1
|
Mincheva G, Felipo V, Moreno-Manzano V, Benítez-Páez A, Llansola M. Extracellular vesicles from mesenchymal stem cells alter gut microbiota and improve neuroinflammation and motor impairment in rats with mild liver damage. Neurotherapeutics 2024:e00445. [PMID: 39242290 DOI: 10.1016/j.neurot.2024.e00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Gut microbiota perturbation and motor dysfunction have been reported in steatosis patients. Rats with mild liver damage (MLD) show motor dysfunction mediated by neuroinflammation and altered GABAergic neurotransmission in the cerebellum. The extracellular vesicles (EV) from mesenchymal stem cells (MSC) have emerged as a promising therapeutic proxy whose molecular basis relies partly upon TGFβ action. This study aimed to assess if MSC-EVs improve motor dysfunction in rats with mild liver damage and analyze underlying mechanisms, including the role of TGFβ, cerebellar neuroinflammation and gut microbiota. MLD in rats was induced by carbon tetrachloride administration and EVs from normal (C-EVs) or TGFβ-siRNA treated MSCs (T-EV) were injected. Motor coordination, locomotor gait, neuroinflammation and TNF-α-activated pathways modulating GABAergic neurotransmission in the cerebellum, microbiota composition in feces and microbial-derived metabolites in plasma were analyzed. C-EVs reduced glial and TNFα-P2X4-BDNF-TrkB pathway activation restoring GABAergic neurotransmission in the cerebellum and improving motor coordination and all the altered gait parameters. T-EVs also improved motor coordination and some gait parameters, but the mechanisms involved differed from those of C-EVs. MLD rats showed increased content of some Bacteroides species in feces, correlating with decreased kynurenine aside from motor alterations. These alterations were all normalized by C-EVs, whereas T-EVs only restored kynurenine levels. Our results support the value of MSC-EVs on improving motor dysfunction in MLD and unveil a possible mechanism by which altered microbiota may contribute to neuroinflammation and motor impairment. Some of the underlying mechanisms are TGFβ-dependent.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Alfonso Benítez-Páez
- Host-Microbe Interactions in Metabolic Health Laboratory, Centro de Investigación Principe Felipe, Valencia, Spain; Microbiome, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC). Paterna-Valencia, Spain..
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
2
|
Milewski K, Orzeł-Gajowik K, Zielińska M. Mitochondrial Changes in Rat Brain Endothelial Cells Associated with Hepatic Encephalopathy: Relation to the Blood-Brain Barrier Dysfunction. Neurochem Res 2024; 49:1489-1504. [PMID: 35917006 PMCID: PMC11106209 DOI: 10.1007/s11064-022-03698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/17/2022] [Accepted: 07/14/2022] [Indexed: 12/06/2022]
Abstract
The mechanisms underlying cerebral vascular dysfunction and edema during hepatic encephalopathy (HE) are unclear. Blood-brain barrier (BBB) impairment, resulting from increased vascular permeability, has been reported in acute and chronic HE. Mitochondrial dysfunction is a well-documented result of HE mainly affecting astrocytes, but much less so in the BBB-forming endothelial cells. Here we review literature reports and own experimental data obtained in HE models emphasizing alterations in mitochondrial dynamics and function as a possible contributor to the status of brain endothelial cell mitochondria in HE. Own studies on the expression of the mitochondrial fusion-fission controlling genes rendered HE animal model-dependent effects: increase of mitochondrial fusion controlling genes opa1, mfn1 in cerebral vessels in ammonium acetate-induced hyperammonemia, but a decrease of the two former genes and increase of fis1 in vessels in thioacetamide-induced HE. In endothelial cell line (RBE4) after 24 h ammonia and/or TNFα treatment, conditions mimicking crucial aspects of HE in vivo, we observed altered expression of mitochondrial fission/fusion genes: a decrease of opa1, mfn1, and, increase of the fission related fis1 gene. The effect in vitro was paralleled by the generation of reactive oxygen species, decreased total antioxidant capacity, decreased mitochondrial membrane potential, as well as increased permeability of RBE4 cell monolayer to fluorescein isothiocyanate dextran. Electron microscopy documented enlarged mitochondria in the brain endothelial cells of rats in both in vivo models. Collectively, the here observed alterations of cerebral endothelial mitochondria are indicative of their fission, and decreased potential of endothelial mitochondria are likely to contribute to BBB dysfunction in HE.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| | - Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
3
|
Wang Y, Li Y, Lv L, Zhu L, Hong L, Wang X, Zhang Y, Wang X, Diao H. Faecal hsa-miR-7704 inhibits the growth and adhesion of Bifidobacterium longum by suppressing ProB and aggravates hepatic encephalopathy. NPJ Biofilms Microbiomes 2024; 10:13. [PMID: 38396001 PMCID: PMC10891095 DOI: 10.1038/s41522-024-00487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Both gut microbiome and microRNAs (miRNAs) play a role in the development of hepatic encephalopathy (HE). However, the functional link between the microbiome and host-derived miRNAs in faeces remains poorly understood. In the present study, patients with HE had an altered gut microbiome and faecal miRNAs compared with patients with chronic hepatitis B. Transferring faeces and faecal miRNAs from patients with HE to the recipient mice aggravated thioacetamide-induced HE. Oral gavage of hsa-miR-7704, a host-derived miRNA highly enriched in faeces from patients with HE, aggravated HE in mice in a microbiome-dependent manner. Mechanistically, hsa-miR-7704 inhibited the growth and adhesion of Bifidobacterium longum by suppressing proB. B. longum and its metabolite acetate alleviated HE by inhibiting microglial activation and ammonia production. Our findings reveal the role of miRNA-microbiome axis in HE and suggest that faecal hsa-miR-7704 are potential regulators of HE progression.
