1
|
Saeed I, Ma L. Transient receptor potential channels and calcium dysregulation: a pathogenic duo in Parkinson's disease. Neural Regen Res 2025; 20:808-810. [PMID: 38886949 PMCID: PMC11433894 DOI: 10.4103/nrr.nrr-d-24-00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Iqira Saeed
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, Australia
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, Australia
- School of Environment and Science, Griffith University Nathan, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Wang Z, Zheng B, Yu X, Shi Y, Zhou X, Gao B, He F, Tam MS, Wang H, Cheang LH, Zheng X, Wu T. Promoting neurovascularized bone regeneration with a novel 3D printed inorganic-organic magnesium silicate/PLA composite scaffold. Int J Biol Macromol 2024; 277:134185. [PMID: 39074694 DOI: 10.1016/j.ijbiomac.2024.134185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Critical-size bone defect repair presents multiple challenges, such as osteogenesis, vascularization, and neurogenesis. Current biomaterials for bone repair need more consideration for the above functions. Organic-inorganic composites combined with bioactive ions offer significant advantages in bone regeneration. In our work, we prepared an organic-inorganic composite material by blending polylactic acid (PLA) with 3-aminopropyltriethoxysilane (APTES)-modified magnesium silicate (A-M2S) and fabricated it by 3D printing. With the increase of A-M2S proportion, the hydrophilicity and mineralization ability showed an enhanced trend, and the compressive strength and elastic modulus were increased from 15.29 MPa and 94.61 MPa to 44.30 MPa and 435.77 MPa, respectively. Furthermore, A-M2S/PLA scaffolds not only exhibited good cytocompatibility of bone marrow mesenchymal stem cells (BMSCs), human umbilical vein endothelial cells (HUVECs), and Schwann cells (SCs), but also effectively promoted osteogenesis, angiogenesis, and neurogenesis in vitro. After implanting 10% A-M2S/PLA scaffolds in vivo, the scaffolds showed the most effective repair of cranium defects compared to the blank and control group (PLA). Additionally, they promoted the secretion of proteins related to bone regeneration and neurovascular formation. These results provided the basis for expanding the application of A-M2S and PLA in bone tissue engineering and presented a novel concept for neurovascularized bone repair.
Collapse
Affiliation(s)
- Zhaozhen Wang
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China; Orthopedic and traumatology department, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyuan Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xiaolu Yu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yiwan Shi
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Xinting Zhou
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Botao Gao
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | | | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Lek Hang Cheang
- Department of Orthopedic Surgery, Centro Hospitalar Conde de Sao Januario, Macau.
| | - Xiaofei Zheng
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, Jinan University, Guangzhou 510630, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Luo Z, Zhang X, Fleig A, Romo D, Hull KG, Horgen FD, Sun HS, Feng ZP. TRPM7 in neurodevelopment and therapeutic prospects for neurodegenerative disease. Cell Calcium 2024; 120:102886. [PMID: 38631163 DOI: 10.1016/j.ceca.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024]
Abstract
Neurodevelopment, a complex and highly regulated process, plays a foundational role in shaping the structure and function of the nervous system. The transient receptor potential melastatin 7 (TRPM7), a divalent cation channel with an α-kinase domain, mediates a wide range of cellular functions, including proliferation, migration, cell adhesion, and survival, all of which are essential processes in neurodevelopment. The global knockout of either TRPM7 or TRPM7-kinase is embryonically lethal, highlighting the crucial role of TRPM7 in development in vivo. Subsequent research further revealed that TRPM7 is indeed involved in various key processes throughout neurodevelopment, from maintaining pluripotency during embryogenesis to regulating gastrulation, neural tube closure, axonal outgrowth, synaptic density, and learning and memory. Moreover, a discrepancy in TRPM7 expression and/or function has been associated with neuropathological conditions, including ischemic stroke, Alzheimer's disease, and Parkinson's disease. Understanding the mechanisms of proper neurodevelopment may provide us with the knowledge required to develop therapeutic interventions that can overcome the challenges of regeneration in CNS injuries and neurodegenerative diseases. Considering that ion channels are the third-largest class targeted for drug development, TRPM7's dual roles in development and degeneration emphasize its therapeutic potential. This review provides a comprehensive overview of the current literature on TRPM7 in various aspects of neurodevelopment. It also discusses the links between neurodevelopment and neurodegeneration, and highlights TRPM7 as a potential therapeutic target for neurodegenerative disorders, with a focus on repair and regeneration.
