1
|
Rodrigues MMDS, Júnior AMP, Fukutani ER, Bergamaschi KB, Araújo-Pereira M, Salgado VR, de Queiroz ATL. The impact of ZIKV infection on gene expression in neural cells over time. PLoS One 2024; 19:e0290209. [PMID: 38512822 PMCID: PMC10956780 DOI: 10.1371/journal.pone.0290209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/22/2023] [Indexed: 03/23/2024] Open
Abstract
Zika virus (ZIKV) outbreak caused one of the most significant medical emergencies in the Americas due to associated microcephaly in newborns. To evaluate the impact of ZIKV infection on neuronal cells over time, we retrieved gene expression data from several ZIKV-infected samples obtained at different time point post-infection (pi). Differential gene expression analysis was applied at each time point, with more differentially expressed genes (DEG) identified at 72h pi. There were 5 DEGs (PLA2G2F, TMEM71, PKD1L2, UBD, and TNFAIP3 genes) across all timepoints, which clearly distinguished between infected and healthy samples. The highest expression levels of all five genes were identified at 72h pi. Taken together, our results indicate that ZIKV infection greatly impacts human neural cells at early times of infection, with peak perturbation observed at 72h pi. Our analysis revealed that all five DEGs, in samples of ZIKV-infected human neural stem cells, remained highly upregulated across the timepoints evaluated. Moreover, despite the pronounced inflammatory host response observed throughout infection, the impact of ZIKV is variable over time. Finally, the five DEGs identified herein play prominent roles in infection, and could serve to guide future investigations into virus-host interaction, as well as constitute targets for therapeutic drug development.
Collapse
Affiliation(s)
| | | | - Eduardo Rocha Fukutani
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Mariana Araújo-Pereira
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | | | - Artur Trancoso Lopo de Queiroz
- Laboratório de Pesquisa Clínica e Translacional (LPCT), Instituto Gonçalo Moniz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| |
Collapse
|
2
|
Taeb S, Rostamzadeh D, Mafi S, Mofatteh M, Zarrabi A, Hushmandi K, Safari A, Khodamoradi E, Najafi M. Update on Mesenchymal Stem Cells: A Crucial Player in Cancer Immunotherapy. Curr Mol Med 2024; 24:98-113. [PMID: 36573062 DOI: 10.2174/1566524023666221226143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/28/2022]
Abstract
The idea of cancer immunotherapy has spread, and it has made tremendous progress with the advancement of new technology. Immunotherapy, which serves to assist the natural defenses of the body in eradicating cancerous cells, is a remarkable achievement that has revolutionized both cancer research and cancer treatments. Currently, the use of stem cells in immunotherapy is widespread and shares a special characteristic, including cancer cell migration, bioactive component release, and immunosuppressive activity. In the context of cancer, mesenchymal stem cells (MSCs) are rapidly being identified as vital stromal regulators of tumor progression. MSCs therapy has been implicated in treating a wide range of diseases, including bone damage, autoimmune diseases, and particularly hematopoietic abnormalities, providing stem cell-based therapy with an extra dimension. Moreover, the implication of MSCs does not have ethical concerns, and the complications known in pluripotent and totipotent stem cells are less common in MSCs. MSCs have a lot of distinctive characteristics that, when coupled, make them excellent for cellular-based immunotherapy and as vehicles for gene and drug delivery in a variety of inflammations and malignancies. MSCs can migrate to the inflammatory site and exert immunomodulatory responses via cell-to-cell contacts with lymphocytes by generating soluble substances. In the current review, we discuss the most recent research on the immunological characteristics of MSCs, their use as immunomodulatory carriers, techniques for approving MSCs to adjust their immunological contour, and their usages as vehicles for delivering therapeutic as well as drugs and genes engineered to destroy tumor cells.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sahar Mafi
- Department of Clinical Biochemistry, Yasuj University of Medical Sciences, Yasuj, Iran
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, Medical Sciences Division, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
- Lincoln College, University of Oxford, Turl Street, Oxford OX1 3DR, United Kingdom
| | - Ali Zarrabi
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Safari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Khodamoradi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Giri R, Bhardwaj T, Kapuganti SK, Saumya KU, Sharma N, Bhardwaj A, Joshi R, Verma D, Gadhave K. Widespread amyloid aggregates formation by Zika virus proteins and peptides. Protein Sci 2023; 32:e4833. [PMID: 37937856 PMCID: PMC10682691 DOI: 10.1002/pro.4833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023]
Abstract
Viral pathogenesis typically involves numerous molecular mechanisms. Protein aggregation is a relatively unknown characteristic of viruses, despite the fact that viral proteins have been shown to form terminally misfolded forms. Zika virus (ZIKV) is a neurotropic one with the potential to cause neurodegeneration. Its protein amyloid aggregation may link the neurodegenerative component to the pathogenicity associated with the viral infection. Therefore, we investigated protein aggregation in the ZIKV proteome as a putative pathogenic route and one of the alternate pathways. We discovered that it contains numerous anticipated aggregation-prone regions in this investigation. To validate our prediction, we used a combination of supporting experimental techniques routinely used for morphological characterization and study of amyloid aggregates. Several ZIKV proteins and peptides, including the full-length envelope protein, its domain III (EDIII) and fusion peptide, Pr N-terminal peptide, NS1 β-roll peptide, membrane-embedded signal peptide 2K, and cytosolic region of NS4B protein, were shown to be highly aggregating in our study. Because our findings show that viral proteins can form amyloids in vitro, we need to do a thorough functional study of these anticipated APRs to understand better the role of amyloids in the pathophysiology of ZIKV infection.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Taniya Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Shivani K. Kapuganti
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kumar Udit Saumya
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Nitin Sharma
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Aparna Bhardwaj
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Richa Joshi
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Deepanshu Verma
- School of Biosciences and BioengineeringIndian Institute of Technology MandiKamandHimachal PradeshIndia
| | - Kundlik Gadhave
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
4
|
Bruno F, Abondio P, Bruno R, Ceraudo L, Paparazzo E, Citrigno L, Luiselli D, Bruni AC, Passarino G, Colao R, Maletta R, Montesanto A. Alzheimer's disease as a viral disease: Revisiting the infectious hypothesis. Ageing Res Rev 2023; 91:102068. [PMID: 37704050 DOI: 10.1016/j.arr.2023.102068] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
Alzheimer's disease (AD) represents the most frequent type of dementia in elderly people. Two major forms of the disease exist: sporadic - the causes of which have not yet been fully understood - and familial - inherited within families from generation to generation, with a clear autosomal dominant transmission of mutations in Presenilin 1 (PSEN1), 2 (PSEN2) or Amyloid Precursors Protein (APP) genes. The main hallmark of AD consists of extracellular deposits of amyloid-beta (Aβ) peptide and intracellular deposits of the hyperphosphorylated form of the tau protein. An ever-growing body of research supports the viral infectious hypothesis of sporadic forms of AD. In particular, it has been shown that several herpes viruses (i.e., HHV-1, HHV-2, HHV-3 or varicella zoster virus, HHV-4 or Epstein Barr virus, HHV-5 or cytomegalovirus, HHV-6A and B, HHV-7), flaviviruses (i.e., Zika virus, Dengue fever virus, Japanese encephalitis virus) as well as Human Immunodeficiency Virus (HIV), hepatitis viruses (HAV, HBV, HCV, HDV, HEV), SARS-CoV2, Ljungan virus (LV), Influenza A virus and Borna disease virus, could increase the risk of AD. Here, we summarized and discussed these results. Based on these findings, significant issues for future studies are also put forward.