Collapse
Affiliation(s)
- Yuchong Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yuyu Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong Province, China
| | - Yu Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Orzeł-Gajowik K, Milewski K, Zielińska M. miRNA-ome plasma analysis unveils changes in blood-brain barrier integrity associated with acute liver failure in rats. Fluids Barriers CNS 2023; 20:92. [PMID: 38066639 PMCID: PMC10709860 DOI: 10.1186/s12987-023-00484-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Hepatic encephalopathy (HE) symptoms associated with liver insufficiency are linked to the neurotoxic effects of ammonia and other toxic metabolites reaching the brain via the blood-brain barrier (BBB), further aggravated by the inflammatory response. Cumulative evidence documents that the non-coding single-stranded RNAs, micro RNAs (miRs) control the BBB functioning. However, miRs' involvement in BBB breakdown in HE is still underexplored. Here, we hypothesized that in rats with acute liver failure (ALF) or rats subjected to hyperammonemia, altered circulating miRs affect BBB composing proteins. METHODS Transmission electron microscopy was employed to delineate structural alterations of the BBB in rats with ALF (thioacetamide (TAA) intraperitoneal (ip.) administration) or hyperammonemia (ammonium acetate (OA) ip. administration). The BBB permeability was determined with Evans blue dye and sodium fluorescein assay. Plasma MiRs were profiled by Next Generation Sequencing (NGS), followed by in silico analysis. Selected miRs, verified by qRT-PCR, were examined in cultured rat brain endothelial cells. Targeted protein alterations were elucidated with immunofluorescence, western blotting, and, after selected miR mimics transfection, through an in vitro resistance measurement. RESULTS Changes in BBB structure and increased permeability were observed in the prefrontal cortex of TAA rats but not in the brains of OA rats. The NGS results revealed divergently changed miRNA-ome in the plasma of both rat models. The in silico analysis led to the selection of miR-122-5p and miR-183-5p with their target genes occludin and integrin β1, respectively, as potential contributors to BBB alterations. Both proteins were reduced in isolated brain vessels and cortical homogenates in TAA rats. We documented in cultured primary brain endothelial cells that ammonia alone and, in combination with TNFα increases the relative expression of NGS-selected miRs with a less pronounced effect of TNFα when added alone. The in vitro study also confirmed miR-122-5p-dependent decrease in occludin and miR-183-5p-related reduction in integrin β1 expression. CONCLUSION This work identified, to our knowledge for the first time, potential functional links between alterations in miRs residing in brain endothelium and BBB dysfunction in ALF.
Collapse
Affiliation(s)
- Karolina Orzeł-Gajowik
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
| | - Krzysztof Milewski
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura St. 3, 02-093, Warsaw, Poland
| | - Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego St. 5, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Vairappan B, Wright G, M S, Ravikumar TS. Candesartan cilexetil ameliorates NOSTRIN-NO dependent portal hypertension in cirrhosis and ACLF. Eur J Pharmacol 2023; 958:176010. [PMID: 37634841 DOI: 10.1016/j.ejphar.2023.176010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/29/2023]
Abstract
In decompensated cirrhosis, the severity of portal hypertension (PHT) is associated with increased hepatic endothelial nitric oxide synthase (eNOS) trafficking inducer (Nostrin), but the mechanism remains unclear. AIM: To investigate: (1) Whether in cirrhosis-PHT models, ± superimposed inflammation to mimic acute-on-chronic liver failure (ACLF) modulates hepatic nitric oxide synthase trafficking inducer (NOSTRIN) expression, nitric oxide (NO) synthesis, and/or endothelial dysfunction (ED); and (2) Whether the "angiotensin II type 1 receptor blocker" candesartan cilexetil (CC) affects this pathway. CD-1 mice received intraperitoneal carbon tetrachloride injections (CCl4 15% v/v in corn oil, 0.5 mL/kg) twice weekly for 12 wk to induce cirrhosis. After 12 wk, mice were randomized to receive 2-wk oral administration of CC (8 mg/kg) ± LPS. At sacrifice, plasma (biochemical indicators, cytokines, and angiotensin II) and liver tissues (histopathology, Sirius-red stains, and molecular studies) were analysed. Moreover, Nostrin gene knockdown was tested in human umbilical vein endothelial cells (HUVECs). When compared to naïve animals, CCl4-treated animals showed markedly elevated hepatic Nostrin expression (P < 0.0001), while hepatic peNOS expression (measure of eNOS activity) was significantly reduced (P < 0.05). LPS challenge further increased Nostrin and reduced peNOS expression (P < 0.05 for both) in cirrhotic animals. Portal pressure and subsequent hepatic vascular resistance were also increased in all cirrhotic animals following LPS challenge. In CCl4 ± LPS-treated animals, CC treatment significantly reduced Nostrin (P < 0.05) and increased hepatic cGMP (P < 0.01). NOSIP, caveolin-1, NFκB, and iNOS protein expression were significantly increased in CCl4-treated animals (P < 0.05 for all). CC treatment non-significantly lowered NOSIP and caveolin-1 expression while iNOS and NFκB expression was significantly reduced in CCl4 + LPS-treated animals (P < 0.05 for both). Furthermore, Nostrin knockdown significantly improved peNOS expression and associated NO synthesis and reduced inflammation in HUVECs. This study is the first to indicate a potential mechanistic role for the Nostrin-eNOS-NO pathway in cirrhosis and ACLF development. Moreover, this pathway provides a potential therapeutic target given the ameliorative response to Candesartan treatment.