Collapse
Affiliation(s)
- Zhengwei Luo
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Xinyang Zhang
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, HI, 96720, USA
| | - Daniel Romo
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798-7348, USA; The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76798, USA
| | - Kenneth G Hull
- Department of Chemistry & Biochemistry, Baylor University, Waco, TX 76798-7348, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
4
|
Luan M, Feng Z, Zhu W, Xing Y, Ma X, Zhu J, Wang Y, Jia Y. Mechanism of metal ion-induced cell death in gastrointestinal cancer. Biomed Pharmacother 2024; 174:116574. [PMID: 38593706 DOI: 10.1016/j.biopha.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Collapse
Affiliation(s)
- Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
5
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Okada Y, Numata T, Sabirov RZ, Kashio M, Merzlyak PG, Sato-Numata K. Cell death induction and protection by activation of ubiquitously expressed anion/cation channels. Part 3: the roles and properties of TRPM2 and TRPM7. Front Cell Dev Biol 2023; 11:1246955. [PMID: 37842082 PMCID: PMC10576435 DOI: 10.3389/fcell.2023.1246955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell volume regulation (CVR) is a prerequisite for animal cells to survive and fulfill their functions. CVR dysfunction is essentially involved in the induction of cell death. In fact, sustained normotonic cell swelling and shrinkage are associated with necrosis and apoptosis, and thus called the necrotic volume increase (NVI) and the apoptotic volume decrease (AVD), respectively. Since a number of ubiquitously expressed ion channels are involved in the CVR processes, these volume-regulatory ion channels are also implicated in the NVI and AVD events. In Part 1 and Part 2 of this series of review articles, we described the roles of swelling-activated anion channels called VSOR or VRAC and acid-activated anion channels called ASOR or PAC in CVR and cell death processes. Here, Part 3 focuses on therein roles of Ca2+-permeable non-selective TRPM2 and TRPM7 cation channels activated by stress. First, we summarize their phenotypic properties and molecular structure. Second, we describe their roles in CVR. Since cell death induction is tightly coupled to dysfunction of CVR, third, we focus on their participation in the induction of or protection against cell death under oxidative, acidotoxic, excitotoxic, and ischemic conditions. In this regard, we pay attention to the sensitivity of TRPM2 and TRPM7 to a variety of stress as well as to their capability to physicall and functionally interact with other volume-related channels and membrane enzymes. Also, we summarize a large number of reports hitherto published in which TRPM2 and TRPM7 channels are shown to be involved in cell death associated with a variety of diseases or disorders, in some cases as double-edged swords. Lastly, we attempt to describe how TRPM2 and TRPM7 are organized in the ionic mechanisms leading to cell death induction and protection.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
- Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Japan
| | - Tomohiro Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| | - Ravshan Z. Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Makiko Kashio
- National Institute for Physiological Sciences (NIPS), Okazaki, Japan
- Department of Physiology, School of Medicine, Aichi Medical Uniersity, Nagakute, Japan
| | - Peter G. Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Kaori Sato-Numata
- Department of Integrative Physiology, Graduate School of Medicine, AkitaUniversity, Akita, Japan
| |
Collapse
|
7
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
8
|
Adipose-specific deletion of the cation channel TRPM7 inhibits TAK1 kinase-dependent inflammation and obesity in male mice. Nat Commun 2023; 14:491. [PMID: 36717580 PMCID: PMC9887063 DOI: 10.1038/s41467-023-36154-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic inflammation of white adipose tissue is a key link between obesity and the associated metabolic syndrome. Transient receptor potential melastatin-like 7 (TRPM7) is known to be related to inflammation; however, the role of TRPM7 in adipocyte phenotype and function in obesity remains unclear. Here, we observe that the activation of adipocyte TRPM7 plays an essential role in pro-inflammatory responses. Adult male mice are used in our experiments. Adipocyte-specific deficiency in TRPM7 attenuates the pro-inflammatory phenotype, improves glucose homeostasis, and suppresses weight gain in mice fed a high-fat diet. Mechanistically, the pro-inflammatory effect of TRPM7 is dependent on Ca2+ signaling. Ca2+ influx initiated by TRPM7 enhances transforming growth factor-β activated kinase 1 activation via the co-regulation of calcium/calmodulin-dependent protein kinase II and tumor necrosis factor receptor-associated factor 6, leading to exacerbated nuclear factor kappa B signaling. Additionally, obese mice treated with TRPM7 inhibitor are protected against obesity and insulin resistance. Our results demonstrate TRPM7 as a factor in the development of adipose inflammation that regulates insulin sensitivity in obesity.
