was to investigate the dysfunction of brain-derived neurotrophic factor (BDNF) metabolism, measured by the ratio of mature BDNF to precursor-BDNF, in MDD patients with severe anhedonia. METHODS We measured plasma levels of mature BDNF (mBDNF), precursor-BDNF (proBDNF), tissue plasminogen activator (tPA) and tropomyosin-related kinase B (trkB) in outpatients with MDD with anhedonia (n = 26), outpatients with MDD without anhedonia (n = 29) and age- and sex-matched healthy controls (HCs, n = 38) by enzyme-linked immunosorbent assay kits, and we calculated the ratio of mBDNF to proBDNF (M/P). We compared these biological determinants among the three groups and explored the interrelationships between anhedonia severity and BDNF metabolism. RESULTS The levels of mBDNF, proBDNF, and tPA and the ratio of M/P were identified with highly significant differences among the three groups. Compared with MDD patients without anhedonia and healthy controls, MDD patients with anhedonia showed higher level of the ratio of M/P, and it was positively associated with the SHAPS scores in MDD patients. Compared to healthy controls, the plasma tPA concentrations were higher in MDD patients with anhedonia but were not different from those in MDD patients without anhedonia. CONCLUSION These results provide novel evidence regarding the relationship between anhedonia and plasma BDNF metabolism. The hypermetabolism of BDNF may be a function of anhedonia rather than other characteristics in MDD.
Collapse
Affiliation(s)
- Congchong Wu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Shaojia Lu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| | - Yi Xu
- Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Mental Disorder's Management of Zhejiang Province, Hangzhou, China; Brain Research Institute of Zhejiang University, Hangzhou, China.
| |
Collapse
|
38
|
Troyan AS, Levada OA. The Diagnostic Value of the Combination of Serum Brain-Derived Neurotrophic Factor and Insulin-Like Growth Factor-1 for Major Depressive Disorder Diagnosis and Treatment Efficacy. Front Psychiatry 2020; 11:800. [PMID: 32922315 PMCID: PMC7457028 DOI: 10.3389/fpsyt.2020.00800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/24/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Last decades of psychiatric investigations have been marked by a search for biological markers that can clarify etiology and pathogenesis, confirm the diagnosis, screen individuals at risk, define the severity, and predict the course of mental disorders. In our study, we aimed to evaluate if BDNF and IGF-1 serum concentrations separately and in combination might be used as biomarkers for major depressive disorder (MDD) diagnosis and treatment efficacy and to evaluate the relationships among those proteins and clinical parameters of MDD. METHODS Forty-one MDD patients (according to DSM-5) and 32 healthy controls (HC) were included in this study. BDNF and IGF-1 serum concentrations, psychopathological (MADRS, CGI) and neuropsychological parameters (PDQ-5, RAVLT, TMT-B, DSST), functioning according to Sheehan Disability Scale were analyzed in all subjects at admission and 30 MDD patients after 8 weeks of vortioxetine treatment. Correlational analyses were performed to explore relationships between BDNF and IGF-1 and clinical characteristics. AUC-ROCs were calculated to determine if the value of serum BDNF and IGF-1 levels could serve for MDD diagnosis. RESULTS MDD patients had significantly lower serum BDNF (727.6 ± 87.9 pg/ml vs. 853.0 ± 93.9 pg/ml) and higher serum IGF-1 levels (289.15 ± 125.3 ng/ml vs. 170.2 ± 58.2 ng/ml) compared to HC. Significant correlations were obtained between BDNF levels and MDD status, depressive episode (DE) severity, precipitating factors, executive functions disruption (TMT-B, RAVLT immediate recall scores) and all subdomains of functioning. As for IGF-1, correlations were found between IGF-1 level and MDD status, DE severity, number and duration of DE, parameters of subjective and objective cognitive functioning (PDQ-5, RAVLT, TMT-B, DSST scores), and all subdomains of functioning. The associations between IGF-1 concentrations and cognitive tests' performance were stronger than those of BDNF. Separately both BDNF and IGF-1 demonstrated good discriminating ability for MDD diagnosis with AUC of 0.840 and 0.824, respectively. However, the combination of those neurotrophins had excellent diagnostic power to discriminate MDD patients from HC, providing an AUC of 0.916. Vortioxetine treatment significantly increased BDNF and attenuated IGF-1 serum concentrations, improved all psychopathological and neuropsychological parameters and functioning. CONCLUSIONS The combination of IGF-1 and BDNF might be considered as a diagnostic combination for MDD.
Collapse
Affiliation(s)
- Alexandra S Troyan
- Psychiatry Course, State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", Zaporizhzhia, Ukraine
| | - Oleg A Levada
- Psychiatry Course, State Institution "Zaporizhzhia Medical Academy of Postgraduate Education Ministry of Health of Ukraine", Zaporizhzhia, Ukraine
| |
Collapse
|