Collapse
Affiliation(s)
- Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India.
| | - Gavin Wright
- Basildon & Thurrock University Hospitals NHS Foundation Trust, UK; Mid and South Essex NHS Foundation Trust, UK
| | - Sundhar M
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, 605006, India
| | - T S Ravikumar
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, 605006, India
| |
Collapse
|
6
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
7
|
Nasr M, Ahmed-Farid OAH, Ahmed RF. Curcumin-resveratrol nano-formulation counteracting hyperammonemia in rats. Metab Brain Dis 2023; 38:1365-1377. [PMID: 36696035 PMCID: PMC10110714 DOI: 10.1007/s11011-023-01162-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Malnutrition and low dietary protein intake could be risk factors for developing peripheral and central hyperammonemia, especially in pediatrics. Both curcumin and resveratrol proved to be effective against several hepatic and cerebral injuries. They were reported to be beneficial in lowering circulating ammonia levels, yet both are known for their low bioavailability. The use of pharmaceutical nano-formulations as delivery systems for these two nutraceuticals could solve the aforementioned problem. Hence, the present study aimed to investigate the valuable outcome of using a combination of curcumin and resveratrol in a nanoemulsion formulation, to counteract protein-deficient diet (PDD)-induced hyperammonemia and the consequent complications in male albino rats. Results revealed that using a nanoemulsion containing both curcumin and resveratrol at a dose of (5 + 5 mg/kg) effectively reduced hepatic and brain ammonia levels, serum ALT and AST levels, hepatic and brain nitric oxide levels, oxidative DNA damage as well as disrupted cellular energy performance. In addition, there was a substantial increase in brain levels of monoamines, and a decrease in glutamate content. Therefore, it can be concluded that the use of combined curcumin and resveratrol nanoemulsion is an effective means of ameliorating the hepatic and cerebral adverse effects resulting from PDD-induced hyperammonemia in rats.
Collapse
Affiliation(s)
- Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, 12553, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, 12622, Dokki, Giza, Egypt.
| |
Collapse
|
8
|
Pichon C, Nachit M, Gillard J, Vande Velde G, Lanthier N, Leclercq IA. Impact of L-ornithine L-aspartate on non-alcoholic steatohepatitis-associated hyperammonemia and muscle alterations. Front Nutr 2022; 9:1051157. [PMID: 36466421 PMCID: PMC9709200 DOI: 10.3389/fnut.2022.1051157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common chronic liver disease in the world. Progression toward non-alcoholic steatohepatitis (NASH) is associated with alterations of skeletal muscle. One plausible mechanism for altered muscle compartment in liver disease is changes in ammonia metabolism. In the present study, we explored the hypothesis that NASH-associated hyperammonemia drives muscle changes as well as liver disease progression. MATERIALS AND METHODS In Alms1-mutant mice (foz/foz) fed a 60% fat diet (HFD) for 12 weeks; we investigated hepatic and muscular ammonia detoxification efficiency. We then tested the effect of an 8 week-long supplementation with L-ornithine L-aspartate (LOLA), a known ammonia-lowering treatment, given after either 4 or 12 weeks of HFD for a preventive or a curative intervention, respectively. We monitored body composition, liver and muscle state by micro computed tomography (micro-CT) as well as muscle strength by four-limb grip test. RESULTS According to previous studies, 12 weeks of HFD induced NASH in all foz/foz mice. Increase of hepatic ammonia production and alterations of urea cycle efficiency were observed, leading to hyperammonemia. Concomitantly mice developed marked myosteatosis. First signs of myopenia occurred after 20 weeks of diet. Early LOLA treatment given during NASH development, but not its administration in a curative regimen, efficiently prevented myosteatosis and muscle quality, but barely impacted liver disease or, surprisingly, ammonia detoxification. CONCLUSION Our study confirms the perturbation of hepatic ammonia detoxification pathways in NASH. Results from the interventional experiments suggest a direct beneficial impact of LOLA on skeletal muscle during NASH development, though it does not improve ammonia metabolism or liver disease.
Collapse
Affiliation(s)
- Camille Pichon
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Maxime Nachit
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Justine Gillard
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Molecular Small Animal Imaging Center, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Nicolas Lanthier
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Service d’Hépato-Gastroentérologie, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle A. Leclercq
- Laboratory of Hepato-Gastroenterology (GAEN), Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
9
|
Mahmoud MS, El-Kott AF, AlGwaiz HIM, Fathy SM. Protective effect of Moringa oleifera Lam. leaf extract against oxidative stress, inflammation, depression, and apoptosis in a mouse model of hepatic encephalopathy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83783-83796. [PMID: 35771324 DOI: 10.1007/s11356-022-21453-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The present study aimed to assess the antioxidative, anti-inflammatory, antiapoptotic, and anti-depression impacts of Moringa oleifera Lam. leaf ethanolic extract (MOLE) in the hippocampus and cerebral cortex of CCl4-induced hepatic encephalopathy mouse model. High-performance liquid chromatography was used to detect marker compounds: rutin and β-sitosterol. Animals were divided into four groups: vehicle group, CCl4-treated group, MOLE-treated group, and (CCl4 + MOLE) group treated with MOLE for 14 days before CCl4-induced neurotoxicity. MOLE decreased alanine aminotransferase, aspartate aminotransferase, corticosterone, and ammonia levels in serum and improved the antioxidant status of CCl4-treated mice in the hippocampus and cerebral cortex. It reduced the expression of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation primary response 88 (MYD88), and nuclear factor-kappa B (NF-κB) genes and the protein levels of the pro-inflammatory cytokines. MOLE also attenuated apoptosis, as revealed by the reduced expression of caspase3, and prevented histological deterioration. Furthermore, MOLE attenuated CCl4-induced anxiety and depression-like behavioral changes. Collectively, MOLE modulates neuroinflammation, oxidative stress, TLR4/2-MyD88/NF-κB signaling, and apoptosis in the hippocampus and cerebral cortex of the hepatic encephalopathy experimental model.