Collapse
|
9
|
Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int J Mol Sci 2022; 24:ijms24010223. [PMID: 36613667 PMCID: PMC9820677 DOI: 10.3390/ijms24010223] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Magnesium (Mg) is involved in the regulation of metabolism and in the maintenance of the homeostasis of all the tissues, including the brain, where it harmonizes nerve signal transmission and preserves the integrity of the blood-brain barrier. Mg deficiency contributes to systemic low-grade inflammation, the common denominator of most diseases. In particular, neuroinflammation is the hallmark of neurodegenerative disorders. Starting from a rapid overview on the role of magnesium in the brain, this narrative review provides evidences linking the derangement of magnesium balance with multiple sclerosis, Alzheimer's, and Parkinson's diseases.
Collapse
|
10
|
Long M, Zhu X, Wei X, Zhao D, Jiang L, Li C, Jin D, Miao C, Du Y. Magnesium in renal fibrosis. Int Urol Nephrol 2022; 54:1881-1889. [PMID: 35060008 DOI: 10.1007/s11255-022-03118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE Renal fibrosis (RF) is the main pathological feature of chronic kidney disease (CKD). The main focus of research on treatment for CKD is to develop strategies that delay or prevent RF from progressing to end-stage renal disease (ESRD). Inflammation and oxidative stress occur during all stages of CKD. The magnesium cation (Mg2+) can reduce inflammation and oxidative stress, regulate apoptosis, and improve RF, and magnesium-based therapies are promising new treatments that can prevent RF. We reviewed the current evidence on the effects of magnesium in RF and examined the possible mechanism of magnesium in delaying RF. METHODS We searched PubMed, Web of Science, and EMBASE for articles on magnesium and fibrosis, with a focus on magnesium and RF. RESULTS Inflammation, oxidative stress, and apoptosis are related to the occurrence of CKD. Previous research showed that Mg2+ inhibits the differentiation of inflammatory cells, down-regulates the production of inflammatory cytokines, reduces inflammation, and reduces the production of reactive oxygen species (ROS) and oxidative stress. In addition, Mg2+ also regulates apoptosis and protects renal tubular function. Magnesium may also regulate TRPM6/7, promote the secretion of klotho protein and improve renal fibrosis. Therefore, Mg2+ can protect the kidney from damage and slow down the progression of RF through many molecular and cellular effects. Some of the anti-fibrotic effects of Mg2+ may be related to its antagonism of intracellular Ca2+. CONCLUSION Magnesium may prevent the progression of renal fibrosis and delay CKD by reducing renal inflammation and oxidative stress, and by regulating fibrosis-related signaling pathways and cytokines.
Collapse
Affiliation(s)
- Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Dan Zhao
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Lili Jiang
- Physical Examination Center, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Chenhao Li
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Die Jin
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Changxiu Miao
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, 1 Xinmin Street, Chaoyang District, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
11
|
Bai R, Miao MZ, Li H, Wang Y, Hou R, He K, Wu X, Jin H, Zeng C, Cui Y, Lei G. Increased Wnt/β-catenin signaling contributes to autophagy inhibition resulting from a dietary magnesium deficiency in injury-induced osteoarthritis. Arthritis Res Ther 2022; 24:165. [PMID: 35804467 PMCID: PMC9264717 DOI: 10.1186/s13075-022-02848-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Background Dietary magnesium deficiency, which is common in modern diet, has been associated with osteoarthritis (OA) susceptibility. Despite this clinical association, no study has addressed if dietary magnesium deficiency accelerates OA development, especially at molecular level. This study aimed to explore aggravating effects of dietary magnesium deficiency on cartilage damage in an injury-induced murine OA model and to determine the underlying mechanism. Methods Twelve-week-old C57BL/6J mice subject to injury-induced OA modeling were randomized into different diet groups in which the mice were fed a diet with daily recommended magnesium content (500 mg/kg) or diets with low magnesium content (100 or 300 mg/kg). Articular cartilage damage was evaluated using the OARSI score. To determine molecular mechanisms in vitro, mouse chondrocytes were treated with media of low magnesium conditions at 0.1 and 0.4 mM, compared with