Collapse
Affiliation(s)
- Francesco Bruno
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy.
| | - Rossella Bruno
- Sudent at the Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88050 Catanzaro, Italy
| | - Leognano Ceraudo
- Sudent at the Department of Medical and Surgical Sciences, University of Parma, 43121 Parma, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Luigi Citrigno
- National Research Council (CNR) - Institute for Biomedical Research and Innovation - (IRIB), 87050 Mangone, Cosenza, Italy
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural Heritage, University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy
| | - Rosanna Colao
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy
| | - Raffaele Maletta
- Regional Neurogenetic Centre (CRN), Department of Primary Care, Azienda Sanitaria Provinciale Di Catanzaro, Viale A. Perugini, 88046 Lamezia Terme, CZ, Italy; Association for Neurogenetic Research (ARN), Lamezia Terme, CZ, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende 87036, Italy.
| |
Collapse
|
5
|
Quincozes-Santos A, Bobermin LD, Costa NLF, Thomaz NK, Almeida RRDS, Beys-da-Silva WO, Santi L, Rosa RL, Capra D, Coelho-Aguiar JM, DosSantos MF, Heringer M, Cirne-Lima EO, Guimarães JA, Schuler-Faccini L, Gonçalves CA, Moura-Neto V, Souza DO. The role of glial cells in Zika virus-induced neurodegeneration. Glia 2023. [PMID: 36866453 DOI: 10.1002/glia.24353] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Zika virus (ZIKV) is a strongly neurotropic flavivirus whose infection has been associated with microcephaly in neonates. However, clinical and experimental evidence indicate that ZIKV also affects the adult nervous system. In this regard, in vitro and in vivo studies have shown the ability of ZIKV to infect glial cells. In the central nervous system (CNS), glial cells are represented by astrocytes, microglia, and oligodendrocytes. In contrast, the peripheral nervous system (PNS) constitutes a highly heterogeneous group of cells (Schwann cells, satellite glial cells, and enteric glial cells) spread through the body. These cells are critical in both physiological and pathological conditions; as such, ZIKV-induced glial dysfunctions can be associated with the development and progression of neurological complications, including those related to the adult and aging brain. This review will address the effects of ZIKV infection on CNS and PNS glial cells, focusing on cellular and molecular mechanisms, including changes in the inflammatory response, oxidative stress, mitochondrial dysfunction, Ca2+ and glutamate homeostasis, neural metabolism, and neuron-glia communication. Of note, preventive and therapeutic strategies that focus on glial cells may emerge to delay and/or prevent the development of ZIKV-induced neurodegeneration and its consequences.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Larissa Daniele Bobermin
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Naithan Ludian Fernandes Costa
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Natalie K Thomaz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rômulo Rodrigo de Souza Almeida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Lucélia Santi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Rafael L Rosa
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daniela Capra
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Juliana M Coelho-Aguiar
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Fabio DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manoela Heringer
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria Estadual de Saúde do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Tatara JM, Rosa RL, Varela APM, Teixeira TF, Sesterheim P, Gris A, Driemeier D, Moraes ANS, Berger M, Peña RD, Roehe PM, Souza DOG, Guimarães JA, Campos AR, Santi L, Beys-da-Silva WO. Differential proteomics of Zika virus (ZIKV) infection reveals molecular changes potentially involved in immune system evasion by a Brazilian strain of ZIKV. Arch Virol 2023; 168:70. [PMID: 36658439 DOI: 10.1007/s00705-022-05629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/01/2022] [Indexed: 01/21/2023]
Abstract
Zika virus (ZIKV) is an arbovirus that was responsible for multiple outbreaks from 2007 to 2015. It has been linked to cases of microcephaly in Brazil in 2015, among other neurological disorders. Differences among strains might be the reason for different clinical outcomes of infection. To evaluate this hypothesis, we performed a comparative proteomic analysis of Vero cells infected with the African strain MR766 (ZIKVAFR) and the Brazilian strain 17 SM (ZIKVBR). A total of 550 proteins were identified as differentially expressed in ZIKVAFR- or ZIKVBR-infected cells compared to the control. The main findings included upregulation of immune system pathways (neutrophil degranulation and adaptive/innate immune system) and potential activation of immune-system-related pathways by ZIKVAFR (mTOR, JAK-STAT, NF-κB, and others) compared with the ZIKVBR/control. In addition, phagocytosis by macrophages and engulfment of leukocytes were activated in ZIKVAFR infection. An in vivo analysis using an immunocompetent C57BL/6N mouse model identified interstitial pneumonia with neutrophil infiltration in the lungs only in mice infected with ZIKVBR at 48 hours postinfection, with a significant amount of virus detected. Likewise, only animals infected with ZIKVBR had viral material in the cytoplasm of lung macrophages. These results suggest that activation of the immune system by ZIKVAFR infection may lead to faster viral clearance by immune cells.