Collapse
Affiliation(s)
- Mohammed S Mahmoud
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
- Department of Zoology, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Hussah I M AlGwaiz
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, 11474, Riyadh, Saudi Arabia
| | - Samah M Fathy
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
10
|
Blondel S, Strazielle N, Amara A, Guy R, Bain C, Rose A, Guibaud L, Tiribelli C, Gazzin S, Ghersi-Egea JF. Vascular network expansion, integrity of blood-brain interfaces, and cerebrospinal fluid cytokine concentration during postnatal development in the normal and jaundiced rat. Fluids Barriers CNS 2022; 19:47. [PMID: 35672829 PMCID: PMC9172137 DOI: 10.1186/s12987-022-00332-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Severe neonatal jaundice resulting from elevated levels of unconjugated bilirubin in the blood induces dramatic neurological impairment. Central oxidative stress and an inflammatory response have been associated with the pathophysiological mechanism. Cells forming the blood-brain barrier and the choroidal blood-CSF barrier are the first CNS cells exposed to increased plasma levels of unconjugated bilirubin. These barriers are key regulators of brain homeostasis and require active oxidative metabolism to fulfill their protective functions. The choroid plexus-CSF system is involved in neuroinflammatory processes. In this paper, we address the impact of neonatal hyperbilirubinemia on some aspects of brain barriers. We describe physiological changes in the neurovascular network, blood-brain/CSF barriers integrities, and CSF cytokine levels during the postnatal period in normobilirubinemic animals, and analyze these parameters in parallel in Gunn rats that are deficient in bilirubin catabolism and develop postnatal hyperbilirubinemia. METHODS Gunn rats bearing a mutation in UGT1a genes were used. The neurovascular network was analyzed by immunofluorescence stereomicroscopy. The integrity of the barriers was evaluated by [14C]-sucrose permeability measurement. CSF cytokine levels were measured by multiplex immunoassay. The choroid plexus-CSF system response to an inflammatory challenge was assessed by enumerating CSF leukocytes. RESULTS In normobilirubinemic animals, the neurovascular network expands postnatally and displays stage-specific regional variations in its complexity. Network expansion is not affected by hyperbilirubinemia. Permeability of the blood-brain and blood-CSF barriers to sucrose decreases between one- and 9-day-old animals, and does not differ between normobilirubinemic and hyperbilirubinemic rats. Cytokine profiles differ between CSF and plasma in all 1-, 9-, and 18-day-old animals. The CSF cytokine profile in 1-day-old animals is markedly different from that established in older animals. Hyperbilirubinemia perturbs these cytokine profiles only to a very limited extent, and reduces CSF immune cell infiltration triggered by systemic exposure to a bacterial lipopeptide. CONCLUSION The data highlight developmental specificities of the blood-brain barrier organization and of CSF cytokine content. They also indicate that a direct effect of bilirubin on the vascular system organization, brain barriers morphological integrity, and inflammatory response of the choroid plexus-CSF system is not involved in the alteration of brain functions induced by severe neonatal jaundice.
Collapse
Affiliation(s)
| | - Nathalie Strazielle
- Brain-i, Lyon, France
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Amel Amara
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Rainui Guy
- BIP Facility, Lyon Neurosciences Research Center, Bron, France
| | | | | | - Laurent Guibaud
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France
| | - Claudio Tiribelli
- Fondazione Italiana Fegato-Onlus, AREA Science Park, Basovizza, Trieste, Italy
| | - Silvia Gazzin
- Fondazione Italiana Fegato-Onlus, AREA Science Park, Basovizza, Trieste, Italy
| | - Jean-François Ghersi-Egea
- BIP Facility, Lyon Neurosciences Research Center, Bron, France.
- Fluid Team Lyon Neurosciences Research Center, INSERM U1028, CNRS UMR5292, Lyon University, Bron, France.
| |
Collapse
|
11
|
Li Z, Dong J, Wang M, Yan J, Hu Y, Liu Y, Pan Y, Li H. Resveratrol ameliorates liver fibrosis induced by nonpathogenic Staphylococcus in BALB/c mice through inhibiting its growth. Mol Med 2022; 28:52. [PMID: 35508992 PMCID: PMC9066969 DOI: 10.1186/s10020-022-00463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background The altered gut microbiota is implicated in the pathogenesis of liver fibrosis. Resveratrol is a candidate for the treatment of liver fibrosis, which could ameliorate the dysregulation of gut microbiota in mice. This study aimed to clarify the role and mechanism of resveratrol in gut microbiota during liver fibrosis.