normal magnesium condition at 0.7 mM as control. Anabolic and catabolic factors, autophagy markers, β-catenin, Wnt ligands, and a magnesium channel transient receptor potential cation channel subfamily member 7 (TRPM7) were analyzed by quantitative real-time PCR and immunoblotting. Autolysosomes were detected by DALGreen staining via fluorescence microscopy and autophagosomes were evaluated by transmission electron microscopy. Autophagy markers, β-catenin, and TRPM7 were assessed in vivo in the mouse cartilage, comparing between dietary magnesium deficiency and normal diet, by immunohistochemistry. Results Dietary magnesium deficiency aggravated injury-induced cartilage damage, indicated by significant higher OARSI scores. Autophagy markers LC3-II and Beclin-1 were decreased both in low magnesium diet-fed mice and low magnesium-treated chondrocytes. The number of autolysosomes and autophagosomes was also reduced under low magnesium conditions. Moreover, magnesium deficiency induced decreased anabolic and increased catabolic effect of chondrocytes which could be restored by autophagy activator rapamycin. In addition, reduced autophagy under low magnesium conditions is mediated by activated Wnt/β-catenin signaling. The expression of TRPM7 also decreased in low magnesium diet-fed mice, indicating that downstream changes could be regulated through this channel. Conclusions Dietary magnesium deficiency contributes to OA development, which is mediated by reduced autophagy through Wnt/β-catenin signaling activation. These findings indicated potential benefits of adequate dietary magnesium for OA patients or those individuals at high risk of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02848-0.
Collapse
Affiliation(s)
- Ruijun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Michael Z Miao
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Oral and Craniofacial Biomedicine, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Yiqing Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruixue Hou
- Department of Population Health Science and Policy, Icahn School of Medical at Mount Sinai, New York, NY, USA
| | - Ke He
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Xuan Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Hongyu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China.,Hunan Engineering Research Center of Osteoarthritis, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Cui
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China. .,Xiangya International Medical Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China. .,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China. .,Hunan Engineering Research Center of Osteoarthritis, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Cibulka M, Brodnanova M, Grendar M, Necpal J, Benetin J, Han V, Kurca E, Nosal V, Skorvanek M, Vesely B, Stanclova A, Lasabova Z, Pös Z, Szemes T, Stuchlik S, Grofik M, Kolisek M. Alzheimer's Disease-Associated SNP rs708727 in SLC41A1 May Increase Risk for Parkinson's Disease: Report from Enlarged Slovak Study. Int J Mol Sci 2022; 23:ijms23031604. [PMID: 35163527 PMCID: PMC8835868 DOI: 10.3390/ijms23031604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
SLC41A1 (A1) SNPs rs11240569 and rs823156 are associated with altered risk for Parkinson's disease (PD), predominantly in Asian populations, and rs708727 has been linked to Alzheimer's disease (AD). In this study, we have examined a potential association of the three aforementioned SNPs and of rs9438393, rs56152218, and rs61822602 (all three lying in the A1 promoter region) with PD in the Slovak population. Out of the six tested SNPs, we have identified only rs708727 as being associated with an increased risk for PD onset in Slovaks. The minor allele (A) in rs708727 is associated with PD in dominant and completely over-dominant genetic models (ORD = 1.36 (1.05-1.77), p = 0.02, and ORCOD = 1.34 (1.04-1.72), p = 0.02). Furthermore, the genotypic triplet GG(rs708727) + AG(rs823156) + CC(rs61822602) might be clinically relevant despite showing a medium (h ≥ 0.5) size difference (h = 0.522) between the PD and the control populations. RandomForest modeling has identified the power of the tested SNPs for discriminating between PD-patients and the controls to be essentially zero. The identified association of rs708727 with PD in the Slovak population leads us to hypothesize that this A1 polymorphism, which is involved in the epigenetic regulation of the expression of the AD-linked gene PM20D1, is also involved in the pathoetiology of PD (or universally in neurodegeneration) through the same or similar mechanism as in AD.