Collapse
Affiliation(s)
- Juliana M Tatara
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil
| | - Rafael L Rosa
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil
| | - Ana Paula M Varela
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Tais F Teixeira
- Center for Experimental Cardiology, Institute of Cardiology, Porto Alegre, Brazil
| | - Patrícia Sesterheim
- Center for Experimental Cardiology, Institute of Cardiology, Porto Alegre, Brazil
| | - Anderson Gris
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - David Driemeier
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Amanda N S Moraes
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil
| | - Markus Berger
- Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil
| | - Ramon D Peña
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, USA
| | - Paulo M Roehe
- Department of Microbiology, Immunology and Parasitology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo O G Souza
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge A Guimarães
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil.,Center for Experimental Cardiology, Institute of Cardiology, Porto Alegre, Brazil
| | | | - Lucélia Santi
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil.,Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil.,Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Post-Graduation Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Av Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil. .,Experimental Research Center, Clinical Hospital of Porto Alegre, Porto Alegre, Brazil. .,Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Pathogenesis and Manifestations of Zika Virus-Associated Ocular Diseases. Trop Med Infect Dis 2022; 7:tropicalmed7060106. [PMID: 35736984 PMCID: PMC9229560 DOI: 10.3390/tropicalmed7060106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
Zika virus (ZIKV) is mosquito-borne flavivirus that caused a significant public health concern in French Polynesia and South America. The two major complications that gained the most media attention during the ZIKV outbreak were Guillain-Barré syndrome (GBS) and microcephaly in newborn infants. The two modes of ZIKV transmission are the vector-borne and non-vector borne modes of transmission. Aedes aegypti and Aedes albopictus are the most important vectors of ZIKV. ZIKV binds to surface receptors on permissive cells that support infection and replication, such as neural progenitor cells, dendritic cells, dermal fibroblasts, retinal pigment epithelial cells, endothelial cells, macrophages, epidermal keratinocytes, and trophoblasts to cause infection. The innate immune response to ZIKV infection is mediated by interferons and natural killer cells, whereas the adaptive immune response is mediated by CD8+T cells, Th1 cells, and neutralizing antibodies. The non-structural proteins of ZIKV, such as non-structural protein 5, are involved in the evasion of the host's immune defense mechanisms. Ocular manifestations of ZIKV arise from the virus' ability to cross both the blood-brain barrier and blood-retinal barrier, as well as the blood-aqueous barrier. Most notably, this results in the development of GBS, a rare neurological complication in acute ZIKV infection. This can yield ocular symptoms and signs. Additionally, infants to whom ZIKV is transmitted congenitally develop congenital Zika syndrome (CZS). The ocular manifestations are widely variable, and include nonpurulent conjunctivitis, anterior uveitis, keratitis, trabeculitis, congenital glaucoma, microphthalmia, hypoplastic optic disc, and optic nerve pallor. There are currently no FDA approved therapeutic agents for treating ZIKV infections and, as such, a meticulous ocular examination is an important aspect of the diagnosis. This review utilized several published articles regarding the ocular findings of ZIKV, antiviral immune responses to ZIKV infection, and the pathogenesis of ocular manifestations in individuals with ZIKV infection. This review summarizes the current knowledge on the viral immunology of ZIKV, interactions between ZIKV and the host's immune defense mechanism, pathological mechanisms, as well as anterior and posterior segment findings associated with ZIKV infection.
Collapse
|
8
|
Zika virus infection accelerates Alzheimer’s disease phenotypes in brain organoids. Cell Death Dis 2022; 8:153. [PMID: 35368019 PMCID: PMC8976422 DOI: 10.1038/s41420-022-00958-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 03/16/2022] [Indexed: 12/17/2022]
Abstract
Alzheimer’s disease (AD) is one of the progressive neurodegenerative diseases characterized by β-amyloid (Aβ) production and Phosphorylated-Tau (p-Tau) protein in the cerebral cortex. The precise mechanisms of the cause, responsible for disease pathology and progression, are not well understood because there are multiple risk factors associated with the disease. Viral infection is one of the risk factors for AD, and we demonstrated that Zika virus (ZIKV) infection in brain organoids could trigger AD pathological features, including Aβ and p-Tau expression. AD-related phenotypes in brain organoids were upregulated via endoplasmic reticulum (ER) stress and unfolded protein response (UPR) after ZIKV infection in brain organoids. Under persistent ER stress, activated-double stranded RNA-dependent protein kinase-like ER-resident (PERK) triggered the phosphorylation of Eukaryotic initiation factor 2 (eIF2α) and then BACE, and GSK3α/β related to AD. Furthermore, we demonstrated that pharmacological inhibitors of PERK attenuated Aβ and p-Tau in brain organoids after ZIKV infection.
Collapse
|
9
|
Schuler-Faccini L, Del Campo M, García-Alix A, Ventura LO, Boquett JA, van der Linden V, Pessoa A, van der Linden Júnior H, Ventura CV, Leal MC, Kowalski TW, Rodrigues Gerzson L, Skilhan de Almeida C, Santi L, Beys-da-Silva WO, Quincozes-Santos A, Guimarães JA, Garcez PP, Gomes JDA, Vianna FSL, Anjos da Silva A, Fraga LR, Vieira Sanseverino MT, Muotri AR, Lopes da Rosa R, Abeche AM, Marcolongo-Pereira C, Souza DO. Neurodevelopment in Children Exposed to Zika in utero: Clinical and Molecular Aspects. Front Genet 2022; 13:758715. [PMID: 35350244 PMCID: PMC8957982 DOI: 10.3389/fgene.2022.758715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Five years after the identification of Zika virus as a human teratogen, we reviewed the early clinical manifestations, collectively called congenital Zika syndrome (CZS). Children with CZS have a very poor prognosis with extremely low performance in motor, cognitive, and language development domains, and practically all feature severe forms of cerebral palsy. However, these manifestations are the tip of the iceberg, with some children presenting milder forms of deficits. Additionally, neurodevelopment can be in the normal range in the majority of the non-microcephalic children born without brain or eye abnormalities. Vertical transmission and the resulting disruption in development of the brain are much less frequent when maternal infection occurs in the second half of the pregnancy. Experimental studies have alerted to the possibility of other behavioral outcomes both in prenatally infected children and in postnatal and adult infections. Cofactors play a vital role in the development of CZS and involve genetic, environmental, nutritional, and social determinants leading to the asymmetric distribution of cases. Some of these social variables also limit access to multidisciplinary professional treatment.
Collapse
Affiliation(s)
- Lavínia Schuler-Faccini
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Miguel Del Campo
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Liana O Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | | | - André Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, Brazil.,Universidade Estadual do Ceará, Fortaleza, Brazil
| | | | - Camila V Ventura
- Department of Ophthalmology, Fundação Altino Ventura, FAV, Recife, Brazil
| | | | - Thayne Woycinck Kowalski
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,CESUCA-Centro Universitário, Cachoeirinha, Brazil
| | | | | | - Lucélia Santi
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Jorge A Guimarães
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | | | - Fernanda Sales Luiz Vianna
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - André Anjos da Silva
- School of Medicine, Graduate Program in Medical Sciences-Universidade do Vale do Taquari-UNIVATES, Lajeado, Brazil.,School of Medicine, Universidade do Vale do Rio dos Sinos-UNISINOS, São Leopoldo, Brazil
| | - Lucas Rosa Fraga
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | - Maria Teresa Vieira Sanseverino
- Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Alysson R Muotri
- Department of Pediatrics, School of Medicine, University of California San Diego, and Rady Children's Hospital San Diego, San Diego, CA, United States
| | | | - Alberto Mantovani Abeche
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clinicas de Porto Alegre, HCPA, Porto Alegre, Brazil
| | | | - Diogo O Souza
- Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
10
|
IRE1-Mediated Unfolded Protein Response Promotes the Replication of Tick-Borne Flaviviruses in a Virus and Cell-Type Dependent Manner. Viruses 2021; 13:v13112164. [PMID: 34834970 PMCID: PMC8619205 DOI: 10.3390/v13112164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022] Open
Abstract
Tick-borne flaviviruses (TBFV) can cause severe neurological complications in humans, but differences in tissue tropism and pathogenicity have been described for individual virus strains. Viral protein synthesis leads to the induction of the unfolded protein response (UPR) within infected cells. The IRE1 pathway has been hypothesized to support flavivirus replication by increasing protein and lipid biogenesis. Here, we investigated the role of the UPR in TBFV infection in human astrocytes, neuronal and intestinal cell lines that had been infected with tick-borne encephalitis virus (TBEV) strains Neudoerfl and MucAr-HB-171/11 as well as Langat virus (LGTV). Both TBEV strains replicated better than LGTV in central nervous system (CNS) cells. TBEV strain MucAr-HB-171/11, which is associated with gastrointestinal symptoms, replicated best in intestinal cells. All three viruses activated the inositol-requiring enzyme 1 (IRE1) pathway via the X-box binding protein 1 (XBP1). Interestingly, the neurotropic TBEV strain Neudoerfl induced a strong upregulation of XBP1 in all cell types, but with faster kinetics in CNS cells. In contrast, TBEV strain MucAr-HB-171/11 failed to activate the IRE1 pathway in astrocytes. The low pathogenic LGTV led to a mild induction of IRE1 signaling in astrocytes and intestinal cells. When cells were treated with IRE1 inhibitors prior to infection, TBFV replication in astrocytes was significantly reduced. This confirms a supporting role of the IRE1 pathway for TBFV infection in relevant viral target cells and suggests a correlation between viral tissue tropism and the cell-type dependent induction of the unfolded protein response.