Methods A mouse model of liver fibrosis induced by CCl4 was conducted to assess the effect of resveratrol on liver fibrosis. The changes of gut microbiota in liver fibrotic mice after resveratrol intervention were assessed using 16S ribosomal RNA sequencing. The mechanism of the gut microbiota dysregulation in liver fibrosis was investigated by Sirius red staining, immunohistochemical assay, bacterial translocation (BT), EUB338 fluorescence in situ hybridization, immunofluorescence, trans-epithelial electrical resistance analysis and paracellular permeability analysis. Results Resveratrol relieved CCl4-induced liver fibrosis. Besides, resveratrol restrained the gut microbiota Staphylococcus_lentus and Staphylococcus_xylosus in the liver fibrotic mice, and the Staphylococcus_xylosus and Staphylococcus_lentus facilitated the occurrence of BT and the cultures of them enhanced the permeability of intestine. The in vivo assay corroborated that the excessive Staphylococcus_xylosus and Staphylococcus_lentus canceled the protecting effect of resveratrol on liver fibrosis, and Staphylococcus_xylosus or Staphylococcus_lentus alone had a limited impact on the liver injury of normal mice. Conclusion Resveratrol ameliorated liver fibrosis by restraining the growth of Staphylococcus_xylosus and Staphylococcus_lentus. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00463-y.
Collapse
Affiliation(s)
- Zhiqin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Jianxia Dong
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Meng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Jingya Yan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China.
| | - Yushu Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Yang Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Yajie Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| | - Hua Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou, 450001, Henan Province, China
| |
Collapse
|
12
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
13
|
Resveratrol Can Attenuate Astrocyte Activation to Treat Spinal Cord Injury by Inhibiting Inflammatory Responses. Mol Neurobiol 2021; 58:5799-5813. [PMID: 34410605 PMCID: PMC8374881 DOI: 10.1007/s12035-021-02509-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/26/2021] [Indexed: 01/04/2023]
Abstract
Several preclinical and clinical studies have attempted to elucidate the pathophysiological mechanism associated with spinal cord injury. However, investigations have been unable to define the precise related mechanisms, and this has led to the lack of effective therapeutic agents for the condition. Neuroinflammation is one of the predominant processes that hinder spinal cord injury recovery. Resveratrol is a compound that has several biological features, such as antioxidation, antibacterial, and antiinflammation. Herein, we reviewed preclinical and clinical studies to delineate the role of toll-like receptors, nod-like receptors, and astrocytes in neuroinflammation. In particular, the alteration of astrocytes in SCI causes glial scar formation that impedes spinal cord injury recovery. Therefore, to improve injury recovery would be to prevent the occurrence of this process. Resveratrol is safe and effective in the significant modulation of neuroinflammatory factors, particularly those mediated by astrocytes. Thus, its potential ability to enhance the injury recovery process and ameliorate spinal cord injury.
Collapse
|
14
|
Balzano T, Leone P, Ivaylova G, Castro MC, Reyes L, Ramón C, Malaguarnera M, Llansola M, Felipo V. Rifaximin Prevents T-Lymphocytes and Macrophages Infiltration in Cerebellum and Restores Motor Incoordination in Rats with Mild Liver Damage. Biomedicines 2021; 9:biomedicines9081002. [PMID: 34440206 PMCID: PMC8393984 DOI: 10.3390/biomedicines9081002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022] Open
Abstract
In patients with liver cirrhosis, minimal hepatic encephalopathy (MHE) is triggered by a shift in peripheral inflammation, promoting lymphocyte infiltration into the brain. Rifaximin improves neurological function in MHE by normalizing peripheral inflammation. Patients who died with steatohepatitis showed T-lymphocyte infiltration and neuroinflammation in the cerebellum, suggesting that MHE may already occur in these patients. The aims of this work were to assess, in a rat model of mild liver damage similar to steatohepatitis, whether: (1) the rats show impaired motor coordination in the early phases of liver damage; (2) this is associated with changes in the immune system and infiltration of immune cells into the brain; and (3) rifaximin improves motor incoordination, associated with improved peripheral inflammation, reduced infiltration of immune cells and neuroinflammation in the cerebellum, and restoration of the alterations in neurotransmission. Liver damage was induced by carbon tetrachloride (CCl4) injection over four weeks. Peripheral inflammation, immune cell infiltration, neuroinflammation, and neurotransmission in the cerebellum and motor coordination were assessed. Mild liver damage induces neuroinflammation and altered neurotransmission in the cerebellum and motor incoordination. These alterations are associated with increased TNFa, CCL20, and CX3CL1 in plasma and cerebellum, IL-17 and IL-15 in plasma, and CCL2 in cerebellum. This promotes T-lymphocyte and macrophage infiltration in the cerebellum. Early treatment with rifaximin prevents the shift in peripheral inflammation, immune cell infiltration, neuroinflammation, and motor incoordination. This report provides new clues regarding the mechanisms of the beneficial effects of rifaximin, suggesting that early rifaximin treatment could prevent neurological impairment in patients with steatohepatitis.
Collapse
|
15
|
DeMorrow S, Cudalbu C, Davies N, Jayakumar AR, Rose CF. 2021 ISHEN guidelines on animal models of hepatic encephalopathy. Liver Int 2021; 41:1474-1488. [PMID: 33900013 PMCID: PMC9812338 DOI: 10.1111/liv.14911] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.