Collapse
Affiliation(s)
- Michal Cibulka
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Maria Brodnanova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Marian Grendar
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
| | - Jan Necpal
- Clinic of Neurology, AGEL Hospital in Zvolen, 96001 Zvolen, Slovakia;
| | - Jan Benetin
- Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, 83303 Bratislva, Slovakia;
| | - Vladimir Han
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Egon Kurca
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Vladimir Nosal
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
| | - Matej Skorvanek
- Clinic of Neurology, University Hospital of L. Pasteur in Kosice, University of Pavol Jozef Safarik, 04066 Kosice, Slovakia; (V.H.); (M.S.)
| | - Branislav Vesely
- Clinic of Neurology, Faculty Hospital in Nitra, Constantine the Philosopher University in Nitra, 94901 Nitra, Slovakia;
| | - Andrea Stanclova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zora Lasabova
- Institute of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.S.); (Z.L.)
| | - Zuzana Pös
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Tomas Szemes
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
- GENETON s.r.o., 84104 Bratislava, Slovakia
| | - Stanislav Stuchlik
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, 84104 Bratislava, Slovakia; (Z.P.); (T.S.); (S.S.)
| | - Milan Grofik
- Clinic of Neurology, University Hospital Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.K.); (V.N.)
- Correspondence: (M.G.); (M.K.)
| | - Martin Kolisek
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.C.); (M.B.); (M.G.)
- Correspondence: (M.G.); (M.K.)
| |
Collapse
|
13
|
Branca JJV, Carrino D, Paternostro F, Gulisano M, Becatti M, Di Cesare Mannelli L, Pacini A. Antioxidant support to ameliorate the oxaliplatin-dependent microglial alteration: morphological and molecular study. Eur J Histochem 2021; 65. [PMID: 34755507 PMCID: PMC8607276 DOI: 10.4081/ejh.2021.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Oxaliplatin is a third-generation chemotherapy drug mainly used for colorectal cancer treatment. However, it is also known to trigger neuropathy whose underlying neurobiological mechanisms are still under investigation and currently available treatments show limited efficacy. It is now established that neurons are not the only cell type involved in chronic pain and that glial cells, mainly astrocytes and microglia, are involved in the initiation and maintenance of neuropathy. Among all the pathogenetic factors involved in neuropathic pain, an oxaliplatin-dependent oxidative stress plays a predominant role. In our study, the antioxidant properties of magnesium (Mg), manganese (Mn) and zinc (Zn) salts were evaluated in order to counteract microglial activation induced by oxaliplatin. The antioxidant efficacy of these metals was evaluated by the means of molecular and morphological assays on the BV-2 microglial cell line. Our data clearly show that Mg, Mn and Zn are able to prevent oxaliplatin-dependent microglial alterations by reducing both oxidative and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jacopo J V Branca
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio, University of Florence.
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Florence.
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Anatomy Section, University of Florence.
| |
Collapse
|
14
|
Du Preez S, Cabanas H, Staines D, Marshall-Gradisnik S. Potential Implications of Mammalian Transient Receptor Potential Melastatin 7 in the Pathophysiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10708. [PMID: 34682454 PMCID: PMC8535478 DOI: 10.3390/ijerph182010708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
The transient receptor potential (TRP) superfamily of ion channels is involved in the molecular mechanisms that mediate neuroimmune interactions and activities. Recent advancements in neuroimmunology have identified a role for TRP cation channels in several neuroimmune disorders including amyotropic lateral sclerosis, multiple sclerosis, and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS is a debilitating disorder with an obscure aetiology, hence considerable examination of its pathobiology is warranted. Dysregulation of TRP melastatin (TRPM) subfamily members and calcium signalling processes are implicated in the neurological, immunological, cardiovascular, and metabolic impairments inherent in ME/CFS. In this review, we present TRPM7 as a potential candidate in the pathomechanism of ME/CFS, as TRPM7 is increasingly recognized as a key mediator of physiological and pathophysiological mechanisms affecting neurological, immunological, cardiovascular, and metabolic processes. A focused examination of the biochemistry of TRPM7, the role of this protein in the aforementioned systems, and the potential of TRPM7 as a molecular mechanism in the pathophysiology of ME/CFS will be discussed in this review. TRPM7 is a compelling candidate to examine in the pathobiology of ME/CFS as TRPM7 fulfils several key roles in multiple organ systems, and there is a paucity of literature reporting on its role in ME/CFS.
Collapse
Affiliation(s)
- Stanley Du Preez
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4215, Australia
- School of Medicine and Dentistry, Griffith University, Gold Coast 4215, Australia
| | - Helene Cabanas
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
- Institut de Recherche Saint Louis, Université de Paris, INSERM U944 and CNRS UMR 7212, Hôpital Saint Louis, APHP, 75010 Paris, France
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute, Griffith University, Gold Coast 4215, Australia; (D.S.); (S.M.-G.)