Collapse
|
11
|
The impact of Zika virus exposure on the placental proteomic profile. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166270. [PMID: 34582966 DOI: 10.1016/j.bbadis.2021.166270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/12/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022]
Abstract
Zika virus (ZIKV) infection has caused severe unexpected clinical outcomes in neonates and adults during the recent outbreak in Latin America, particularly in Brazil. Congenital malformations associated with ZIKV have been frequently reported; nevertheless, the mechanism of vertical transmission and the involvement of placental cells remains unclear. In this study, we applied quantitative proteomics analysis in a floating explant model of chorionic villi of human placental tissues incubated with ZIKV and with ZIKV pre-adsorbed with anti-ZIKV envelope protein. Proteomic data are available via ProteomeXchange with identifier PXD025764. Altered levels of proteins were involved in cell proliferation, apoptosis, inflammatory processes, and the integrin-cytoskeleton complex. Antibody-opsonized ZIKV particles differentially modulated the pattern of protein expression in placental cells; this phenomenon may play a pivotal role in determining the course of infection and the role of mixed infections. The expression of specific proteins was also evaluated by immunoperoxidase assays. These data fill gaps in our understanding of early events after ZIKV placental exposure and help identify infection control targets.
Collapse
|
12
|
Abstract
The abundance, localization, modifications, and protein-protein interactions of many host cell and virus proteins can change dynamically throughout the course of any viral infection. Studying these changes is critical for a comprehensive understanding of how viruses replicate and cause disease, as well as for the development of antiviral therapeutics and vaccines. Previously, we developed a mass spectrometry-based technique called quantitative temporal viromics (QTV), which employs isobaric tandem mass tags (TMTs) to allow precise comparative quantification of host and virus proteomes through a whole time course of infection. In this review, we discuss the utility and applications of QTV, exemplified by numerous studies that have since used proteomics with a variety of quantitative techniques to study virus infection through time. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
13
|
Strange DP, Jiyarom B, Sadri-Ardekani H, Cazares LH, Kenny TA, Ward MD, Verma S. Paracrine IFN Response Limits ZIKV Infection in Human Sertoli Cells. Front Microbiol 2021; 12:667146. [PMID: 34079533 PMCID: PMC8165286 DOI: 10.3389/fmicb.2021.667146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) is unique among mosquito-borne flaviviruses in its ability to be sexually transmitted. The testes have been implicated as sites of long-term ZIKV replication, and our previous studies have identified Sertoli cells (SC), the nurse cells of the seminiferous epithelium that govern spermatogenesis, as major targets of ZIKV infection. To improve our understanding of the interaction of ZIKV with human SC, we analyzed ZIKV-induced proteome changes in these cells using high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS). Our data demonstrated that interferon (IFN) signaling was the most significantly enriched pathway and the antiviral proteins MX1 and IFIT1 were among the top upregulated proteins in SC following ZIKV infection. The dynamic between IFN response and ZIKV infection kinetics in SC remains unclear, therefore we further determined whether MX1 and IFIT1 serve as antiviral effectors against ZIKV. We found that increased levels of MX1 at the later time points of infection coincided with diminished ZIKV infection while the silencing of MX1 and IFIT1 enhanced peak ZIKV propagation in SC. Furthermore, although IFN-I exposure was found to significantly hinder ZIKV replication in SC, IFN response was attenuated in these cells as compared to other cell types. The data in this study highlight IFN-I as a driver of the antiviral state that limits ZIKV infection in SC and suggests that MX1 and IFIT1 function as antiviral effectors against ZIKV in SC. Collectively, this study provides important biological insights into the response of SC to ZIKV infection and the ability of the virus to persist in the testes.
Collapse
Affiliation(s)
- Daniel P. Strange
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| | - Hooman Sadri-Ardekani
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
- Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Lisa H. Cazares
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Tara A. Kenny
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Michael D. Ward
- Systems and Structural Biology Division, Protein Sciences Branch, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School of Medicine, University of Hawai’i at Mãnoa, Honolulu, HI, United States
| |
Collapse
|
14
|
Analysis of Zika virus capsid-Aedes aegypti mosquito interactome reveals pro-viral host factors critical for establishing infection. Nat Commun 2021; 12:2766. [PMID: 33986255 PMCID: PMC8119459 DOI: 10.1038/s41467-021-22966-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global prevalence of arboviral diseases emphasizes the need to improve our understanding of their biology. Research in this area has been hindered by the lack of molecular tools for studying virus-mosquito interactions. Here, we develop an Aedes aegypti cell line which stably expresses Zika virus (ZIKV) capsid proteins in order to study virus-vector protein-protein interactions through quantitative label-free proteomics. We identify 157 interactors and show that eight have potentially pro-viral activity during ZIKV infection in mosquito cells. Notably, silencing of transitional endoplasmic reticulum protein TER94 prevents ZIKV capsid degradation and significantly reduces viral replication. Similar results are observed if the TER94 ortholog (VCP) functioning is blocked with inhibitors in human cells. In addition, we show that an E3 ubiquitin-protein ligase, UBR5, mediates the interaction between TER94 and ZIKV capsid. Our study demonstrates a pro-viral function for TER94/VCP during ZIKV infection that is conserved between human and mosquito cells.