Collapse
Affiliation(s)
- S DeMorrow
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Texas, USA; Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Texas, USA; Research division, Central Texas Veterans Healthcare System, Temple Texas USA.,Correspondance: Sharon DeMorrow, PhD, ; tel: +1-512-495-5779
| | - C Cudalbu
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - N Davies
- Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - AR Jayakumar
- General Medical Research, Neuropathology Section, R&D Service and South Florida VA Foundation for Research and Education Inc; Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami FL, USA
| | - CF Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| |
Collapse
|
16
|
Zhang Y, Tan SL, Du J, Chen Y, Jia J, Feng JG, Liu KX, Zhou J. Dexmedetomidine alleviates neuroinflammation, restores sleep disorders and neurobehavioral abnormalities in rats with minimal hepatic encephalopathy. Int Immunopharmacol 2021; 96:107795. [PMID: 34162157 DOI: 10.1016/j.intimp.2021.107795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/05/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
The occurrence and progress of minimal hepatic encephalopathy (MHE) is closely related to the inflammatory response; however, inflammation contributes to behavioral abnormalities and sleep disorders. Dexmedetomidine has anti-inflammatory effects against various diseases. Whether dexmedetomidine improves MHE and the underlying mechanism is yet unclear. The present study aimed to explore the effects of dexmedetomidine on sleep structure, neurobehavior, and brain morphology of MHE rats and investigate its underlying mechanism. A rat MHE model was established by intraperitoneal injection of thioacetamide (TAA). Dexmedetomidine or yohimbine was administered intraperitoneally to investigate the role of α2 adrenoreceptor in the protection conferred by dexmedetomidine. The 24-h sleep, neurobehavioral changes, the liver function, blood ammonia and morphological changes of the liver and brain were assessed. Also, the microglia, astrocytes, neurons, the expression of pro-inflammatory factors (IL-1β, TNF-α, IL-18), and NLRP3 inflammasomes were detected. The results showed that marked sleep disorders, cognitive impairment, anxiety, abnormal liver function and pathological damage of liver and brain were detected in the MHE rats. The microglia in the prefrontal cortex was highly activated along with the increased expression of pro-inflammatory factors and NLRP3 inflammasomes. Interestingly, dexmedetomidine improved above indicators, however, yohimbine significantly abolished the protection of dexmedetomidine. These findings showed that dexmedetomidine restored the changes in the sleep disorders and neurobehavior in rats and reduced brain damage. The mechanism might be partially related to the activation of α2 adrenergic receptors, reduction of neuroinflammatory response, and inhibition of the activation of microglia and NLRP3/Caspase1 signaling pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Su-Lan Tan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Juan Du
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, PR China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China.
| |
Collapse
|
17
|
The Role of Resveratrol in Liver Disease: A Comprehensive Review from In Vitro to Clinical Trials. Nutrients 2021; 13:nu13030933. [PMID: 33805795 PMCID: PMC7999728 DOI: 10.3390/nu13030933] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many studies have shown that resveratrol has a lot of therapeutic effects on liver disorders. Its administration can significantly increase the survival rate after liver transplantation, reduce fat deposition and ischemia-induced necrosis and apoptosis in Wistar rats. Resveratrol can provide Liver protection against chemical, cholestatic, and alcohol-mediated damage. It can improve glucose metabolism and lipid profile, reduce liver fibrosis, and steatosis. Additionally, it is capable of altering the fatty acid composition of the liver cells. Resveratrol may be a potential treatment option for the management of non-alcoholic fatty liver disease (NAFLD) due to its anti-inflammatory, antioxidant, and calorie-restricting effects. There are also studies that have evaluated the effect of resveratrol on lipid and liver enzyme profiles among patients with metabolic syndrome (MetS) and related disorders. Based on the extent of liver disease worldwide and the need to find new treatment possibilities, this review critically examines current in vitro and in vivo preclinical studies and human clinical studies related to liver protection.
Collapse
|
18
|
Tarazona S, Carmona H, Conesa A, Llansola M, Felipo V. A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biol Toxicol 2021; 37:129-149. [PMID: 33404927 DOI: 10.1007/s10565-020-09572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
Abstract
Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. The cerebellum is one of the main cerebral regions affected in MHE. Rats with chronic HA show some motor and cognitive alterations reproducing neurological impairment in cirrhotic patients with MHE. Neuroinflammation and altered neurotransmission and signal transduction in the cerebellum from hyperammonemic (HA) rats are associated with motor and cognitive dysfunction, but underlying mechanisms are not completely known. The aim of this work was to use a multi-omic approach to study molecular alterations in the cerebellum from hyperammonemic rats to uncover new molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment. We analyzed metabolomic, transcriptomic, and proteomic data from the same cerebellums from control and HA rats and performed a multi-omic integrative analysis of signaling pathway enrichment with the PaintOmics tool. The histaminergic system, corticotropin-releasing hormone, cyclic GMP-protein kinase G pathway, and intercellular communication in the cerebellar immune system were some of the most relevant enriched pathways in HA rats. In summary, this is a good approach to find altered pathways, which helps to describe the molecular mechanisms involved in the alteration of brain function in rats with chronic HA and to propose possible therapeutic targets to improve MHE symptoms.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Héctor Carmona
- Department of Microbiology and Ecology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
19
|
Ram AK, Vairappan B, Srinivas BH. Nimbolide inhibits tumor growth by restoring hepatic tight junction protein expression and reduced inflammation in an experimental hepatocarcinogenesis. World J Gastroenterol 2020; 26:7131-7152. [PMID: 33362373 PMCID: PMC7723674 DOI: 10.3748/wjg.v26.i45.7131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/28/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Altered tight junction (TJ) proteins are correlated with carcinogenesis and tumor development. Nimbolide is a tetranotriterpenoid that has been shown to have antioxidant and anti-proliferative properties; however, its anticancer effects and molecular mechanism in hepatocellular carcinoma (HCC) remains obscure.