- Consortium Health International for Myalgic Encephalomyelitis, Menzies Health Institute Queensland, Griffith University, Gold Coast 4215, Australia;
| |
Collapse
|
15
|
Liang HY, Chen Y, Wei X, Ma GG, Ding J, Lu C, Zhou RP, Hu W. Immunomodulatory functions of TRPM7 and its implications in autoimmune diseases. Immunology 2021; 165:3-21. [PMID: 34558663 DOI: 10.1111/imm.13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/17/2021] [Accepted: 09/14/2021] [Indexed: 12/18/2022] Open
Abstract
An autoimmune disease is an inappropriate response to one's tissues due to a break in immune tolerance and exposure to self-antigens. It often leads to structural and functional damage to organs and systemic disorders. To date, there are no effective interventions to prevent the progression of autoimmune diseases. Hence, there is an urgent need for new treatment targets. TRPM7 is an enzyme-coupled, transient receptor ion channel of the subfamily M that plays a vital role in pathologic and physiologic conditions. While TRPM7 is constitutively activated under certain conditions, it can regulate cell migration, polarization, proliferation and cytokine secretion. However, a growing body of evidence highlights the critical role of TRPM7 in autoimmune diseases, including rheumatoid arthritis, multiple sclerosis and diabetes. Herein, we present (a) a review of the channel kinase properties of TRPM7 and its pharmacological properties, (b) discuss the role of TRPM7 in immune cells (neutrophils, macrophages, lymphocytes and mast cells) and its upstream immunoreactive substances, and (c) highlight TRPM7 as a potential therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Hong-Yu Liang
- The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yong Chen
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Wei
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Gang-Gang Ma
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jie Ding
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Chao Lu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Ren-Peng Zhou
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
16
|
Öz A, Çelik Ö. The effects of neuronal cell differentiation on TRPM7, TRPM8 and TRPV1 channels in the model of Parkinson's disease. Neurol Res 2021; 44:24-37. [PMID: 34256685 DOI: 10.1080/01616412.2021.1952512] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Transient Receptor Potential Melastatin-like 7 (TRPM7), Transient Receptor Potential Melastatin-like 8 (TRPM8) and Transient Receptor Potential Vanilloid-like 1 (TRPV1) channels are expressed in neurological tissues such as brain cortex, dorsal root ganglion and hippocampal neurons and involved in several neurological diseases. The SH-SY5Y neuronal cell line is frequently used as a cellular model of neurodegenerative diseases including Parkinson's disease. The differentiated SH-SY5Y cells have much neuronal structure, function and exaggerated neuronal marker expression. However, we have less data about how differentiation induces TRP channel expression and how TRP channels have a role in cellular functions in Parkinson's disease model in SH-SY5Y cells. Hence, we aimed to investigate the effects of differentiation phenomena on TRPM7, TRPM8 and TRPV1 cation channel expression and related Ca2+ signaling. We also made some other analysis to elucidate TRP channels' function in MPP induced apoptosis, mitochondrial membrane potential levels, intracellular reactive oxygen species production, caspase 3 and caspase 9 enzyme activities in differentiated or undifferentiated SH-SY5Y neuronal cells. Herein we concluded that TRPM7, TRPM8 and TRPV1 cation channels have pivotal effects on differentiation and MPP induced Parkinson's disease model in SH-SY5Y cells.
Collapse
Affiliation(s)
- Ahmi Öz
- Department of Biophysics, School of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Ömer Çelik
- Department of Biophysics, School of Medicine, Süleyman Demirel University, Isparta, Turkey.,Neuroscience Research Center, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
17
|
Shi R, Fu Y, Zhao D, Boczek T, Wang W, Guo F. Cell death modulation by transient receptor potential melastatin channels TRPM2 and TRPM7 and their underlying molecular mechanisms. Biochem Pharmacol 2021; 190:114664. [PMID: 34175300 DOI: 10.1016/j.bcp.2021.114664] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin (TRPM) channels are members of the transient receptor potential (TRP) channels, a family of evolutionarily conserved integral membrane proteins. TRPM channels are nonselective cation channels, mediating the influx of various ions including Ca2+, Na+ and Zn2+. The function of TRPM channels is vital for cell proliferation, cell development and cell death. Cell death is a key procedure during embryonic development, organism homeostasis, aging and disease. The category of cell death modalities, beyond the traditionally defined concepts of necrosis, autophagy, and apoptosis, were extended with the discovery of pyroptosis, necroptosis and ferroptosis. As upstream signaling regulators of cell death, TRPM channels have been involved inrelevant pathologies. In this review, we introduced several cell death modalities, then summarized the contribution of TRPM channels (especially TRPM2 and TRPM7) to different cell death modalities and discussed the underlying regulatory mechanisms. Our work highlighted the possibility of TRPM channels as potential therapeutic targets in cell death-related diseases.