Collapse
|
15
|
Viral Infection Modulates Mitochondrial Function. Int J Mol Sci 2021; 22:ijms22084260. [PMID: 33923929 PMCID: PMC8073244 DOI: 10.3390/ijms22084260] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria are important organelles involved in metabolism and programmed cell death in eukaryotic cells. In addition, mitochondria are also closely related to the innate immunity of host cells against viruses. The abnormality of mitochondrial morphology and function might lead to a variety of diseases. A large number of studies have found that a variety of viral infections could change mitochondrial dynamics, mediate mitochondria-induced cell death, and alter the mitochondrial metabolic status and cellular innate immune response to maintain intracellular survival. Meanwhile, mitochondria can also play an antiviral role during viral infection, thereby protecting the host. Therefore, mitochondria play an important role in the interaction between the host and the virus. Herein, we summarize how viral infections affect microbial pathogenesis by altering mitochondrial morphology and function and how viruses escape the host immune response.
Collapse
|
16
|
Contreras-Capetillo SN, Palma-Baquedano JR, Valadéz-González N, Manrique-Saide P, Barrera-Pérez HAM, Pinto-Escalante D, Pavía-Ruz N. Case Report: Congenital Arthrogryposis and Unilateral Absences of Distal Arm in Congenital Zika Syndrome. Front Med (Lausanne) 2021; 8:499016. [PMID: 33928096 PMCID: PMC8076683 DOI: 10.3389/fmed.2021.499016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Zika virus was recognized as a teratogen in 2015, when prenatal Zika infection was associated with neonatal microcephaly. The transmission, virulence, tropism, and consequences of Zika virus infection during pregnancy are currently studied. Decreased neural progenitor cells, arrest in neuronal migration and/or disruption of the maturation process of the fetus central nervous system have been associated. Congenital Zika Syndrome produces a fetal brain disruption sequence resulting in structural brain abnormalities, microcephaly, intracranial calcifications, fetal akinesia and arthrogryposis. Vascular abnormalities like unique umbilical artery and decreased cerebral vascular flow have been described in some patients. This article reports a Zika positive patient with sequence of fetal brain disruption, arthrogryposis and absence of distal third of the right forearm. This report expands the clinical observations of congenital Zika syndrome that may be related to disruptive vascular events.
Collapse
Affiliation(s)
- Silvina Noemí Contreras-Capetillo
- Hospital General Agustín O'Horán, Secretaría de Salud de Yucatán, Yucatan, Mexico.,Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Yucatan, Mexico
| | - José Rafael Palma-Baquedano
- Hospital General Agustín O'Horán, Secretaría de Salud de Yucatán, Yucatan, Mexico.,Facultad de Medicina, Universidad Anáhuac Mayab, Yucatán, Mexico
| | - Nina Valadéz-González
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Yucatan, Mexico
| | - Pablo Manrique-Saide
- Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Yucatan, Mexico
| | | | - Doris Pinto-Escalante
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Yucatan, Mexico
| | - Norma Pavía-Ruz
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Yucatan, Mexico
| |
Collapse
|
17
|
da Rosa RL, Yang TS, Tureta EF, de Oliveira LR, Moraes ANS, Tatara JM, Costa RP, Borges JS, Alves CI, Berger M, Guimarães JA, Santi L, Beys-da-Silva WO. SARSCOVIDB-A New Platform for the Analysis of the Molecular Impact of SARS-CoV-2 Viral Infection. ACS OMEGA 2021; 6:3238-3243. [PMID: 33553941 PMCID: PMC7839156 DOI: 10.1021/acsomega.0c05701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/13/2021] [Indexed: 05/07/2023]
Abstract
The COVID-19 pandemic caused by the new coronavirus (SARS-CoV-2) has become a global emergency issue for public health. This threat has led to an acceleration in related research and, consequently, an unprecedented volume of clinical and experimental data that include changes in gene expression resulting from infection. The SARS-CoV-2 infection database (SARSCOVIDB: https://sarscovidb.org/) was created to mitigate the difficulties related to this scenario. The SARSCOVIDB is an online platform that aims to integrate all differential gene expression data, at messenger RNA and protein levels, helping to speed up analysis and research on the molecular impact of COVID-19. The database can be searched from different experimental perspectives and presents all related information from published data, such as viral strains, hosts, methodological approaches (proteomics or transcriptomics), genes/proteins, and samples (clinical or experimental). All information was taken from 24 articles related to analyses of differential gene expression out of 5,554 COVID-19/SARS-CoV-2-related articles published so far. The database features 12,535 genes whose expression has been identified as altered due to SARS-CoV-2 infection. Thus, the SARSCOVIDB is a new resource to support the health workers and the scientific community in understanding the pathogenesis and molecular impact caused by SARS-CoV-2.
Collapse
Affiliation(s)
- Rafael Lopes da Rosa
- Programa de Pós-Graduação
em Biologia Celular e Molecular, Universidade
Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio
43431, Porto Alegre, Rio
Grande do Sul 91501-970, Brasil
| | - Tung Sheng Yang
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto
Alegre, Rio Grande do Sul 90610-000, Brasil
| | - Emanuela Fernanda Tureta
- Programa de Pós-Graduação
em Biologia Celular e Molecular, Universidade
Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio
43431, Porto Alegre, Rio
Grande do Sul 91501-970, Brasil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto
Alegre, Rio Grande do Sul 90610-000, Brasil
| | | | - Amanda Naiara Silva Moraes
- Programa de Pós-Graduação
em Biologia Celular e Molecular, Universidade
Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio
43431, Porto Alegre, Rio
Grande do Sul 91501-970, Brasil
| | - Juliana Miranda Tatara
- Programa de Pós-Graduação
em Biologia Celular e Molecular, Universidade
Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio
43431, Porto Alegre, Rio
Grande do Sul 91501-970, Brasil
| | - Renata Pereira Costa
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto
Alegre, Rio Grande do Sul 90610-000, Brasil
| | - Júlia Spier Borges
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto
Alegre, Rio Grande do Sul 90610-000, Brasil
| | - Camila Innocente Alves
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto
Alegre, Rio Grande do Sul 90610-000, Brasil
| | - Markus Berger
- Centro de Pesquisa
Experimental, Hospital de Clínicas
de Porto Alegre, Rua
Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90035-903, Brasil
| | - Jorge Almeida Guimarães
- Centro de Pesquisa
Experimental, Hospital de Clínicas
de Porto Alegre, Rua
Ramiro Barcelos, 2350, Porto Alegre, Rio Grande do Sul 90035-903, Brasil
| | - Lucélia Santi
- Programa de Pós-Graduação
em Biologia Celular e Molecular, Universidade
Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio
43431, Porto Alegre, Rio
Grande do Sul 91501-970, Brasil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto
Alegre, Rio Grande do Sul 90610-000, Brasil
| | - Walter Orlando Beys-da-Silva
- Programa de Pós-Graduação
em Biologia Celular e Molecular, Universidade
Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, prédio
43431, Porto Alegre, Rio
Grande do Sul 91501-970, Brasil
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga 2752, Porto
Alegre, Rio Grande do Sul 90610-000, Brasil
| |
Collapse
|
18
|
Santi L, Riesgo RS, Quincozes-Santos A, Schuler-Faccini L, Tureta EF, Rosa RL, Berger M, Oliveira ACC, Beltrão-Braga PCB, Souza DO, Guimarães JA, Beys-da-Silva WO. Zika Virus Infection Associated with Autism Spectrum Disorder: A Case Report. Neuroimmunomodulation 2021; 28:229-232. [PMID: 34082423 DOI: 10.1159/000516560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The aim of this case was to investigate the association of the Zika virus infection in utero with the autism spectrum disorder (ASD) as clinical outcome that presented no congenital anomalies. METHODS ASD was diagnosed in the second year of life by different child neurologists and confirmed by DSM-5 and ASQ. After that, an extensive clinical, epidemiological, and genetic evaluations were performed, with main known ASD causes ruled out. RESULTS An extensive laboratorial search was done, with normal findings. SNP array identified no pathogenic variants. Normal neuroimaging and EEG findings were also obtained. ZIKV (Zika virus) IgG was positive, while IgM was negative. Other congenital infections were negative. The exome sequencing did not reveal any pathogenic variant in genes related to ASD. CONCLUSION Accordingly, this report firstly associates ZIKV exposure to ASD.