AIM To investigate the effect of nimbolide on TJ proteins, cell cycle progression, and hepatic inflammation in a mouse model of HCC.
METHODS HCC was induced in male Swiss albino mice (CD-1 strain) by a single intraperitoneal injection of 100 mg/kg diethylnitrosamine (DEN) followed by 80 ppm N-nitrosomorpholine (NMOR) in drinking water for 28 wk. After 28 wk, nimbolide (6 mg/kg) was given orally for four consecutive weeks in DEN/NMOR induced HCC mice. At the end of the 32nd week, all the mice were sacrificed and blood and liver samples were collected for various analyses. Macroscopic examinations of hepatic nodules were assessed. Liver histology and HCC tumor markers such as alpha-fetoprotein (AFP) and glypican-3 were measured. Expression of TJ proteins, cell proliferation, and cell cycle markers, inflammatory markers, and oxidative stress markers were analyzed. In silico analysis was performed to confirm the binding and modulatory effect of nimbolide on zonula occludens 1 (ZO-1), nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB), and tumor necrosis factor alpha (TNF-α).
RESULTS We found nimbolide treatment at a concentration of 6 mg/kg to HCC mice reduced hepatic tumor size by 52.08% and tumor volume (P < 0.01), and delayed tumor growth in HCC mice with a concomitant reduction in tumor markers such as AFP levels (P < 0.01) and glypican-3 expression (P < 0.05). Furthermore, nimbolide treatment increased tight junction proteins such as ZO-1 and occludin expression (P < 0.05, respectively) and reduced ZO-1 associated nucleic acid binding protein expression (P < 0.001) in HCC mice liver. Nimbolide treatment to HCC mice also inhibited cell proliferation and suppressed cell cycle progression by attenuating proliferating cell nuclear antigen (P < 0.01), cyclin dependent kinase (P < 0.05), and CyclinD1 (P < 0.05) expression. In addition, nimbolide treatment to HCC mice ameliorated hepatic inflammation by reducing NF-κB, interleukin 1 beta and TNF-α expression (P < 0.05, respectively) and abrogated oxidative stress by attenuating 4-hydroxynonenal expression (P < 0.01). Molecular docking studies further confirmed that nimbolide interacts with ZO-1, NF-κB, and TNF-α.
CONCLUSION Our current study showed for the first time that nimbolide exhibits anticancer effect by reducing tumor size, tumor burden and by suppressing cell cycle progression in HCC mice. Furthermore, nimbolide treatment to HCC mice ameliorated inflammation and oxidative stress, and improved TJ proteins expression. Consequently, nimbolide could be potentially used as a natural therapeutic agent for HCC treatment, however further human studies are warranted.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab,Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantari Nagar, Puducherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab,Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantari Nagar, Puducherry 605006, India
| | - BH Srinivas
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Dhanvantari Nagar, Puducherry 605006, India
| |
Collapse
|
20
|
Wang Y, Shi Y, Huang Y, Liu W, Cai G, Huang S, Zeng Y, Ren S, Zhan H, Wu W. Resveratrol mediates mechanical allodynia through modulating inflammatory response via the TREM2-autophagy axis in SNI rat model. J Neuroinflammation 2020; 17:311. [PMID: 33081801 PMCID: PMC7576710 DOI: 10.1186/s12974-020-01991-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background Neuropathic pain (NeuP) is a chronic and challenging clinical problem, with little effective treatment. Resveratrol has shown neuroprotection by inhibiting inflammatory response in NeuP. Recently, the triggering receptor expressed on myeloid cells 2 (TREM2) expressed by microglia was identified as a critical factor of inflammation in nervous system diseases. In this study, we explored whether resveratrol could ameliorate neuroinflammation and produce anti-mechanical allodynia effects via regulating TREM2 in spared nerve injury rats, as well as investigated the underlying mechanisms. Methods A spared nerve injury (SNI) rat model was performed to investigate whether resveratrol could exert anti-mechanical allodynia effects via inhibiting neuroinflammation. To evaluate the role of TREM2 in anti-neuroinflammatory function of resveratrol, lentivirus coding TREM2 was intrathecally injected into SNI rats to activate TREM2, and the pain behavior was detected by the von Frey test. Furthermore, 3-methyladenine (3-MA, an autophagy inhibitor) was applied to study the molecular mechanisms of resveratrol-mediated anti-neuroinflammation using Western blot, qPCR, and immunofluorescence. Results The TREM2 expression and number of the microglial cells were significantly increased in the ipsilateral spinal dorsal horn after SNI. We found that intrathecal administration of resveratrol (300ug/day) alleviated mechanical allodynia; obviously enhanced autophagy; and markedly reduced the levels of interleukin-1β, interleukin-6, and tumor necrosis factor-α in the ipsilateral spinal dorsal horn after SNI. Moreover, the number of Iba-1+ microglial cells and TREM2 expression were downregulated after resveratrol treatment. Intrathecal administration of lentivirus coding TREM2 and/or 3-MA in those rats induced deficiencies in resveratrol-mediated anti-inflammation, leading to mechanical allodynia that could be rescued via administration of Res. Furthermore, 3-MA treatment contributed to TREM2-mediated mechanical allodynia. Conclusions Taken together, these data reveal that resveratrol relieves neuropathic pain through suppressing microglia-mediated neuroinflammation via regulating the TREM2-autophagy axis in SNI rats.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence; Key Laboratory of Mental Health of the Ministry of Education; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yongquan Huang
- Department of Ultrasound, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Wei Liu
- Department of Rehabilitation, Shenzhen University General Hospital, Shenzhen, 518005, Guangdong, China
| | - Guiyuan Cai