Collapse
Affiliation(s)
- Ruixue Shi
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yu Fu
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Dongyi Zhao
- The University of Tokyo, Department of Pharmaceutical Science, 1130033, Japan
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, 92215, Poland.
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, China.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
18
|
Fiorentini D, Cappadone C, Farruggia G, Prata C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021; 13:1136. [PMID: 33808247 PMCID: PMC8065437 DOI: 10.3390/nu13041136] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Magnesium plays an important role in many physiological functions. Habitually low intakes of magnesium and in general the deficiency of this micronutrient induce changes in biochemical pathways that can increase the risk of illness and, in particular, chronic degenerative diseases. The assessment of magnesium status is consequently of great importance, however, its evaluation is difficult. The measurement of serum magnesium concentration is the most commonly used and readily available method for assessing magnesium status, even if serum levels have no reliable correlation with total body magnesium levels or concentrations in specific tissues. Therefore, this review offers an overview of recent insights into magnesium from multiple perspectives. Starting from a biochemical point of view, it aims at highlighting the risk due to insufficient uptake (frequently due to the low content of magnesium in the modern western diet), at suggesting strategies to reach the recommended dietary reference values, and at focusing on the importance of detecting physiological or pathological levels of magnesium in various body districts, in order to counteract the social impact of diseases linked to magnesium deficiency.
Collapse
Affiliation(s)
| | | | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (D.F.); (C.C.); (C.P.)
| | | |
Collapse
|
19
|
Zhang S, Zhao D, Jia W, Wang Y, Liang H, Liu L, Wang W, Yu Z, Guo F. A bibliometric analysis and review of recent researches on TRPM7. Channels (Austin) 2020; 14:203-215. [PMID: 32643506 PMCID: PMC7515573 DOI: 10.1080/19336950.2020.1788355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed protein that contains both an ion channel and an active kinase. TRPM7 has involved in a variety of cellular functions and critically participates in various diseases mainly including cancer and neurodegenerative disorders. However, the theme trends and knowledge structures for TRPM7 have not yet been studied bibliometrically. The main purposes of this research are to compare the scientific production in the research field of TRPM7 among countries and to evaluate the publication trend between 2004 and 2019. All publications were extracted from the Web of Science Core Collection (WoSCC) database from 2004 to 2019. Microsoft Excel 2018, Prism 6, and CiteSpace V were applied to analyze the scientific research outputs including journals, countries, territories, institutions, authors, and research hotspots. In this report, a total of 860 publications related to TRPM7 were analyzed. Biophysical Journal ranked top for publishing 31 papers. The United States of America had the largest number of publications (320) with a high citation frequency (11,298) and H-index (58). Chubanov V (38 publications) and Gudermann T (38 citations), who from Ludwig Maximilian University of Munich, were the most productive authors and had the greatest co-citation counts. Our study also combined the bibliometric study with a systematic review on TRPM7, highlighting the four research frontiers of TRPM7. This is the first study that demonstrated the trends and future development in TRPM7 publications, providing a clear and intuitive profile for the contributions in this field.
Collapse
Affiliation(s)
- Shiqi Zhang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Dongyi Zhao
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Wanying Jia
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Yuting Wang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Hongyue Liang
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| | - Lei Liu
- Human Aging Research Institute, School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Wuyang Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Zhiyi Yu
- Division of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Shandong, China
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmaceutical Science, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Impact of circadian disruption on health; SIRT1 and Telomeres. DNA Repair (Amst) 2020; 96:102993. [PMID: 33038659 DOI: 10.1016/j.dnarep.2020.102993] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
Circadian clock is a biochemical oscillator in organisms that regulates the circadian rhythm of numerous genes over 24 h. The circadian clock is involved in telomere homeostasis by regulating the diurnal rhythms of telomerase activity, TERT mRNA level, TERRA expression, and telomeric heterochromatin formation. Particularly, CLOCK and BMAL1 deficiency contribute to telomere shortening by preventing rhythmic telomerase activity and TERRA expression, respectively. Telomere shortening increases the number of senescent cells with impaired circadian rhythms. In return, telomerase reconstitution improves impaired circadian rhythms of senescent cells. SIRT1 that is an NAD+-dependent deacetylase positively regulates circadian clock and telomere homeostasis. SIRT1 contributes to the circadian clock by mediating CLOCK/BMAL1 complex formation, BMAL1 transcription and PER2 disruption. On the other hand, SIRT1 ensures telomere homeostasis by inducing telomerase and shelterin protein expression and regulating telomere heterochromatin formation. SIRT1 inhibition leads to both circadian clock and telomeres dysfunction that inhibit its activity. In light of this current evidence, we could suggest that the BMAL1/CLOCK complex regulates the telomere homeostasis in SIRT1 dependent manner, and also telomere dysfunction inhibits circadian clock function by suppressing SIRT1 activity to induce age-related diseases. We consider that increasing SIRT1 activity can prevent age-related diseases and help healthy aging by protecting telomere integrity and circadian clock function for individuals subjected to circadian rhythm disruption such as shift works, individuals with sleep disorders, and in the elderly population.