Collapse
Affiliation(s)
- Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Rudimar S Riesgo
- Unidade de Neurologia Infantil e Grupo Translacional de Autismo, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lavínia Schuler-Faccini
- Serviço de Informação Teratogênica Brasileira, Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Emanuela F Tureta
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael L Rosa
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | - Diogo O Souza
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge A Guimarães
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
19
|
Quincozes-Santos A, Rosa RL, Tureta EF, Bobermin LD, Berger M, Guimarães JA, Santi L, Beys-da-Silva WO. COVID-19 impacts the expression of molecular markers associated with neuropsychiatric disorders. Brain Behav Immun Health 2020; 11:100196. [PMID: 33521688 PMCID: PMC7834441 DOI: 10.1016/j.bbih.2020.100196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) was initially characterized due to its impacts on the respiratory system; however, many recent studies have indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) significantly affects the brain. COVID-19 can cause neurological complications, probably caused by the induction of a cytokine storm, since there is no evidence of neurotropism by SARS-CoV-2. In line with this, the COVID-19 outbreak could accelerate the progression or affect the clinical outcomes of neuropsychiatric conditions. Thus, we analyzed differential gene expression datasets for clinical samples of COVID-19 patients and identified 171 genes that are associated with the pathophysiology of the following neuropsychiatric disorders: alcohol dependence, autism, bipolar disorder, depression, panic disorder, schizophrenia, and sleep disorder. Several of the genes identified are associated with causing some of these conditions (classified as elite genes). Among these elite genes, 9 were found for schizophrenia, 6 for autism, 3 for depression/major depressive disorder, and 2 for alcohol dependence. The patients with the neuropsychiatric conditions associated with the genes identified may require special attention as COVID-19 can deteriorate or accelerate neurochemical dysfunctions, thereby aggravating clinical outcomes. COVID-19 can impact the clinical outcomes of neuropsychiatric diseases (NP). Molecular markers of NP were differentially expressed in patients with COVID-19. Elite genes were found for schizophrenia, autism, depression and alcohol dependence.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Lopes Rosa
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Markus Berger
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Walter Orlando Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats. Sci Rep 2020; 10:21604. [PMID: 33303883 PMCID: PMC7729948 DOI: 10.1038/s41598-020-78735-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy was associated with microcephaly in neonates, but clinical and experimental evidence indicate that ZIKV also causes neurological complications in adults. However, the changes in neuron-glial communication, which is essential for brain homeostasis, are still unknown. Here, we report that hippocampal slices from adult rats exposed acutely to ZIKV showed significant cellular alterations regarding to redox homeostasis, inflammatory process, neurotrophic functions and molecular signalling pathways associated with neurons and glial cells. Our findings support the hypothesis that ZIKV is highly neurotropic and its infection readily induces an inflammatory response, characterized by an increased expression and/or release of pro-inflammatory cytokines. We also observed changes in neural parameters, such as adenosine receptor A2a expression, as well as in the release of brain-derived neurotrophic factor and neuron-specific enolase, indicating plasticity synaptic impairment/neuronal damage. In addition, ZIKV induced a glial commitment, with alterations in specific and functional parameters such as aquaporin 4 expression, S100B secretion and glutathione synthesis. ZIKV also induced p21 senescence-associated gene expression, indicating that ZIKV may induce early senescence. Taken together, our results indicate that ZIKV-induced neuroinflammation, involving nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NFκB) pathways, affects important aspects of neuron-glia communication. Therefore, although ZIKV infection is transient, long-term consequences might be associated with neurological and/or neurodegenerative diseases.