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shimin Huang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yanyan Zeng
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Siqiang Ren
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence; Key Laboratory of Mental Health of the Ministry of Education; Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
21
|
Ginkgolide-A attenuates bacterial translocation through activating PXR and improving antimicrobial peptide Reg 3A in experimental cirrhosis. Life Sci 2020; 257:118111. [PMID: 32682918 DOI: 10.1016/j.lfs.2020.118111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/04/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
|
22
|
Shal B, Khan A, Naveed M, Ali H, Seo EK, Choi H, Khan S. Neuroprotective effect of 25-Methoxyhispidol A against CCl 4-induced behavioral alterations by targeting VEGF/BDNF and caspase-3 in mice. Life Sci 2020; 253:117684. [PMID: 32315728 DOI: 10.1016/j.lfs.2020.117684] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Brain oxidative stress and neuroinflammation have been implicated in various psychiatric disorders. The current study investigated the effect and mechanism of 25-Methoxyhispidol A (25-MHA) against CCl4-induced anxiety and depression. Mice were challenged with CCl4 (1 ml/kg; i.p.) after 30 min of 25-MHA (1, 5 and 10 mg/kg; i.p.) administration. Pretreatment with 25-MHA (10 mg/kg) significantly attenuated the anxiety and depression-like behavior in testing models. The oxidative stress induced by CCl4 was significantly attenuated by pretreatment with 25-MHA. The immunohistochemical (IHC) analysis showed a reduction in kelch-like ECH-associated protein 1 (Keap1) and improvement in expression of nuclear factor erythroid-2-related factor (Nrf-2) and heme oxygenase (HO)-1. In addition, 25-MHA significantly attenuated the CCl4-mediated depletion of antioxidant enzymes in hippocampus (HC) and prefrontal cortex (PFC) region and reduced the expression of toll-like receptor (TLR)-4 and nuclear factor kappa B (NF-κB), along with a decreased production of pro-inflammatory cytokines in HC and PFC region. Pretreatment with 25-MHA also showed an improved expression of neurotrophic factors i.e., brain derived growth factor (BDNF) and vascular endothelial growth factor (VEGF). Furthermore, 25-MHA inhibited malondialdehyde (MDA) and ammonia level in plasma, liver, HC and PFC regions of mice brain. 25-MHA also exhibited anti-apoptotic effect evident from the reduced expression of caspase-3 and decreased hippocampal DNA damage in comet assay. Furthermore, decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and corticosterone level, along with prevention of CCl4-induced alterations in thickness of dentate gyrus and intact hepatic cells morphology, represented by hippocampal and liver histopathology, indicated the neuroprotective effect of 25-MHA.
Collapse
Affiliation(s)
- Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Naveed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hussain Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Eun Kyoung Seo
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, South Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk 38541, South Korea
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
23
|
Mohandas S, Vairappan B. Pregnane X receptor activation by its natural ligand Ginkgolide-A improves tight junction proteins expression and attenuates bacterial translocation in cirrhosis. Chem Biol Interact 2019; 315:108891. [PMID: 31697926 DOI: 10.1016/j.cbi.2019.108891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/02/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Pregnane X receptor (PXR) is a ligand-activated transcription factor and nuclear receptor expressed ubiquitously along gut-liver-axis. Inflammatory bowel disorders have been reported to implicate PXR in maintaining tight junction (TJ) integrity and countering inflammation. However, the hepatoprotective role of PXR activation in soothing bacterial translocation in liver cirrhosis has not been explored. Ginkgolide A (GA), a terpene trilactone from Ginkgo Biloba extract, is a natural ligand of rodent and human PXR. This study aims to investigate the effect of GA in activating PXR and improving associated tight junction integrity and reducing bacterial translocation in gut-liver axis of CCl4 induced cirrhosis model. METHODS Swiss albino mice were administered with CCl4 (0.5 ml/kg body weight, i.p) in corn oil for 12 weeks at an interval of two times a week. Following ascites induction, mice were randomized & administered 100 mg/kg body weight of GA through oral gavage for 2 weeks. At termination, blood, gut and liver tissues were collected for biochemical and molecular studies. RESULTS When compared to naïve mice, protein expression of hepatic and small intestinal PXR, CYP3A, ZO-1 and occludin were found to be significantly (p < 0.01) decreased in CCl4 induced cirrhotic mice. Treatment with GA to cirrhotic mice significantly (p < 0.05) induced the expression of both hepatic and small intestinal PXR, CYP3A, ZO-1 and Occludin. Furthermore, increased (p < 0.01) hepatic and small intestinal NFκB was observed in CCl4 induced cirrhotic mice that was significantly (p < 0.05) lowered following GA treatment. Over expression of TLR4/MyD88/NFκB axis and its downstream pro-inflammatory mediators TNF-α, IL6 and IFN-γ were observed in CCl4 induced mice, and these indices were abrogated significantly after GA treatment. Furthermore, significantly increased plasma levels of bacterial translocation markers LBP and procalcitonin were found in CCl4 mice, which were reduced significantly (p < 0.05 & p < 0.0001) after GA treatment. CONCLUSION In conclusion, our data supports the hypothesis that, GA treatment to CCl4 induced cirrhotic mice, activated hepatic and small intestinal PXR and diminished inflammation, thereby improving tight junction integrity and attenuating bacterial translocation.
Collapse
Affiliation(s)
- Sundhar Mohandas
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Pondicherry, India.
| |
Collapse
|