Collapse
|
21
|
A Review of the Action of Magnesium on Several Processes Involved in the Modulation of Hematopoiesis. Int J Mol Sci 2020; 21:ijms21197084. [PMID: 32992944 PMCID: PMC7582682 DOI: 10.3390/ijms21197084] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Magnesium (Mg2+) is an essential mineral for the functioning and maintenance of the body. Disturbances in Mg2+ intracellular homeostasis result in cell-membrane modification, an increase in oxidative stress, alteration in the proliferation mechanism, differentiation, and apoptosis. Mg2+ deficiency often results in inflammation, with activation of inflammatory pathways and increased production of proinflammatory cytokines by immune cells. Immune cells and others that make up the blood system are from hematopoietic tissue in the bone marrow. The hematopoietic tissue is a tissue with high indices of renovation, and Mg2+ has a pivotal role in the cell replication process, as well as DNA and RNA synthesis. However, the impact of the intra- and extracellular disturbance of Mg2+ homeostasis on the hematopoietic tissue is little explored. This review deals specifically with the physiological requirements of Mg2+ on hematopoiesis, showing various studies related to the physiological requirements and the effects of deficiency or excess of this mineral on the hematopoiesis regulation, as well as on the specific process of erythropoiesis, granulopoiesis, lymphopoiesis, and thrombopoiesis. The literature selected includes studies in vitro, in animal models, and in humans, giving details about the impact that alterations of Mg2+ homeostasis can have on hematopoietic cells and hematopoietic tissue.
Collapse
|
22
|
Sun Y, Kamat A, Singh BB. Isoproterenol-Dependent Activation of TRPM7 Protects Against Neurotoxin-Induced Loss of Neuroblastoma Cells. Front Physiol 2020; 11:305. [PMID: 32390858 PMCID: PMC7193110 DOI: 10.3389/fphys.2020.00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/17/2022] Open
Abstract
Neuronal function and their survival depend on the activation of ion channels. Loss of ion channel function is known to induce neurodegenerative diseases such as Parkinson’s that exhibit loss of dopaminergic neurons; however, mechanisms that could limit neuronal loss are not yet fully identified. Our data suggest that neurotoxin-mediated loss of neuroblastoma SH-SY5Y cells is inhibited by the addition of β-adrenergic receptor (β-AR) agonist isoproterenol. The addition of isoproterenol to SHSY-5Y cells showed increased Mg2+ influx and cell survival in the presence of neurotoxin especially at higher concentration of isoproterenol. Importantly, isoproterenol potentiated transient receptor potential melastatin-7 (TRPM7) channel activation that leads to an increase in intracellular Mg2+ levels. The addition of 2APB, which is a known TRPM7 channel blocker, significantly decreased the TRPM7 function and inhibited isoproterenol-mediated protection against neurotoxins. Moreover, neurotoxins inhibited TRPM7 expression and function, but the restoration of TRPM7 expression increased neuroblastoma cell survival. In contrast, TRPM7 silencing increased cell loss, decreased Mg2+ homeostasis, and inhibited mitochondrial function. Moreover, isoproterenol treatment prevented neurotoxin-mediated loss of TRPM7 expression and inhibited Bax expression that induces cell survival. These effects were dependent on the neurotoxin-induced increase in oxidative stress, which inhibits TRPM7 expression and function. Together, our results suggest a positive role for β-AR in activating TRPM7 channels that regulate Mg2+ homeostasis and are essential for the survival of SH-SY5Y cells from neurotoxin.
Collapse
Affiliation(s)
- Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Amrita Kamat
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|