Collapse
|
21
|
Sperk M, van Domselaar R, Rodriguez JE, Mikaeloff F, Sá Vinhas B, Saccon E, Sönnerborg A, Singh K, Gupta S, Végvári Á, Neogi U. Utility of Proteomics in Emerging and Re-Emerging Infectious Diseases Caused by RNA Viruses. J Proteome Res 2020; 19:4259-4274. [PMID: 33095583 PMCID: PMC7640957 DOI: 10.1021/acs.jproteome.0c00380] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/21/2022]
Abstract
Emerging and re-emerging infectious diseases due to RNA viruses cause major negative consequences for the quality of life, public health, and overall economic development. Most of the RNA viruses causing illnesses in humans are of zoonotic origin. Zoonotic viruses can directly be transferred from animals to humans through adaptation, followed by human-to-human transmission, such as in human immunodeficiency virus (HIV), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and, more recently, SARS coronavirus 2 (SARS-CoV-2), or they can be transferred through insects or vectors, as in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), Zika virus (ZIKV), and dengue virus (DENV). At the present, there are no vaccines or antiviral compounds against most of these viruses. Because proteins possess a vast array of functions in all known biological systems, proteomics-based strategies can provide important insights into the investigation of disease pathogenesis and the identification of promising antiviral drug targets during an epidemic or pandemic. Mass spectrometry technology has provided the capacity required for the precise identification and the sensitive and high-throughput analysis of proteins on a large scale and has contributed greatly to unravelling key protein-protein interactions, discovering signaling networks, and understanding disease mechanisms. In this Review, we present an account of quantitative proteomics and its application in some prominent recent examples of emerging and re-emerging RNA virus diseases like HIV-1, CCHFV, ZIKV, and DENV, with more detail with respect to coronaviruses (MERS-CoV and SARS-CoV) as well as the recent SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Maike Sperk
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Robert van Domselaar
- Division
of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Jimmy Esneider Rodriguez
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 14152 Sweden
| | - Flora Mikaeloff
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Beatriz Sá Vinhas
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Elisa Saccon
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Anders Sönnerborg
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
- Division
of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Kamal Singh
- Department
of Molecular Microbiology and Immunology and the Bond Life Science
Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Soham Gupta
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
| | - Ákos Végvári
- Division
of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 14152 Sweden
| | - Ujjwal Neogi
- Division
of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Campus Flemingsberg, Stockholm 14152, Sweden
- Department
of Molecular Microbiology and Immunology and the Bond Life Science
Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
22
|
Rossi F, Josey B, Sayitoglu EC, Potens R, Sultu T, Duru AD, Beljanski V. Characterization of zika virus infection of human fetal cardiac mesenchymal stromal cells. PLoS One 2020; 15:e0239238. [PMID: 32941515 PMCID: PMC7498051 DOI: 10.1371/journal.pone.0239238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) is a single-stranded RNA virus belonging to the family Flaviviridae. ZIKV predominantly enters cells using the TAM-family protein tyrosine kinase receptor AXL, which is expressed on a range of cell types, including neural progenitor cells, keratinocytes, dendritic cells, and osteoblasts. ZIKV infections have been associated with fetal brain damage, which prompted the World Health Organization to declare a public health emergency in 2016. ZIKV infection has also been linked to birth defects in other organs. Several studies have reported congenital heart defects (CHD) in ZIKV infected infants and cardiovascular complications in adults infected with ZIKV. To develop a better understanding of potential causes for these pathologies at a cellular level, we characterized ZIKV infection of human fetal cardiac mesenchymal stromal cells (fcMSCs), a cell type that is known to contribute to both embryological development as well as adult cardiac physiology. Total RNA, supernatants, and/or cells were collected at various time points post-infection to evaluate ZIKV replication, cell death, and antiviral responses. We found that ZIKV productively infected fcMSCs with peak (~70%) viral mRNA detected at 48 h. Use of an antibody blocking the AXL receptor decreased ZIKV infection (by ~50%), indicating that the receptor is responsible to a large extent for viral entry into the cell. ZIKV also altered protein expression of several mesenchymal cell markers, which suggests that ZIKV could affect fcMSCs’ differentiation process. Gene expression analysis of fcMSCs exposed to ZIKV at 6, 12, and 24 h post-infection revealed up-regulation of genes/pathways associated with interferon-stimulated antiviral responses. Stimulation of TLR3 (using poly I:C) or TLR7 (using Imiquimod) prior to ZIKV infection suppressed viral replication in a dose-dependent manner. Overall, fcMSCs can be a target for ZIKV infection, potentially resulting in CHD during embryological development and/or cardiovascular issues in ZIKV infected adults.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Benjamin Josey
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Ece Canan Sayitoglu
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Renee Potens
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
| | - Tolga Sultu
- Department of Molecular Biology and Genetics, Bogaziçi University, Istanbul, Turkey
| | - Adil Doganay Duru
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States of America
- * E-mail:
| |
Collapse
|
23
|
Glover KKM, Zahedi-Amiri A, Lao Y, Spicer V, Klonisch T, Coombs KM. Zika Infection Disrupts Proteins Involved in the Neurosensory System. Front Cell Dev Biol 2020; 8:571. [PMID: 32850779 PMCID: PMC7403212 DOI: 10.3389/fcell.2020.00571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Newly re-emerging viruses are of great global concern, especially when there are no therapeutic interventions available during the time of an outbreak. There are still no therapeutic interventions for the prevention of Zika virus (ZIKV) infections despite its resurgence more than a decade ago. Newborns infected with ZIKV suffer from microcephaly and delayed neurodevelopment, but the underlying causes are largely unknown. All viruses hijack the host cellular machinery to undergo successful replication. Our tandem mass tag mass spectrometry-based proteomic monitoring of cells infected with ZIKV revealed that among the thousands of host proteins dysregulated over time, many protein candidates were linked to neurodevelopmental processes, including the development of the auditory and visual/retinal system. The role of these dysregulated neurodevelopmental-associated host proteins for ZIKV propagation in eukaryotic cells remains elusive. For the first time, we present temporal neurodevelopmental proteomic responses in cells undergoing ZIKV infection. The future goal is to identify host proteins whose dysregulation results in neurosensory alterations reported in children born to ZIKV-infected mothers.
Collapse
Affiliation(s)
- Kathleen K. M. Glover
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Ying Lao
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Victor Spicer
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada
| | - Thomas Klonisch
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
- John Buhler Research Centre, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB, Canada
- John Buhler Research Centre, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
24
|
Association between Zika virus and future neurological diseases. J Neurol Sci 2019; 409:116617. [PMID: 31835212 DOI: 10.1016/j.jns.2019.116617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/22/2019] [Accepted: 12/04/2019] [Indexed: 12/28/2022]
|
25
|
Bordoni V, Lalle E, Colavita F, Baiocchini A, Nardacci R, Falasca L, Carletti F, Cimini E, Bordi L, Kobinger G, D'Ambrosio V, Natale F, Giancotti A, Manganaro L, Del Nonno F, Zumla A, Liuzzi G, Ippolito G, Capobianchi MR, Agrati C, Castilletti C. Rescue of Replication-Competent ZIKV Hidden in Placenta-Derived Mesenchymal Cells Long After the Resolution of the Infection. Open Forum Infect Dis 2019; 6:ofz342. [PMID: 31660333 PMCID: PMC6785694 DOI: 10.1093/ofid/ofz342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/17/2019] [Indexed: 11/13/2022] Open
Abstract
The Zika virus (ZIKV) genome, its negative-strand viral proteins, and virus-like particles were detected in placenta-derived mesenchymal cells (MSCs), indicating that ZIKV persists after virus clearance from maternal blood and can be rescued by in vitro cultivation. We report for the first time the presence of replication-competent ZIKV in MSCs from an asymptomatic woman who acquired infection during pregnancy.
Collapse
Affiliation(s)
- Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Eleonora Lalle
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Francesca Colavita
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Andrea Baiocchini
- Unit of Pathology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Roberta Nardacci
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Laura Falasca
- Laboratory of Electron Microscopy, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Licia Bordi
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Gary Kobinger
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec, Canada
| | - Valentina D'Ambrosio
- Department of Maternal and Child Health and Urologic Science, "Sapienza" University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Fabio Natale
- Department of Maternal and Child Health and Urologic Science, "Sapienza" University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Antonella Giancotti
- Department of Maternal and Child Health and Urologic Science, "Sapienza" University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Lucia Manganaro
- Department of Radiological, Oncological and Pathological Science, "Sapienza" University of Rome, Policlinico Umberto I Hospital, Rome, Italy
| | - Franca Del Nonno
- Unit of Pathology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Alimuddin Zumla
- Division of Infection and Immunity, Center for Clinical Microbiology, University College London, London, UK.,National Institute of Health Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Giuseppina Liuzzi
- Center for Prevention and Treatment of Infections in Pregnancy, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Scientific Direction, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases "L. Spallanzani," IRCCS, Rome, Italy
| |
Collapse
|
26
|
Chasing Intracellular Zika Virus Using Proteomics. Viruses 2019; 11:v11090878. [PMID: 31546825 PMCID: PMC6783930 DOI: 10.3390/v11090878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses are the most medically relevant group of arboviruses causing a wide range of diseases in humans and are associated with high mortality and morbidity, as such posing a major health concern. Viruses belonging to this family can be endemic (e.g., dengue virus), but can also cause fulminant outbreaks (e.g., West Nile virus, Japanese encephalitis virus and Zika virus). Intense research efforts in the past decades uncovered shared fundamental strategies used by flaviviruses to successfully replicate in their respective hosts. However, the distinct features contributing to the specific host and tissue tropism as well as the pathological outcomes unique to each individual flavivirus are still largely elusive. The profound footprint of individual viruses on their respective hosts can be investigated using novel technologies in the field of proteomics that have rapidly developed over the last decade. An unprecedented sensitivity and throughput of mass spectrometers, combined with the development of new sample preparation and bioinformatics analysis methods, have made the systematic investigation of virus-host interactions possible. Furthermore, the ability to assess dynamic alterations in protein abundances, protein turnover rates and post-translational modifications occurring in infected cells now offer the unique possibility to unravel complex viral perturbations induced in the infected host. In this review, we discuss the most recent contributions of mass spectrometry-based proteomic approaches in flavivirus biology with a special focus on Zika virus, and their basic and translational potential and implications in understanding and characterizing host responses to arboviral infections.
Collapse
|
27
|
Rosa RL, Santi L, Berger M, Tureta EF, Quincozes-Santos A, Souza DO, Guimarães JA, Beys-da-Silva WO. ZIKAVID-Zika virus infection database: a new platform to analyze the molecular impact of Zika virus infection. J Neurovirol 2019; 26:77-83. [PMID: 31512145 DOI: 10.1007/s13365-019-00799-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022]
Abstract
The recent outbreak of Zika virus (ZIKV) in Brazil and other countries globally demonstrated the relevance of ZIKV studies. During and after this outbreak, there was an intense increase in scientific production on ZIKV infections, especially toward alterations promoted by the infection and related to clinical outcomes. Considering this massive amount of new data, mainly thousands of genes and proteins whose expression is impacted by ZIKV infection, the ZIKA Virus Infection Database (ZIKAVID) was created. ZIKAVID is an online database that comprises all genes or proteins, and associated information, for which expression was experimentally measured and found to be altered after ZIKV infection. The database, available at https://zikavid.org, contains 16,984 entries of gene expression measurements from a total of 7348 genes. It allows users to easily perform searches for different experimental hosts (cell lines, tissues, and animal models), ZIKV strains (African, Asian, and Brazilian), and target molecules (messenger RNA [mRNA] and protein), among others, used in differential expression studies regarding ZIKV infection. In this way, the ZIKAVID will serve as an additional and important resource to improve the characterization of the molecular impact and pathogenesis associated with ZIKV infection.
Collapse
Affiliation(s)
- Rafael L Rosa
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucélia Santi
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil.,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Emanuela F Tureta
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Diogo O Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jorge A Guimarães
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Walter O Beys-da-Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752 suit 709, Porto Alegre, RS, Brazil. .,Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
28
|
Human Cytomegalovirus Disruption of Calcium Signaling in Neural Progenitor Cells and Organoids. J Virol 2019; 93:JVI.00954-19. [PMID: 31217241 DOI: 10.1128/jvi.00954-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
The herpesvirus human cytomegalovirus (HCMV) is a leading cause of congenital birth defects. Infection can result in infants born with a variety of symptoms, including hepatosplenomegaly, microcephaly, and developmental disabilities. Microcephaly is associated with disruptions in the neural progenitor cell (NPC) population. Here, we defined the impact of HCMV infection on neural tissue development and calcium regulation, a critical activity in neural development. Regulation of intracellular calcium involves purinergic receptors and voltage-gated calcium channels (VGCC). HCMV infection compromised the ability of both pathways in NPCs as well as fibroblasts to respond to stimulation. We observed significant drops in basal calcium levels in infected NPCs which were accompanied by loss in VGCC activity and purinergic receptor responses. However, uninfected cells in the population retained responsiveness. Addition of the HCMV inhibitor maribavir reduced viral spread but failed to restore activity in infected cells. To study neural development, we infected three-dimensional cortical organoids with HCMV. Infection spread to a subset of cells over time and disrupted organoid structure, with alterations in developmental and neural layering markers. Organoid-derived infected neurons and astrocytes were unable to respond to stimulation whereas uninfected cells retained nearly normal responses. Maribavir partially restored structural features, including neural rosette formation, and dampened the impact of infection on neural cellular function. Using a tissue model system, we have demonstrated that HCMV alters cortical neural layering and disrupts calcium regulation in infected cells.IMPORTANCE Human cytomegalovirus (HCMV) replicates in several cell types throughout the body, causing disease in the absence of an effective immune response. Studies on HCMV require cultured human cells and tissues due to species specificity. In these studies, we investigated the impact of infection on developing three-dimensional cortical organoid tissues, with specific emphasis on cell-type-dependent calcium signaling. Calcium signaling is an essential function during neural differentiation and cortical development. We observed that HCMV infects and spreads within these tissues, ultimately disrupting cortical structure. Infected cells exhibited depleted calcium stores and loss of ATP- and KCl-stimulated calcium signaling while uninfected cells in the population maintained nearly normal responses. Some protection was provided by the viral inhibitor maribavir. Overall, our studies provide new insights into the impact of HCMV on cortical tissue development and function.
Collapse
|
29
|
Abstract
The development of an intervention to slow or halt disease progression remains the greatest unmet therapeutic need in Parkinson's disease. Given the number of failures of various novel interventions in disease-modifying clinical trials in combination with the ever-increasing costs and lengthy processes for drug development, attention is being turned to utilizing existing compounds approved for other indications as novel treatments in Parkinson's disease. Advances in rational and systemic drug repurposing have identified a number of drugs with potential benefits for Parkinson's disease pathology and offer a potentially quicker route to drug discovery. Here, we review the safety and potential efficacy of the most promising candidates repurposed as potential disease-modifying treatments for Parkinson's disease in the advanced stages of clinical testing.
Collapse
Affiliation(s)
- Dilan Athauda
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology and National Hospital for Neurology & Neurosurgery, Queen Square, London, UK.
| |
Collapse
|